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Abstract—Speech emotion recognition (SER) in health appli-
cations can offer several benefits by providing insights into the
emotional well-being of individuals. In this work, we propose
a method for SER using time-frequency representation of the
speech signals and neural networks. In particular, we divide the
speech signals into overlapping segments and transform each
segment into a Mel-spectrogram. The Mel-spectrogram forms the
input to YAMNet, a pretrained convolutional neural network for
audio classification, which learns spectral characteristics within
each Mel-spectrogram. In addition, we utilize a long short-
term memory network, a type of recurrent neural network, to
learn the temporal dependencies between the sequence of Mel-
spectrograms in each speech signal. The proposed method is
evaluated on angry, happy, and sad emotion types and the neutral
expression on two SER datasets, achieving an average accuracy
of 0.711 and 0.780. These results are a relative improvement over
baseline methods and demonstrate the potential of our method
in detecting emotion states using speech signals.

Index Terms—Convolutional neural network, Mel-
spectrogram, recurrent neural network, speech emotion
recognition

I. INTRODUCTION

Emotion recognition technology involves the identification
of human emotions through analysis of physiological signals.
While various physiological signals can be utilized for this
purpose, emotion recognition using speech signals presents ad-
vantages over other modalities in its natural and non-intrusive
nature [1], capturing the rich emotional nuances conveyed
through intonation, pitch, and rhythm. In addition, speech is a
universally accessible and ubiquitous form of communication,
making it highly applicable across diverse cultural contexts.

Speech emotion recognition (SER) presents several benefits
in health applications. It can provide valuable insights into
individuals’ emotional well-being through the analysis of vocal
cues. This technology enables the monitoring of mental health
conditions by detecting changes in speech patterns indicative
of mood shifts or emotional distress. In remote patient mon-
itoring and telehealth, SER can enhance virtual consultations
by offering an additional layer of emotional information.
The early detection of cognitive decline, stress management
through voice analysis, and personalized therapeutic interven-
tions can contribute to more effective healthcare practices. As
such, integrating SER into healthcare not only enhances the
understanding of emotional states but also promotes a more
holistic and patient-centered approach to medical care [2].

Current methods in SER are largely based on a combination
of various feature engineering techniques to capture different
speech characteristics, such as time and frequency descrip-
tors, cepstral features, and deep learning features [2], [3].
These features are then classified using conventional machine
learning methods, such as random forest and support vector
machine [2], [3]. Today, most studies [4], [5] incorporate deep
learning methods in SER. However, most publicly available
SER datasets are small in size and deep learning methods can
be susceptible to overfitting when trained on small datasets
without effective preventative measures.

In this work, we propose a method for SER using a
time-frequency image representation of the segmented speech
audio signals and a combination of different neural network
classifiers, including a pretrained network. For the time-
frequency representation, we use the Mel-spectrogram over
the conventional spectrogram representation used in an earlier
study [4]. The Mel-spectrogram makes use of the Mel-scale [6]
which resembles the way humans perceive sound. It provides
finer resolution at lower frequencies which are important for
speech intelligibility [7]. We use a pretrained convolutional
neural network (CNN) for audio classification to learn the
spectral characteristics from the Mel-spectrograms of the
speech signals. In addition, a recurrent neural network (RNN)
is utilized to learn the relationship between successive Mel-
spectrograms from the same speech utterance. The combined
network [8] is evaluated on two datasets of validated emotions.

II. MATERIALS AND METHODS

The steps in SER proposed in this work are illustrated in
Fig. 1 and explained in the following subsections.

A. Dataset

Our work makes use of two datasets: the Ryerson audio-
visual database of emotional speech and song (RAVDESS) [9]
and the database of elicited mood in speech (DEMoS) [10].

The RAVDESS database features individuals articulating
two lexically-matched statements in a neutral North American
accent. The data is accessible in multiple formats but we
focus on the speech data. While the dataset encompasses seven
emotions along with an additional neutral expression, in this
work, consistent with [11], we use the improvised dataset of
the following four classes: angry, happy, sad, and neutral.



Fig. 1. Illustration of the steps in our speech emotion recognition.

Each participant repeated each statement twice, delivering
them at both normal and strong emotional intensities for all
emotions, except neutral which is at neutral expression only.
Consequently, there are eight recorded samples for each of the
three emotion types and four recorded samples for the neutral
expression from each participant.

While the RAVDESS dataset speech is in English, the
DEMoS dataset is in Italian. The DEMoS dataset also consists
of seven emotions and the neutral expression but our focus
is once again on the four improvised classes, as on the
RAVDESS dataset. Unlike the RAVDESS dataset, where the
emotions are expressed by actors, a variety of mood induction
procedures are used in the DEMoS dataset followed by a
perception test, making it more authentic.

