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Abstract

Inadequate toothbrushing habits are a leading cause of oral health

problems such as tooth decay. Many individuals are uncertain if

they are brushing effectively or over-focusing on specific areas.

While high-end electric toothbrushes can address these concerns,

manual toothbrushes remain widely used due to their simplicity and

affordability. In this paper, we introduce BrushBuds, an earphone-

based toothbrushing monitoring system aimed at tracking brushing

areas, which leverages the ubiquitous presence of earphones to

enhance manual toothbrushing. BrushBuds utilizes Inertial Mea-

surement Units (IMUs) in earphones to detect subtle head move-

ments incurred by toothbrushing. By capturing distinct motion

patterns specific to brushing for each tooth region, BrushBuds can

effectively track the toothbrushing process. Our evaluation demon-

strates the feasibility of BrushBuds, showing an average accuracy of

84.3% in identifying six distinct tooth areas. By enhancing manual

toothbrushing with IMU sensors in earphones, BrushBuds has the

potential to significantly improve oral hygiene practices for a broad

range of manual toothbrush users.

CCS Concepts

• Human-centered computing→ Ubiquitous and mobile comput-

ing design and evaluation methods.
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1 Introduction

According to WHO statistics [26], over one-third of the world’s

population suffers from tooth decay, with the incidence rising no-

tably in low- and middle-income countries. Toothbrushing is an

effective method for preventing these conditions. Most dentists

recommend people brushing all dental areas for a sufficient du-

ration [1]. On the other hand, overbrushing for extended periods

can result in tooth sensitivity and gum recession [1]. While some

advanced smart electric toothbrushes offer features such as brush-

ing timers and area detection, a significant portion of the global

population continues to use manual toothbrushes. For example,

more than 250 million Americans still use manual toothbrushes

[31]. Consequently, improving oral hygiene practices for manual

toothbrush users remains a critical issue.

Several methods have been explored to enhance manual tooth-

brushes with toothbrushing monitoring capabilities. Video-based

systems [10] employ cameras positioned in front of the user’s mouth

to capture the overall brushing activity. However, they often en-

counter obstructions from the hands and mouth, limiting detection

accuracy and raising privacy concerns. Audio-based methods uti-

lize toothbrushing sound signals from a nearby smartphone [20]

or external earpiece microphones [27] to monitor brushing. Yet,

these techniques are susceptible to interference from ambient noise

like running water or music [23]. IMUs-based solutions [5, 9, 19]

integrate IMUs into manual toothbrushes or use them in wear-

able devices such as smartwatches to monitor brushing move-

ments. Despite their effectiveness, they can be affected by irrel-

evant hand movements, limiting users’ hand motions and brushing

postures [12].

Earphones have gained widespread adoption in recent years.

Equipped with sensors like microphones and IMUs, these devices

have become integral to many users’ daily lives and are highly

prevalent. Their sensing capabilities have enabled numerous smart

applications, such as health monitoring [22, 30] and enhanced com-

munication [11]. IMUs in earphones, which are low-cost sensors

commonly found in commercial earbuds, are promising for captur-

ing headmotions. The stable position of the human ear is unaffected

by limb movements, allowing the IMU sensors in earphones to nat-

urally capture head motions during toothbrushing. This sensing

capabilities inspire us to explore the potential of earable IMUs to

enhance manual toothbrushing.

In this paper, we introduce BrushBuds, an earable IMU-based

system designed to enhance manual toothbrushing by integrating
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Figure 1: BrushBuds uses earphone IMUs to capture subtle

head motions for toothbrushing monitoring.

features typically available in high-end electric toothbrushes, i.e.,

brushing area tracking. Specifically, we divide the mouth into six

areas. Since brushing in different areas of the mouth results in dis-

tinct head movements and transitions, we extract relevant features

from the IMU data and employ learning techniques to identify the

corresponding brushing areas. As shown in Fig. 1, when users wear

BrushBuds, it can monitor the toothbrushing process with manual

toothbrushes.

Developing BrushBuds requires addressing the following chal-

lenges. First, because of the interference generated by the magnets

of the speakers, very few of the earables in the market are equipped

with a magnetometer [15]. Without the magnetic north as a ref-

erence, we could not rely on the existing calibration techniques

to obtain the accurate head orientation with 6-degree of freedom

(DoF) IMUs. Second, because of the slight rotation when the user

wears the earbuds at different times, it will lead to random offset

in IMU signals. This challenge requires a lot of user data to train

a model that can be generalized to different wearing cases, which

causes a huge data collection burden for users. Lastly, due to the

similarity of head movements when brushing adjacent areas, there

may be some ambiguity and occasional outliers in the detection

results.

