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ABSTRACT
Smartphones have started to be used as self reporting tools for men-
tal health state as they accompany individuals during their days
and can therefore gather temporally �ne grained data. However,
the analysis of self reported mood data o�ers challenges related to
non-homogeneity of mood assessment among individuals due to
the complexity of the feeling and the reporting scales, as well as
the noise and sparseness of the reports when collected in the wild.
In this paper, we propose a new end-to-end ML model inspired
by video frame prediction and machine translation, that forecasts
future sequences of mood from previous self-reported moods col-
lected in the real world usingmobile devices. Contrary to traditional
time series forecasting algorithms, our multi-task encoder-decoder
recurrent neural network learns patterns from di�erent users, al-
lowing and improving the prediction for users with limited number
of self-reports. Unlike traditional feature-based machine learning
algorithms, the encoder-decoder architecture enables to forecast
a sequence of future moods rather than one single step. Mean-
while, multi-task learning exploits some unique characteristics of
the data (mood is bi-dimensional), achieving better results than
when training single-task networks or other classi�ers.

Our experiments using a real-world dataset of 33, 000 user-weeks
revealed that (i) 3 weeks of sparsely reported mood is the optimal
number to accurately forecast mood, (ii) multi-task learning mod-
els both dimensions of mood –valence and arousal– with higher
accuracy than separate or traditional ML models, and (iii) mood
variability, personality traits and day of the week play a key role
in the performance of our model. We believe this work provides
psychologists and developers of future mobile mental health appli-
cations with a ready-to-use and e�ective tool for early diagnosis of
mental health issues at scale.
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1 INTRODUCTION
Mood and general wellbeing have been associated with clinical
outcomes. Self-reported sadness was found to be an indicator of
depression [5], while self-reported happiness is linked to longevity
[21] and reduced mortality risk [1]. The pervasiveness of smart-
phones and wearable devices has enabled timely monitoring of
mental health and wellbeing, allowing a near real-time detection
of clinical outcomes and relapses. The penetration of mobile de-
vices has also introduced scale: many more individuals could be
reached and assessed. However, most of the studies on investigat-
ing how mood reports collected using smartphones can help to
improve mental health and wellbeing have been conducted through
controlled experiments with limited number of participants and ob-
servations [11, 12, 20, 23]. It is not clear whether previous �ndings
and methodologies can be transferred to large, noisy and sparse
datasets collected in the wild [16, 18]. Robust methodologies for
anticipating mood issues from sparse data are key to the widespread
adoption of smartphones for mental health support.

Hidden Markov Models (HMMs), autoregressive models and
regression algorithms have been applied to sequence prediction.
HMMs and autoregressive models operate by default on single
sequences, being unable to learn patterns from several users. Tra-
ditional feature-based ML algorithms such as linear regression,
random forests or support vector regressors, can solely predict one
scalar value. They do not support an extended forecast horizon
without feeding through the previous prediction as its new input
[22], which unavoidably introduces compounding errors that skew
the input distribution for future prediction steps. As a special kind
of Neural Network, Recurrent Neural Networks (RNN) have be-
come increasingly useful in modeling sequential, high-dimensional,
non-linear data [8]. Simple RNNs work by mapping an input se-
quence to an output sequence of the same length. By incorpo-
rating encoder-decoder architectures, recent RNN models (called
sequence-to-sequence or seq2seq) can map an input sequence to
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an output sequence of any arbitrary length, converting RNNs the
state-of-the-art in Natural Language Processing for machine trans-
lation and speech processing [19] since they can map, for example,
a phrase in French to a phrase in English of di�erent length.

Psychologists have proposed tools or scales that facilitate users to
assess their mood such as the A�ect Grid [15] scale, a 2-dimensional
grid, where the x-axis indicates the feeling in terms of its positive-
ness or negativeness while the y-axis indicates its intensity. Inde-
pendently of the scale used, forecasting mood requires to forecast
more than one dimension. The modularity of deep neural networks
enables learning similar tasks in parallel (e.g. predict both happiness
and calmness in the same model). They do so by either shaping
the data as multidimensional tensors so that the �nal layers out-
put multiple sequences, or by building a network with individual
branches or forks that optimize di�erent losses and backpropagate
the error to the shared layers [14].

One caveat of deep neural networks is their inability to explain
why the input data leads to a speci�c output. Although the scope
of model interpretability is very wide, including causality, informa-
tiveness, and transparency, at least post-hoc interpretations and
visualizations are needed to qualitatively evaluate what a model
has learned. This is especially relevant in clinical setups where
clinicians can only rely on interpretable models to make informed
decisions.