The speech utterances in both datasets are recorded at a
rate of 48 kHz and 16-bit. Table I presents an overview of
the two datasets. In addition, speech waveforms for angry,
happy, sad, and neutral emotion types from the RAVDESS
dataset are depicted in Fig. 2(a)–(d), respectively. These speech
waveforms are from the same subject who spoke the same
statement at the same emotional intensity in all four instances.

B. Mel-Spectrogram

The speech signals are converted into Mel-spectrogram
time-frequency representation. This image-like representation
forms input to the pretrained CNN. The pretrained CNN takes
as input Mel-spectrogram of size 96×64, where 96 is the
number of frames and 64 is the number of mel bands, from
audio segments of length 0.975 s sampled at 16 kHz.

As such, we downsample the speech signals to 16 kHz and
segment each speech signal into length of 0.975 s with 50%
overlap between adjacent segments. Short-time Fourier trans-
form (STFT) is computed for each segmented speech signal.
This is done by sliding an analysis window (Hann window)
of length of 25 ms with an overlap of 15 ms between adjacent
windows. Discrete Fourier transform (DFT) of the windowed
signal results in the spectrum Xm(k), corresponding to the
kth frequency in the mth frame.

The DFT values are then grouped into critical bands and
subjected to weighting through triangular weighting functions
[12]. Using the Mel-filters r = 1, 2, ..., R, where R = 64, the
Mel-spectrum of the mth frame is computed as [12]

TABLE I
OVERVIEW OF THE SPEECH DATASET USED IN THIS WORK

Description RAVDESS DEMoS
Number of subjects 24 65
Male:Female 12:12 42:23
Age (years) 26.0±3.8 23.7±4.3
Duration of speech signals (seconds) 3.70±0.34 2.61±1.13

Number of samples
in each class

Angry 192 246
Happy 192 167
Sad 192 422
Neutral 96 332

MFm(r) =
1

Ar

Ur∑
k=Lr

|Vr(k)Xm(k)|2, (1)

where the weight function for the rth filter Vr(k) has a DFT
index range of Lr to Ur, and the normalizing filter for the rth

mel-filter is given as

Ar =

Ur∑
k=Lr

|Vr(k)|2. (2)

The Mel-spectrogram representation of the speech wave-
forms of Fig. 2(a)–(d) are illustrated in 2(e)–(h), respectively.

C. Neural Networks

The Mel-spectrogram forms input to YAMNet [13], a pre-
trained audio classification network based on the depthwise-
separable convolution architecture of MobileNet [14] and
trained on the AudioSet corpus [15]. We modify the classi-
fication layer of the network to classify four classes (three
emotions and neutral). In addition, for sequence-to-label clas-
sification, where a sequence of Mel-spectrograms from a
speech signal are classified into a single emotion class, we
add a flatten layer and two long short-term memory (LSTM)
layers, with 150 hidden units in each, before the classification
layer. The network parameters are optimized using adaptive
moment estimation algorithm [16] with a learning rate of
0.0003. Additionally, we used a mini-batch size of 24 and
trained for 50 epochs.

D. Experimental Setup and Evaluation Metrics

On the RAVDESS dataset, the performance of the proposed
method is evaluated in leave-one-subject-out cross-validation
whereby, in each fold, speech samples from one subject are
used for testing. Of the remaining 23 subjects, 80% are used
for training and 20% for validation. In addition, we perform
10-fold cross-validation on the DEMoS dataset with data from
10% of subjects for testing in each fold. Of the remaining
90% of subjects, 80% are used for training and 20% for
validation. The performance is measured using class accuracy
and average accuracy. Class accuracy is the proportion of
correctly classified samples in a class and average accuracy
is the average of the class accuracies. These metrics values
range between 0 and 1 where 1 indicates an ideal value.



Fig. 2. Illustration of the speech waveform and Mel-spectrogram representation of angry, happy, sad, and neutral emotions from the RAVDESS dataset. The
speech utterances are from the same subject who spoke the same statement and at the same emotional intensity across all four instances.

III. EXPERIMENTAL RESULTS

We first present experimental results using baseline methods
[3] and then using the proposed method.

A. Results Using Baseline Methods
The results in SER using baseline methods are presented in

Table II. The baseline features include combination of cepstral
features (Mel-frequency cepstral coefficients (MFCCs) and
gammatone cepstral coefficients (GTCCs)) and feature embed-
dings from a pretrained deep learning network (deep learning
(DL) features). These feature sets are classified using random
forest (RF), support vector machine (SVM), and multilayer
perceptron (MLP) classifiers. These feature extraction and
classification methods are described in more detail in [3].

With the RF classifier, the average accuracy values on the
MFCC+DL feature combination are slightly higher than the
corresponding values on the GTCC+DL feature combination
on both the datasets. However, the average accuracy values
using the SVM and MLP classifiers on the GTCC+DL feature
combination are slightly higher compared to the MFCC+DL
feature combination. The highest average accuracy on the
RAVDESS dataset is 0.564, using the GTCC+DL feature
combination and SVM classifier, and 0.663 on the DEMoS
dataset, once again using the GTCC+DL feature combination
but with the MLP classifier.