To overcome these challenges, we propose the following techni-

cal approaches. First, since the head motions caused by the tooth-

brushing occur and keep stable within the head’s coordinate system,

we convert the IMU readings from both earphones to a unified head

coordinate system, allowing us to bypass the need for a magnetome-

ter. To achieve this, we perform opportunistic calibration during

the static period before toothbrushing by identifying the direction

of gravity that aligns with the z-axis of the head coordinate system.

However, people often lean slightly forward while brushing their

teeth to prevent water from spilling, causing a small angle between

gravity and the z-axis of the head coordinate system. To address

this, we use data augmentation to randomly rotate the pitch of

the head coordinate system by a small angle before opportunistic

calibration. After these steps, we can mitigate the variations when

the user places the earbuds on their head at different times. Fur-

thermore, we utilize the temporal continuity of the toothbrushing

process to refine the detection results, eliminating ambiguous pre-

dictions and occasional outliers. A comprehensive evaluation of

BrushBuds shows the system’s effectiveness in monitoring tooth-

brushing across six dental areas. To summarize, this paper makes

the following contributions:

• To the best of our knowledge, BrushBuds is the first system

to monitor toothbrushing using earable IMUs, enhancing

manual toothbrushing by providing brushing area tracking,

a feature typically found in high-end electric toothbrushes.

• To ensure robust toothbrushing monitoring, we developed a

series of technical methods, including opportunistic coordi-

nate calibration, data augmentation, and result refinement.

• We conducted a comprehensive evaluation of BrushBuds,

which demonstrated an average detection accuracy of 84.3%

for six regions. This system has the potential to significantly

improve oral hygiene practices for many users of manual

toothbrushes.

2 Related Work

2.1 Toothbruhsing Monitoring

Vision-based solutions utilize cameras to monitor brushing activi-

ties [12]. For example, Playful Toothbrush [10] utilized a webcam

positioned in front of the user’s mouth to track an LED-coded

toothbrush extension, assisting users in learning proper brushing

techniques. Akifusa et al. [4] integrated a miniature camera into

the head of a UV-LED toothbrush to visually assess plaque removal

effectiveness in electric toothbrushes. LiT [12] employs dual photo-

sensors in commercial LED toothbrushes for monitoring brushing.

Despite their capability to offer visual feedback, these systems can

be obstructed by hands and the mouth. Besides, privacy concerns

may arise due to the intrusive video recording.

Compared to vision-based approaches, audio-based methods

have less privacy concerns. Korpela et al. [20] employed hidden

Markov models (HMM) to recognize brushing regions using audio

collected from nearby smartphones. Ouyang et al. [27] utilized two

throat microphones and the external microphones of an earphone

for toothbrushing monitoring. However, external microphones are

easily disturbed by ambient noise [23]. EarSense [29] leverages

in-ear audio to identify tooth activities, demonstrating the feasibil-

ity of toothbrushing monitoring, although it can only distinguish

coarse-grained horizontal areas. ToothFairy [33] explores earphone-

reversed signals and constructs an acoustic attenuation model to

monitor toothbrushing. Despite achieving fine-grained recogni-

tion accuracy, it only performs on outer teeth regions with electric

toothbrushes, limiting its applicability for manual ones.

IMUs can be mounted on the toothbrush handle to estimate

brushing motions [9]. Li et al. [21] attached an IMU sensor and five

pressure sensors to the brush handle to estimate brushing regions

and forces using Random Forest models. However, integrating IMUs

may require to modify the toothbrushes. Another approach is to use

the IMU in a smartwatch worn on the user’s wrist to monitor the

toothbrushing process [5, 23]. Huang et al.[19] employed a Naive

Bayes classifier to recognize brushing regions using IMU data from

a wristwatch. Hygiea [23] utilizes wrist-worn IMUs to achieve fine-

grained toothbrushing activity recognition with an LSTM model.

Similarly, mORAL [6] and mTeeth [5] can detect oral health behav-

iors such as brushing and flossing passively using wrist-worn IMUs.

While using wrist-IMUs does not require toothbrush modification,

these systems constrain natural brushing posture because IMU data

on the wrist is usually interfered with by hand motions. BrushBuds

utilizes earable IMUs, which captures the inherent head motions
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Figure 3: The system overview of BrushBuds.

caused by toothbrushing from a stable position on the human body.

Additionally, BrushBuds has potential to complement and enhance

wrist IMU approaches to achieve better tracking performance.