In this paper, we propose a deep encoder-decoder, multi-task
sequence model to forecast users’ future sequence of moods from
noisy and sparse self-reported moods collected in the wild using
an a�ect grid scale. By exploiting the similarity between both com-
ponents of the mood –valence and arousal, our multi-task model
is able to more accurately learn both variables. We evaluate our
model on a large scale dataset that includes 177, 111 total mood
self-reports from 566 users collected with a smartphone application
during more than 3 years [16]. By using a sequence of self-reported
moods collected during the past 3 weeks, our model outperforms
state-of-art feature-based ML methods on next day’s forecasting,
while also being able to forecast further into the future.

This paper makes the following contributions:

• We propose and adapt an end-to-end, stand-alone model
inspired by video frame prediction [17] and machine trans-
lation [19], to forecast sequences of future moods –valence
and arousal– from previous self-reported moods.

• Our evaluation on real world data reveals that (i) our model
forecasts tomorrow’s mood with ±0.14 minimum error, and
7 days later with ±0.16 error on the a�ect grid, and (ii) that
the multi-task model trained to learn valence and arousal
simultaneously is more accurate than independent models
trained on each dimension separately, especially for arousal.

• We show the internal learned black-box representations of
the deep neural networks and observe that di�erent neurons
learn di�erent non-linear sequential patterns, which helps
understand the complex trajectories of future mood.

• An exploratory post-hoc analysis reveals that the accuracy
of the learned model is related to the day of the week, per-
sonality traits and mood variability. Speci�cally, our model
performs better for open users and on weekends.

We believe this work provides psychologists and developers of
future mobile mental health applications with a ready-to-use and
e�ective tool for early diagnosis of mood issues at scale.

2 THE PROBLEM AND THE DATA
We start by analyzing self-reporting behaviour in smartphone ap-
plications for mood monitoring. To do so, we consider a large scale
dataset of users’ sensed and self-reported data gathered with a mo-
bile phone application for Android designed to study subjective
wellbeing and behavior in the wild [16]. From February 2013 until
October 2016, this application collected 735, 778 self-reported data
points from 17, 251 users through surveys presented on the phone
via experience sampling, and passive behavioral data from physical
and software sensors in the phone (accelerometer, microphone, lo-
cation, text messages, phone calls, etc.). For this analysis, we solely
consider self-reported mood collected graphically using the A�ect
Grid scale [15]. This is a square grid that measures the valence
(pleasant-unpleasant feelings) and arousal (sleepiness-activeness)
in the horizontal and vertical axes, respectively. Twice per day, be-
tween 8AM and 10PM and with a di�erence of at least 120 minutes,
participants were asked to report their mood. Figure 1 shows the
distribution of self-reports in the a�ect grid (a) and the distribution
of each dimension –valence and arousal (b). At di�erent stages, par-
ticipants were requested to complete pro�le-related questionnaires
covering a broad range of topics such as demographics, personality
and sociability using Likert scales. We will only use such metadata
during post-hoc analysis in order to gain insights about model
performance at user and group levels.

Sparsity of mood reports. A quick inspection of the dataset re-
vealed that users did not always report even if they were prompted
to do so. Figure 1c shows the complementary cumulative distribu-
tion function (CCDF) of moods reported per participant, including
those they were prompted to �ll (expected), the ones they were
prompted to �ll but did not (missed) and the ones they �lled (com-
plete). This is also true for users that used the app for large periods.
Indeed, those that used the app for 45 or more consecutive days
(16, 8% of the users) reported, on average, less than half of the ex-
pected times. The absence of mood reports might be a symptom of
boredom or dissatisfaction with the app, but could also be indica-
tive of mental disorders, especially in cases where users have been
reporting anger and depression related feelings.

Variability ofmood reports.A longitudinal exploration of the
mood reported shows large di�erences between users in the way
they report, in terms of both speci�c positions on the grid and area
covered. Figure 2 shows moods reported by two di�erent individ-
uals who have self-reported for, at least, 300 days, and who are
representative of two di�erent behavioral patterns we identi�ed.
The �rst user (user 1 in Fig. 2) reports consistently over time, both
in the short and long term, and her reports are concentrated on
the positive and calm area of the grid. As time goes, her reports
progressively become more negative (but still in the positive area)
and active. The second user (user 2 in Figure 2) has quite the oppo-
site behavior. That is, at the beginning (purple dots), she reported
mixed a�ect states during consecutive days (purple dots are almost
all over the grid), but, as time goes, her reports concentrate mainly
in the negative and active area.
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(a) Heatmap of valence and arousal. (b) Distribution of valence and arousal.
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(c) Sparsity of mood self-reports.

Figure 1: Aggregate 735,778 data points of self-reported mood scores from 17,251 users. (a) Most users report neutral and
calm-happy mood on the a�ect grid. (b) The two multi-modal distributions have di�erent skews. (c) CCDF of mood reports.
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(a) user 1 (daily level)
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(b) user 2 (daily level)
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(c) user 1 (monthly average)
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(d) user 2 (monthly average)

Figure 2: Longitudinal mood monitoring for 2 users.