B. Results Using Mel-Spectrogram and CNN-RNN
The SER classification results using mel-spectrogram and

YAMNet-LSTM are also presented in Table II. The average
accuracy values using this method are 0.711 and 0.780 on
the RAVDESS and DEMoS datasets, respectively. This is a
relative improvement of 26.1% and 17.6% over the highest
baseline accuracy values on the RAVDESS and DEMoS
datasets, respectively. The class accuracy values using the pro-
posed method are also higher than the corresponding baseline
values in all but one instance.

The highest average accuracy of 0.780 is achieved on the
DEMoS dataset, where the accuracy value for angry, sad,
and neutral classes are in the range of 0.754–0.880 using
the proposed method. However, the accuracy value for happy
emotion is 0.647, the lowest of all the classes, which is
consistent with all the baseline methods. We further investigate
the YAMNet-LSTM predictions on the DEMoS dataset using
t-distributed stochastic neighbor embedding (t-SNE) [17]. The
t-SNE visualization in Fig. 3 shows that the angry, sad, and
neutral classes are reasonably well separated, however, the
data points for happy cluster are overlapping with the other
three classes. This explains the relatively lower classification
accuracy for the neutral class. This is further supported by
the confusion matrix in Table III where the happy class has
high misclassifications with all three classes. One reason for
this could be the smaller number of training data in the happy
class.

IV. DISCUSSION AND CONCLUSION

In this work, we proposed a method for SER using Mel-
spectrogram representation of the speech signals and a pre-
trained CNN (YAMNet) combined with a RNN (LSTM). The
proposed method yielded an accuracy of 0.841, 0.647, 0.754,
and 0.880 in classifying angry, happy, sad, and neutral emotion
types. These values are higher than what could be achieved
using various baseline methods. This highlights the usefulness
of the proposed method in SER. In addition, the average
accuracy on the DEMoS dataset is higher than what could
be achieved on the RAVDESS dataset. The DEMoS dataset
comes from more number of subjects, has more samples for
all classes, except happy, and the emotions are more authentic.
This potentially helps the network generalize better.

However, our work has some limitations, such as relatively
small number of subjects and limited emotion types. In the
future, we plan to evaluate the proposed method on a dataset



TABLE II
CLASSIFICATION ACCURACY IN SPEECH EMOTION RECOGNITION

Feature/Input Classifier Accuracy on the RAVDESS dataset Accuracy on the DEMoS dataset
Angry Happy Sad Neutral Average Angry Happy Sad Neutral Average

MFCC+DL RF 0.766 0.609 0.557 0.156 0.522 0.703 0.138 0.841 0.708 0.598
MFCC+DL SVM 0.729 0.573 0.547 0.292 0.535 0.780 0.305 0.813 0.699 0.649
MFCC+DL MLP 0.714 0.521 0.510 0.406 0.538 0.711 0.329 0.746 0.708 0.624
GTCC+DL RF 0.693 0.557 0.526 0.198 0.493 0.687 0.132 0.839 0.717 0.594
GTCC+DL SVM 0.760 0.594 0.599 0.302 0.564 0.756 0.341 0.820 0.729 0.662
GTCC+DL MLP 0.693 0.536 0.563 0.396 0.547 0.711 0.365 0.801 0.774 0.663

Mel-Spectrogram YAMNet-LSTM 0.854 0.729 0.729 0.531 0.711 0.841 0.647 0.754 0.880 0.780

Fig. 3. t-SNE visualization of YAMNet-LSTM activations on DEMoS dataset.

TABLE III
CONFUSION MATRIX FOR YAMNET-LSTM ON DEMOS DATASET

Predicted

Angry Happy Sad Neutral

A
ct

ua
l

Angry 207 21 6 12

Happy 21 108 17 21

Sad 21 37 318 46

Neutral 14 10 16 292

from more number of subjects which has the potential to
improve the generalization of the network. We also plan to
use speech utterances from other emotion types and from
different settings for this purpose. In addition, in this work
we evaluated only one neural network architecture. Despite
yielding promising results, it is important to emphasize the
increasing interest in deep learning research, where a myriad
of innovative architectures are consistently being introduced.
As such, in the future we plan to explore other neural network
architectures for SER, including transformer models.

Subject to further independent and external validation, such
SER technology can be integrated into smartphone applica-
tions and provide real-time monitoring and analysis of individ-
uals’ emotional states through their speech patterns. This can
facilitate early detection of mental health conditions, enable

personalized interventions for stress management and therapy,
assist in remote patient monitoring for chronic illnesses, en-
hance medication adherence by detecting emotional barriers,
and aid in early diagnosis of neurological disorders. As such,
by leveraging smartphones as accessible and pervasive tools,
SER has the potential to improve healthcare delivery by
offering timely interventions, improving patient outcomes, and
enhancing overall well-being.
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