2.2 Earphone-based Applications

Earphones have become a significant sensing platform in recent

years, facilitating a wide array of applications [13, 30]. OESense

leverages the occlusion effect within the ear to identify human

gestures and activities [24]. Additionally, researchers have explored

the use of in-ear microphones to measure various physiological pa-

rameters, including respiratory function [22, 25], heart rate [8, 32],

dietary habits [7], authentication [14, 16, 34], and lung function [35].

Furthermore, IMU sensors in earphones, which can capture subtle

head motions, have also been employed in various applications,

such as head motion tracking [15], step counting [28], speech en-

hancement [18], and augmented reality (VR) [36]. Building on these

advancements, our work uses IMU sensors in earphones to track

different areas of brushing to enhance manual toothbrushing.

3 BrushBuds Design

3.1 Objective

Failing to brush each area of the mouth thoroughly for enough

duration can result in plaque buildup, leading to the risk of oral

health problems such as cavities and gum bleeding. On the flip

side, excessive brushing can lead to gum recession [1]. Dentists

suggest brushing teeth twice daily for two minutes, ensuring even

coverage of all areas [2]. As depicted in Fig. 2, current toothbrushing

monitoring systems [5, 12, 19, 27] typically segment the mouth

into six areas: left (A1, A2), middle (A3, A4), and right (A5, A6)

for both the upper and lower jaws. The left and right sides each

have three surfaces: inner, outer, and chewing surfaces, whereas

the middle sections have two surfaces, resulting in a total of 16

surfaces. Most electric toothbrushes track brushing in four regions

(left/right sides plus upper/lower jaws) or six regions. Only some

high-end models, like the Oral-B iO10 (USD 550), can monitor all

16 surfaces. Our project aims to use IMU sensors in widely used

headphones to enhance manual toothbrushing, providing effective

six-area monitoring similar to most electric toothbrushes.

3.2 System Overview

Figure 3 shows the system overview of BrushBuds. The head move-

ment caused by toothbrushing will be captured by the IMU sensors

(i.e.3-axis accerlerometer and 3-axis gyroscope) of earphones and

then forwarded to the sensor fusion module. The sensor fusion

module (Sec. 3.3) is responsible for fusing accelerometer and gyro-

scope data, removing the sensory bias in the gyroscope readings.

After that, the accelerometer and gyroscope data in the device co-

ordinate are transformed to the head coordinate in the coordinate

calibration module (Sec. 3.4). At the same time, the data augmen-

tation module (Sec. 3.5) will randomly rotate the head coordinate

to improve the data generalizibility. Following this, the 6-axis IMU

data of both left and right earphones are concatenated and fed into

the classification module (Sec. 3.6) to predict the brushing areas.

Finally, the prediction results are fed into the refinement module

(Sec. 3.7) to correct the occasional inaccurate output with temporal

and spatial constraints.

3.3 Sensor Fusion

In this module, we first fuse accelerometer and gyroscope data to

mitigate sensor bias and offset. This bias arises due to two factors.

One is from manufacturing imperfections, temperature variations,

and aging of the sensor; Another is that the gyroscope measures

angular velocity, offering precise short-term measurements but suf-

fering from cumulative drift over time. Consequently, this bias may

be regarded as a fingerprint for different brushing areas, thereby

leading to the overfitting problem for machine learning models. On

the other hand, the accelerometer measures linear acceleration and

is subject to less drift over time but is sensitive to external vibra-

tions and transient forces. Therefore, we employ a Kalman filter

[17] to compensate for the bias of the gyroscope with the stable

reference of the accelerometer. Thus, we can fuse two sensors and

mitigate the sensor offset.

3.4 Coordinate Calibration

There are slight device rotations when the user places the earphones

on every time, leading to IMU coordinate inconsistency for both

ears. To address this problem, ideally, we can utilize the IMU read-

ings to estimate head orientation in a uniform earth coordinate as

a feature to directly detect the different brushing areas. However,

without the magnetic north as a reference, we can only estimate
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Figure 4: Coordinate calibra-

tion.

Figure 5: Pitch rotation aug-

mentation.

the relative head orientation, which suffers from yaw drift over

time [3].

We have an observation that the toothbrushing motion actually

is relative to the head instead of the global earth coordinate, so we

propose an opportunistic calibration to transform the IMU data of

both ears from the device coordinate to a unified head coordinate.