Given the longitudinal variability of user moods, forecasting
current and future mood entails di�erent level of di�culty for
di�erent users. For example, it is expected to be much easier to
predict for user 1 than for user 2. We will go back to this in §6.

3 METHOD
Wenowdescribe ourmethodology to build amood prediction frame-
work able to cater for the level of noise and sparsity of this kind
of data. It consists of a sequence to sequence neural network that
learns from previous mood sequences to predict future ones (Fig.
3). The main advantage of this approach is that, unlike traditional
regression, it allows to regress to multiple steps into the future by
mapping the input sequence to an arbitrary output sequence. The
model is composed of an encoder and decoder, each of which are
RNNs. The individual units that build up the recurrent networks
are Long Short-Term Memory units. We use a simpli�ed adaptation
of the sequence to sequence model proposed for machine transla-
tion [19] as we know exactly how many steps in the future we want

to predict, while in translation this length varies (e.g. a sentence in
English might have di�erent length in French).

Long Short-Term Memory (LSTM). RNNs are well known to
be hard to train especially when employed on sequences with long-
term dependencies and patterns [8]. LSTMs overcome this problem
by introducing memory cells.

Each LSTM unit has a cell composed of state ct at time t , also
called memory unit. Sigmoid gates allow the reading and modi�-
cation of this unit via the input gate it , the forget gate ft , and the
output gate ot . Each unit has four paths, the three gates and the
input. At every time-step the unit receives at its four paths inputs
coming from two sources: the current mood xt and the previous
hidden states of all the units in the same layer ht�1. Internally, each
gate has another source, the previous cell state ct�1. The inputs are
summed along with a bias term b and the total input goes through
a sigmoid logistic function. The total input of the input path goes
through a non-linearity (tanh). The result is multiplied with the
activation of the input gate, and then added to the current cell
state after multiplying the previous cell state ct�1 with the forget
gate activation ft . The �nal output ht is calculated by multiplying
the output gate ot with the updated cell state ct passed through a
non-linearity. This happens in a single layer of LSTM units during
training (Fig. 3). Our encoder and decoder layers are LSTM layers
like the ones described here. The above updates are summarized as
follows:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi )
ft = � (Wxf xt +Whf ht�1 +Wcf ct�1 + bf )
ct = ft ct�1 + it tanh(Wxcxt +Whcht�1 + bc )
ot = � (Wxoxt +Whoht�1 +Wcoct + bo )
ht = ot tanh(ct )

(1)

where � (·) is the sigmoid function, it , ft , and ot are the input, forget
and output gates, respectively. Since we predict precise mood scores
and not binary outcomes, we use the Mean Squared Error (MSE) as
the evaluation metric and the loss function to train the model:

MSE =
1
n

n’
i=1

(Yi � Ŷi )2 (2)

where Yi is the vector of n predictions and Ŷi is the ground truth.
Encoder-Decoder LSTM. The above structure of the LSTM

unit outputs the same number of time-steps as the input sequence.
3
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Figure 3: LSTM Encoder-Decoder model. The mood se-
quence (�1,�2,�3) passes through an LSTM (states W1), gets
transformed to a single vector (dotted) and decoded through
another LSTM (W2) that predicts future mood sequences
(�4,�5,�6). Two fully-connected layers are applied to every
time-step of the output (yellow circle), one for valence and
one for arousal (purple box).

Hence, ht has to connect to additional fully-connected layers to
reach the desired dimension of the �nal output. However, by using
simple fully-connected layers we dismiss the sequential nature of
the data. Instead, we use a standard LSTM layer as an Encoder in
order to map the past mood into a �xed length representation with
the size of the prediction, and then another LSTM layer as a Decoder
to reconstruct the original sequence in future steps. The �xed length
representation is feasible through a layer (dotted arrow in Fig. 3)
called copy (or repeat), which repeats the Encoder 2D output as
many times as the output length, in order to create a 3D input for
the Decoder. For example, given a week of past mood, we may want
to forecast the next 2 days: the encoder learns to map the past week
sequence into a decoded vector of the next 2 days. A similar model
has been applied successfully to video frame prediction, which the
authors called LSTM Future Predictor Encoder-Decoder [17].

Multi-task Encoder-Decoder LSTM.Multi-task learning is a
transfer learning method in which a model learns to predict simul-
taneously two or more similar tasks. It has been used to reduce
over�tting (with auxiliary targets), produce better data represen-
tations, and in general to improve accuracy in neural networks
[14]. Speci�cally in deep neural networks, this multi-target setup
forces the shared weights of the network to optimize both tasks and
consequently learn internal representations that re�ect on both.

4 EVALUATION
We now evaluate our deep encoder-decoder, multi-task sequence
model to forecast users’ future sequence of moods. We �rst con-
sider a simpli�ed, single-task version of this model and study the
optimal length of the input sequence, i.e., number of days in the
past, that minimizes the prediction error (§4.1). We then explore
the performance of multi-task learning for predicting valence and
arousal simultaneously (§4.2).

Data preprocessing.We selected users who reportedmore than
100 days (> 200 half-days reports) between May 2013 and October
2016 –the period when the application was most active, ending up
with 177, 111 unique self-reports from 566 participants. This is the
sample we used in our experiments. This subset has similar statistics

(a)

(b)

Figure 4: (a) How many days should we look into the past
for accurate valence prediction? (b) Which is the best model
to forecastmood using 3 weeks of past data (smiley=valence,
sleepy face=arousal)?

to the initial sample: µ�al = 0.57 (±0.17) and µaro = 0.46 (±0.19)
for the initial dataset, and µ�al = 0.60 (±0.17) and µaro = 0.43
(±0.18) for the subset (± denotes one standard deviation).

We used a sliding window with step 1 over the mood sequences
for each user, obtaining consecutive sequences of 4 weeks of past
and 1 week of future moods. We then remove those samples whose
future moods contained missing values, since that would make
training more di�cult, resulting in 33, 461 �nal sequences of past
and future moods. For the past weeks, we found that only 6k out of
33k (20%) user-weeks had no missing values. Every sequence has
on average 15% missing values (i.e. µspar = 6.36 (±8.69) missing
time-steps out of 42 steps for a past of 3 weeks). For these past
sequences, we replaced the missing values with zeros. We tested
other data imputation methods like �lling with the median of the
sequence, or min-max scaling to [0.05, 1] but we did not observe
any considerable gain on the validation set. To be able to distinguish
between real and missing values, we used a Masking layer to skip
the missing values during training. In order to prevent over-�tting,
we split the data to 20% testing and 80% training, ensuring that
the users in the test set are completely disjoint, and do not overlap
with those in the training set. During training, we use 10% of the
training set as validation set to tune our models’ hyper-parameters.

Implementation. Our implementation is based on Keras (with
Tensor�ow backend). We trained two separate models, one for
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(a) True and predicted valence. (b) True and predicted arousal.

Figure 5: Predictive performance of themulti-taskmodel for
the �rst future mood forecast (p = 0 denotes a p < 0.001).

valence and one arousal, for the Encoder-Decoder LSTM model.
The input and output data is a matrix M 2 Rs⇥t , where s are
the samples and t the time-steps. After grid-search we found the
best-performing number of LSTM units for the Decoder and the
Encoder (80 units each). The input layer is a standard Masking layer
that skips the time-steps of missing values. In every LSTM layer,
a recti�ed linear unit (ReLU) as well as recurrent dropout of 0.5
probability is applied, to prevent over�tting. The �nal layer is a
standard feed forward neural layer (Dense) with a linear activation,
that is being applied to every time-step. The objective function
minimizes the MSE since this is a regression problem, while the
backpropagation optimizer is Rmsprop. We train for 300 epochs or
until the validation loss stops improving for 15 consecutive epochs.

Baselines. We compared our proposed model against a naive
baseline based on simply using the average of the past days for
predicting future moods (excluding the missing values), a Support
Vector Regressor (SVR) and a Gradient Boosting Regressor (GBR).
We used the Python’s library sklearn implementations of an SVR
with a radial basis function (RBF) kernel, and a tree-based ensemble
model for the GBR, which is reportedly the state-of-art in feature-
based machine learning [13]. SVRs and GBRs do not operate on
sequences and assume feature independence, so we extracted 8
representative features from the time-series (non-missing counts,
mean, std, min, max, and 25%, 50% and 75% quantiles) and nor-
malized them column-wise to [0, 1]. We again exclude the missing
values when we calculate those features. We only report the pre-
diction for the �rst future mood since these models cannot regress
to sequences.