Fig. 4 shows the coordinate definition of the head and the left ear

IMU (the right ear is omitted but the calibration principle is the

same). In the head coordinate system, the z-axis aligns with the

direction of the neck, the x-axis points to the front of the user’s

head, and the y-axis points to the right. When the user wears the

earphones, the z-axis of the head 𝑧ℎ is almost aligned with the

gravity direction 𝑔. Thus, we can estimate the gravity direction in

the device coordinate and rotate it accordingly to align the z-axis of

the head. Specifically, we use the average acceleration in the static

period of one second before the user starts brushing to estimate

the gravity direction gd:

gd ≈
1

𝑁

𝑁∑
𝑖=1

ai (1)

Where ai = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ] is the ACC readings from three axes at time 𝑖
in device coordinate. Therefore, we can calculate the rotation vector

u and rotation angle 𝜃 between the gravity direction in the device

coordinate gd to the the gravity direction in the head coordinate

gh = [0, 0, 1]:

u =
gd × gh
‖gd × gh‖

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠
gd · gh

‖gd‖‖gh‖
(2)

and then we can obtain the quaternion q as

q =

(
cos

(
𝜃

2

)
, 𝑢𝑥 sin

(
𝜃

2

)
, 𝑢𝑦 sin

(
𝜃

2

)
, 𝑢𝑧 sin

(
𝜃

2

))
(3)

Thus, we can transform the IMU readings from the device coordi-

nate to the head coordinate:

Ch = qCdq
∗ (4)

The same calibration method applies to the right ear. Then, we

employ a bandpass filter on the transformed data with the cutoff

frequencies of [2, 6]Hz to remove the low-frequency interference

(e.g., body motions) and the irrelevant high-frequency noise. Be-

sides, this operation removes the bias effect of the gravity and unifis

the data scale.

3.5 Data Augmentation

In the previous step, we assume the z-axis of the head 𝑧ℎ is almost

aligned with the gravity direction 𝑔, which requires users to stand

very straight. However, we observe that people often lean slightly

LSTM
(256)

BatchN
orm

LSTM
(128)

BatchN
orm

O
utput

LSTM
(128)

BatchN
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LSTM
(64)

BatchN
orm

Figure 6: Model structure.

forward while brushing their teeth to prevent water from spilling,

which may lead to a small pitch offset 𝛼 , as shown in Fig 5. To deal

with this problem, we perform data augmentation by randomly ro-

tating the gravity direction along the y-axis in the head coordinate.

Specifically, we perform a random pitch rotation to the gh in [0◦,

30◦] before coordinate calibration. We increase the dataset size by

a factor of 30 through data augmentation.

3.6 Classification

After coordinate transformation, we segment the accelerometer

and gyroscope data with a sliding window of 600 𝑚𝑠 , stack the

left and right channels, and feed them into a deep learning model.

Concretely, we use four LSTM layers to capture the temporal rela-

tionship among the IMU data. Figure 6 shows the structure of the

deep learning model. To prevent overfitting, each LSTM layer is

followed by a batch normalization layer and a dropout layer with

a dropout rate of 0.2. The output is a dense layer of size 6, using

the softmax function. Considering the varied brushing habits of

different users, the new user can contribute a small number of la-

beled data traces to fine-tune the model pretrained by the data of

other users. Thus, BrushBuds can transfer the learned brushing

monitoring knowledge to new users.

3.7 Refinement

After classification, the estimation results may exhibit sudden shifts

and outliers due to inherent motion ambiguity and occasional pre-

diction errors. Toothbrushing, however, is a process that is both

temporally continuous, i.e., the area being brushed should ideally

show continuity over time. Therefore, we can apply continuity

constraints over time to refine the model predictions. Specifically,

we use a moving median filter with different window sizes (i.e.,

1, 3, and 5) iteratively to smooth the classification results across

various time scales. This approach improves the overall coherence

and accuracy of the toothbrushing tracking result.

4 Implementation and Evaluation

We developed a prototype earphone for our evaluation, as depicted

in Fig. 7. A MPU6050 sensor was attached to a 3D-printed ear-

mounted case, which was connected to a Raspberry Pi 4B to collect

data at a sampling rate of 90 Hz. Figure 8 illustrates the experi-

mental setup. We recruited 13 volunteers for our study, which was

approved by our institution’s Ethics Committee. Participants wore

the earphone prototype and brushed their teeth once per day, over

five different workdays. They followed a guide video instructing

them on the brushing locations and durations, which provided our

ground truth. Each brushing session lasted 2 minutes, consistent

with ADA recommendations.
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4.1 Overall Performance

4.1.1 Cross-validation. Many electric toothbrushes on the market,

such as the Oral-B iO Series 5, 6, 7, and 8, offer tracking capabilities

limited to six regions of the mouth. Therefore, we first evaluated

BrushBuds’s tracking performance in these six areas. Figure 9 shows

the confusion matrix from a 5-fold cross-validation for all data. The

overall classification accuracy is 84.3%, indicating that BrushBuds

can effectively detect six dental areas. An interesting observation

is that the error rate is higher within areas on the same side of the

mouth compared to areas on different sides. For instance, areas 5

and 6 tend to be misclassified since they are both on the right side.