4.1 How many days should we look back?
Building on previous research[18] we now investigate how many
days we should look back (i.e., how much history to consider) to
predict the sequence of next week’s moods. We conduct di�erent
experiments to �nd out which period, –4 weeks, 3 weeks, 2 weeks,
1 week, 3.5 days, or 1 day, predicts the moods self-reported on
the next week with the lowest error. Our assumption is that by
using fewer days, the prediction error will increase. By using only
the valence axis on the a�ect grid for training and prediction, we
trained a single-task, Encoder-Decoder LSTM model and tested its
performance on a test set of disjoint users. Fig. 4a shows the MSE

for each half-day of the next week for di�erent training sequences.
We make the following observations. First, the error increases as
we forecast more days into the future. Second, the lowest reported
error is 0.022MSE when using 3 weeks of data for training, which
corresponds to ±0.14 error on the a�ect grid (see Fig. 1). Although 1
month includes more time-steps, the length of the optimal sequence
of past moods for training is 42 half-days, which corresponds to 3
weeks. This could be attributed to either the inability of the model
to learn such long sequences, or that the fourth week of the past
does not contain informative and predictive patterns in this dataset.
We observed similar behaviors by testing that assumption with our
baseline models. Third, our model achieves the highest error when
it is trained with just one day of data –2 mood self-reports– (±0.18
error on the a�ect grid at its worst), followed by half-week.

4.2 How e�ective are multitask LSTMs?
Motivated by the moderate correlation between valence and arousal
(pearson r=-0.23) but on a signi�cant level (p<0.00001), we exper-
iment with learning the two sequences simultaneously in a joint
model. Our assumption is that, given this similarity, a multi-task
model trained to simultaneously predict valence and arousal would
perform better than a single model trained on each one separately.
To this aim, we train a single multi-task model with the input and
output containing the aligned sequences of valence and arousal in
a tensor T 2 Rs⇥t⇥f , where s are the samples, t the time-steps, and
f the two features or sequences of mood. The only modi�cation to
the single-task model is on the �nal feed-forward layer, which now
has two units, one for each task.

We use the sequence of moods of the previous 3 weeks to predict
the sequence of moods in the next week. We do so because in
the previous experiment 3 weeks was found to be the period that
produces the lowest error in the prediction. From now, we will
refer to those 3 past weeks as user-weeks. We use the same data
split as in the previous setup and compare di�erent algorithms and
approaches. To allow for comparison, we also trained a single-task
model for the arousal axis using the setup followed earlier with the
valence 4.1, a SVR, a GBR, and a naive baseline that predicts just
the average of the past self-reports.

Figure 4b shows the MSE for each half-day of the next week for
di�erent training sequences and algorithms. Similar to the previous
experiment, we observe that the error increases over time. The most
interesting result comes from the multi-task learning, which im-
proves the performance of the arousal when trained jointly with the
valence, but not the opposite. In general, the arousal axis through-
out all of our experiments is more di�cult to predict, which re�ects
on higher errors in all the models. We posit that users might not
be as con�dent evaluating their calmness as they are with their
happiness, hence the relationship between the two axes might not
be linear. We showed in §2 that the heatmap of the two axes forms
a X-shape (Fig. 1). There is evidence that there is a V-shaped relation
of arousal as a function of valence [10]. This is in line with previous
studies that found that happy/unhappy feelings usually co-occur
with higher arousal for some people (re�ecting joy/stress), but with
lower arousal for others (relaxation/sadness) [9].

Regarding the baselines, we observe that the error on the next
day’s prediction using single-task and multi-task models is lower
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than the ones achieved with feature-based algorithms, which even
fail to improve the performance of the naive heuristic. In fact, the
maximum MSE of 0.032 (±0.17 on the a�ect grid), makes them
equivalent to using only one day of data for training in the previous
experiment (brown line in Figure 4a). This motivates the need of
using non-linear models like LSTMs. However, and regarding their
utility, we believe simple baselines like these should be encouraged
more in time-series forecasting since they provide a fast lower
bound. In a more systematic comparison, we compare the error
distributions (squared error of predicted and ground truth) of each
classi�er with a Welch’s t-test. Our hypothesis states that multi-
task learning will outperform the rest of the classi�ers. Indeed, for
the valence axis at the �rst future forecast, the multi-task model
presents statistically signi�cant results over the naive baseline (p <
0.001), the SVR (p < 0.001), and the GBR (p < 0.001). Similarly,
for the valence axis, the multi-task model outperforms the naive
baseline (p < 0.05) and the GBR (p < 0.05), and shows a weaker
signi�cance against the SVR (p < 0.10). For both valence and
arousal there is no statistical association between the single-task
and multi-task models for the �rst forecast. However, even if the
multi-task models are not better than the single task for the �rst
day, they show lower error during the week for the arousal axis (red
lines in Fig. 4a). Because of that, we test the forecast of the whole
future sequence by taking the median of the week (since the error
is not normally distributed) and compare the models. Indeed, the
arousal of the multi-task model is signi�cant over the single-task
one (p < 0.05).

Finally, we inspect the relationship between the predicted and
the ground truth scores of valence and arousal for the �rst future
day using our multi-task model (Fig. 5). We observe a signi�cant
approximation of the two distributions. A non-parametric lowess
model (locally weighted linear regression) is �tted in order to illus-
trate the trend. Almost linear trends appear for high valence (happy
users) and low arousal (relaxed users), which is also the area with
the highest density in the dataset (see Figure 1). This is corroborated
by large and signi�cant (p < 0.001) Pearson correlations of 0.76
and 0.72 for valence and arousal, respectively.

5 UNDERSTANDING THE ROLE OF LSTM
ENCODER AND DECODER

We now analyze the role of the LSTM encoder and decoder in
predicting sequences of future mood. To do so, we pass the test-set
through the multi-task LSTM model and use Principal Component
Analysis (PCA) to visualize the response of the network after the
encoder and decoder.

Learned representations vs next day’s mood. Our test-set is
a tensorT 2 Rs⇥t⇥f where s are the samples, t the time-steps, and f
the two features or sequences (for valence and arousal). Fig. 6 shows
the visualization results for the valence feature and the �rst time-
step in this tensor. Results for arousal and other time-steps follow
a similar pattern, and are omitted here due to space limitations.
Data points in the �gure are coloured according to the �rst mood
to predict (ground truth). We observe that as we move into deeper
layers, the network lays out the continuum of positive-negative
mood, even though it has been trained to solely predict the next
week’s mood. Although after the encoder we can already see this

continuum, this is more evident after the decoder layer. Apart from
qualitative measures, the explained variance of the projections, i.e.,
the sum of variances of all individual principal components, or
more intuitively how much information is lost by going from N to
2 dimensions, increases up to 40% after training (from 0.52 to 0.88
after the encoder, and 0.92 after the decoder).

Learned patterns of individual neurons. We now inspect
how the individual neurons of the decoder layer �re as we pass
the test-set through them. Fig. 7 shows the mean and standard
deviation (denoted with dark and light green respectively) of the
activations of the test samples (vertical axis in each subplot) for the
14 time-steps (horizontal axis). We make the following observations.
First, the decoder learns various non-linear sequence patterns of
future moods. Second, some neurons, such as the 4th and 5th in the
6th column, �re almost always with the same exponential decay
slope (low deviation), while others, such as the 1st , 3rd and 4th in
the second column, are more conservative with almost �at lines
(high deviation). Since the decoder is the penultimate layer before
the �nal feed-forward layer that performs the regression, we may
interpret it as a proxy for the predictions. For example, one neuron
that always �res like the 3rd in the 7th column might be specialized
in future mood that rapidly drops and then slowly improves.

6 ERROR ANALYSIS
We have shown that mood reports might vary within a single user,
and especially across a population (§2). Previous research has also
found a link between mood variability and personality traits such as
emotional stability [6], and that people tend to exhibit more positive
a�ect on Saturdays than on Mondays [2]. To better understand the
performance of ourmodel and assist clinicians in taking informative
decisions based on its output, we now investigate how it performs
for di�erent mood variability (§6.1), psychological traits (§6.2), and
days of the week (§6.3).

To do so, we �rst average the errors of the predicted sequence
on the test-set, obtaining two long tail distributions for valence
and arousal (Fig. 8). These appear because some user-weeks have
errors even higher than 0.20 MSE (±0.44 on the a�ect grid), but the
majority of the distribution resides below 0.025 MSE. Indeed, for
valence, more than 10% of the user-weeks have MSE close to zero.
We then divide the MSE-distributions in 3 equally-sized samples,
and consider the 1st quantile as the top-performing user-weeks,
and the 3rd quantile as the worst-performing ones.

6.1 Mood variability
We �rst investigate the in�uence of the mood variability in the best
and worst performing user-weeks. We assess the mood variability
for each user-week in these two groups by computing the standard
deviation (std) of both the mood of the 3 past weeks (ignoring the
missing values) and the mood of the future week. The boxplot in
Fig. 9 shows the di�erence between these two groups. We observe
that (i) the MSE increases with the variability of the (past or future)
mood, and (ii) valence and arousal have similar median deviation,
although the median of the arousal is slightly higher. The lowest
deviation is on the future top-weeks, where there are no outliers in
the boxplot, which means that the model is very reliable for those
user-weeks with more stable future mood. Finally, the absolute
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(a) PCA before training (b) PCA on the LSTM Encoder layer
activations after training

(c) PCA on the LSTM Decoder layer
activations after training

Figure 6: Visualization of the Encoder and Decoder responses on the �rst time-step for the valence axis.

Figure 7: Visualization of the responses of the 80 neurons of
the Decoder (one per subplot) for each of the 14 time steps
for the valence axis.

mood di�ers between the bottom (⇡ 0.2 std) and top quantiles (⇡
0.1 std) of the error. Speci�cally, the model is more reliable for
user-weeks with high valence and low arousal as we saw in Fig. 5.