Similarly, areas 1 and 2, as well as areas 3 and 4, are often confused

because they are on the same left and middle sides, respectively.

This is due to the subtle difference in movements caused by similar

head postures when brushing areas are on the same side.

4.1.2 Cross-session validation. Given that different brushing ses-

sions may exhibit slight variations in habits, we conducted an ex-

periment where the model was trained on data from two random

sessions and tested on data from three different sessions. Figure 10

presents the confusion matrix for this cross-session validation,

which achieved an overall accuracy of 85.9%, comparable to the

cross-validation case. In this cross-session validation, where the test-

ing data represent complete toothbrushing sessions, we employed

refinement techniques to reduce ambiguity and enhance accuracy.

Compared to Fig. 9, there was a notable reduction in ambiguity,

particularly in non-adjacent areas. This highlights the effectiveness

of refinement techniques in correcting occasional prediction errors

and mitigating ambiguity issues.

4.2 Impact of Users

To evaluate system performance between different users, we con-

ducted a leave-one-user-out analysis, where the model was trained

on data from all but one user and tested on the data from the re-

maining users. As shown in Fig. 11, the average accuracies are only

45.3%. This result was expected, as brushing motions are closely

tied to individual habits. Each user has unique brushing movements

and habits, so testing the model on new users without prior data

leads to significant bias.

To address this challenge, we propose a guided fine-tuning ap-

proach. When a new user first uses the system, they are guided

through a video to brush all areas as one session, and then the

data of this labeled session is used to perform fine-tuning. This

allows the model, pre-trained on data from other users, to adapt to

the new user. Specifically, we fine-tune the model using data from

one session provided by the new user and then test the model on

the user’s data from four other sessions. We observed a significant

improvement in accuracy, with performance increasing to 68.7%.

This demonstrates the efficacy of the fine-tuning approach in en-

hancing the model’s adaptability to different users. Furthermore,

through refinement techniques, we further enhanced the model’s

predictions and improved its accuracy. As a result, the accuracy

increased to 82.2%, highlighting the efficacy of refinement in re-

ducing ambiguity and enhancing classification performance. For

model adaptation, collecting a small amount of data is an acceptable

trade-off in terms of user involvement. The performance can be

further improved if users contribute more data (e.g., two or more

sessions). Another observation is that users 1, 6, and 10 show lower

performance compared to others. This is because of their different

brushing techniques across multiple attempts. For instance, on some

days, they employed a Bass brushing method, while on other days,

they used a modified Bass brushing technique (adding a vertical

sweeping outward after brushing each tooth). This inconsistency

in brushing motions across different sessions led to performance

decrease.

4.3 Ablation Study

To assess the individual contributions of different components, we

conducted an ablation study by replicating the cross-session exper-

iment described in Sec. 4.1.2 while excluding various modules: co-

ordinate calibration (CC), data augmentation (DA), and refinement

(Ref). The system’s performance without ablation (N/A) was 85.9%.

Excluding coordinate calibration caused a significant performance

drop to 38.6%, highlighting the impact of cross-session variations

and the effectiveness of coordinate calibration in unifying the fea-

ture space. Omitting data augmentation reduced performance to
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73.7%, demonstrating that data augmentation effectively captures

the slight head lean before users begin brushing. Excluding refine-

ment resulted in a performance decrease to 68.7%, underscoring the

importance of refinement in mitigating ambiguity and effectively

handling outliers.

5 Conclusion

We propose BrushBuds, a toothbrushing monitoring system that

utilizes IMU sensors embedded in earbuds. This system enhances

manual toothbrushing by providing users with brushing tracking

information. By transforming and augmenting IMU data on both

ears into a unified framework, BrushBuds captures brushing mo-

tion patterns and achieves an accuracy of 84.3% in tracking six

tooth areas. BrushBuds empowers users of manual toothbrushes to

enjoy the benefits typically associated with high-end smart tooth-

brushes using just a pair of earphones, which holds great promise

for improving public dental health practices.
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