6.2 Personality traits
We now study the in�uence of personality traits in the best and
worst performing user-weeks. We consider those individuals with
samples in the 1st and 3rd quantile of the prediction error distri-
butions (Fig. 8) who completed the personality questionnaire. This
includes questions regarding the Big-5 personality traits [7]: Agree-
ableness, Conscientiousness, Emotional Stability, Openness, and
Extraversion, answered through a discrete Likert scale with values
normalized in [0,1]. Note that not every user �lled the personality
questionnaire. Thus, even though each original quantile contains
the same number of user-weeks (2188), our sample shrinks to 701
(1st ) and 1082 (3rd ) user-weeks for valence when we consider only
users who responded the questionnaire, and to 687 (1st ) and 1207
(3rd ) user-weeks for arousal. Some users might appear in both
quantiles, but their skewed appearance in a quantile will in�uence
that more.

Figure 8: Distribution of a�� MSE for valence and arousal.
TheMSE corresponds to the average predictions of all future
days of theweek for themulti-taskmodel. Black bars denote
the 1st and 3rd quantiles (at 33% and 66%, respectively).

Figure 9: Deviation of past and future mood by top and bot-
tom performing user-weeks.

We �rst perform a Welch’s t-test to check whether there are
signi�cant di�erences between the personality traits of the users in
the two quantiles (Table 1). Signi�cant di�erences were found for all
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Table 1: Di�erences on personality between the top and bot-
tom quantiles, broken down by valence and arousal. Signi�-
cance is represented with * = p < 0.05, ** 0.01, *** 0.001.

Valence Arousal
Mean Mean

Top Bottom t-stat Sig Top Bottom t-stat Sig
Agreeableness 0.67 0.61 6.58 *** 0.68 0.60 9.53 ***
Conscientiousness 0.66 0.59 5.55 *** 0.70 0.64 4.72 ***
Emotional Stability 0.33 0.25 6.42 *** 0.38 0.25 11.89 ***
Openness 0.77 0.61 16.48 *** 0.78 0.66 12.55 ***
Extraversion 0.24 0.29 -4.00 *** 0.32 0.27 3.62 ***

Table 2: Pearson’s correlation (r ) of the prediction error
(MSE) with the personality of top and bottom quantiles, bro-
ken down by valence-arousal. Signi�cance is represented
with * = p < 0.05, ** 0.01, *** 0.001.

Valence Arousal
r with MSE r with MSE

Top Sig Bottom Sig Top Sig Bottom Sig
Agreeableness -0.12 ** -0.06 * 0.01 -0.10 ***
Conscientiousness -0.06 0.03 -0.20 *** 0.29 ***
Emotional Stability -0.19 *** -0.00 -0.11 * 0.00
Openness -0.03 -0.07 * 0.03 0.14 ***
Extraversion -0.06 -0.00 0.11 * -0.06 *

traits, with special relevance for Openness. That is, users for which
the model forecasts happiness and calmness more accurately tend
to be more open to new ideas and showcase creativity, intellectual
curiosity, and a preference for novelty.

Previous research found that Emotional Stability, Extraversion,
Agreeableness, and sometimes Conscientiousness were related to
decreased variability in a�ect [6]. In §6.1 we showed that users
in the top and the bottom performing quantiles di�er in terms of
their mood stability, while here we see that also all their personality
traits are signi�cantly related with the performance of the model.
In our case, higher Openness might be associated with the nature
of our experiment and data collection since users that are more
open to new technologies might use the app more honestly and
therefore becoming more predictable.

We �nally check whether increments in personality scores in-
crease or decrease the error. Table 2 shows the correlation of the
error with the personality traits. For valence users in the top quan-
tile we observe that our model is increasingly more accurate for
Emotional Stable users (r = -0.19). We do not observe the reverse
e�ect on the bottom quantile. For arousal, the model is more accu-
rate for users with high Conscientiousness –self-disciplined– (r =
-0.20) and a reverse e�ect appears on the bottom quantile (r = 0.29).

6.3 Day of the week
We now investigate the impact of the day of the week on the ac-
curacy of our model. We consider the error of the �rst mood in
the sequence of predicted moods, grouped by the day of the week.
The distribution of this error is similar to the distribution of the
average error of the sequence of predicted moods in Fig. 8, but
skewed towards lowest errors since our errors are lower for tomor-
row’s mood (�rst day in the sequence). We group and average (i)
the errors by the day of the week, and (ii) the actual mood of this
day across all the user-weeks in the test set. We observe that the
distributions of the actual mood (Fig. 1) and the error (Fig. 8) across

(a) (b)

Figure 10: Contribution of the day of the week to the me-
dian error for the �rst future mood (valence) (a). Compari-
son with the actual mood variability (b).

all user-weeks in the test set are very di�erent. While the actual
mood has a bimodal shape, the error resembles more a long tail.
Thus, since we compare distributions with non-uniform shapes
we use robust statistics, such as the median or median absolute
deviation (the median of the absolute deviations from the data’s
median:MAD =median(|Xi �median(X )|)).

We obtain the median and variance of the error for each day
of the week, and the median absolute deviation (MAD) of the ac-
tual mood for each day. Fig. 10 shows the median of the MSE (a)
and the MAD of the actual mood (b) across di�erent days of the
week. We observe that our model (Fig. 10 (a)) is more accurate on
Tuesdays, Fridays and Saturdays, while the highest median error
is on Wednesdays. This is in line with the trend observed on the
variability of the actual mood (Fig. 10 (b)), where on Fridays and
Saturdays there were fewer di�erences across the moods reported.

6.4 Discussion
Mood variability, personality and day of the week play a key role in
the performance of our model. Clinicians may wish to screen their
patients with fast personality questionnaires to assess the reliability
of the sequences of moods predicted. For example, openness a�ects
performance in both dimensions, whereas emotional stability af-
fects valence, and conscientiousness arousal. Clinicians should also
consider the day of the week when forecasting sequences of mood,
trusting less outputs on Wednesdays than on weekends.

We also acknowledge the caveats of our model. The average
error (MSE) of our model is low across the population (±0.14 error
on the a�ect grid valence for valence, ±0.16 for arousal). However,
the fact that it performs better for emotionally stable users, and
users with low mood variability, might limit its utility in patients
with mental disorders. Further analysis of the trajectories of mood
reported by unstable individuals is required to build accurate models
for this speci�c population. Moreover, the studied outcome should
be a�ected by a variety of environmental and genetic factors and
additional data collected in this study could improve forecasting.
We leave this for future work.

7 RELATEDWORK
Several mobile applications have been proposed to monitor and
study mental health. For example, StudentLife [23] combined sens-
ing and self-reports to assess the impact of student workload on
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stress, whereas Snapshot [20] tracked their mood and sleep. Oth-
ers focused on detecting depression by tracking medication, sleep
patterns and actions [18], location [3] or keypress acceleration [4].

However, most of existing works su�er from (i) limited sample
size, both in terms of number and diversity, which hampered them
from drawing robust conclusions, as well as (ii) limited duration
of the studies. For instance, in the MoodScope study [12] 32 people
were monitored for 2 months; in StudentLife [23], 48 students were
tracked for 10 weeks, whereas in Snapshot [20], probably the biggest
general published study about mood monitoring using mobile de-
vices, 206 students were tracked for 1 month. In contrast, we learn a
mood prediction model from real-world data from 566 participants
collected in the wild for more than 3 years. On a similar scale, but
for (binary) depression prediction speci�cally, the Deepmood [18]
study analyzed 2,382 users over 2 years. Contrary to this work, our
model does not aim to distinguish between healthy and depressed
patients, but to predict a sequence of real-valued moods. Binary
prediction is recurrent on the mood prediction literature, where
mood gets simpli�ed to a binary state [16, 20], and extreme depres-
sion is considered in the same class as moderate unhappiness. Since
neutral mood might be uninformative and make the predictions
harder, authors often omit the middle 40-60% of reports. Instead,
we use regression approaches to predict precise mood scores.

Even by overlooking those weaknesses, most of the proposed
systems aremaybe infeasible to be deployed on a real world scenario
since they require training N personalized models, where N is the
number of users. Also, although better performance can be achieved
by averaging the individual model accuracies [3, 12], no results are
reported on unseen disjoint users. Instead, we report performance
from a disjoint user set that the model has not seen during training.

The majority of related literature has applied some kind of su-
pervised learning algorithms, like Logistic Regression or Support
Vector Machines, that however cannot capture non-linear combi-
nations of features. Some recent deep learning results include the
Deepmood study that uses RNNs for depression prediction [18], and
a multi-task personalized deep architecture for the Snapshot dataset
that looks promising [20]. We build upon this piece of literature of
employing deep learning on mood prediction.

8 CONCLUSION
This paper introduces a new end-to-end, stand-alone ML model
to forecast future sequences of mood from previous self-reported
mood. Contrary to previous research on classifying between ex-
tremes of mood using data collected in controlled experiments with
limited number of participants, we forecasts exact values of valence
and arousal from noisy and sparse reports collected in the wild.

Experiments using a real-world dataset revealed that (i) 3 weeks
of sparsely reported mood is the optimal number to accurately fore-
cast mood, (ii) multi-task learning learns both dimensions of mood
–valence and arousal– with higher accuracy than when training
separate models, and (iii) mood variability, personality traits and
day of the week play a key role in the performance of our model. We
believe this work provides psychologists and developers of future
mobile mental health applications with a ready-to-use and e�ective
tool for early diagnosis of mood issues at scale.
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