
XMILE : An XML based Approach for Programmable Networks

Cecilia Mascolo, Wolfgang Emmerich, Hermann De Meer
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT
{c.mascolo | w.emmerich | h.demeer }@cs.ucl.ac.uk

Abstract

In this paper we describe an XML-based platform for dynamic active node policy updates. XML supports the definition
of specific policy languages, their extension to satisfy new needs and the management of deployed policies on different
active nodes. We show an example of the management of router packet forwarding policies where the XML policies
that drive the packet routing are updated at run-time on the active nodes depending on the network status. The plat-
form decouples policy management, which is handled through XML interpretation, from packet forwarding that, for
performance reasons has to be implemented in more efficient languages.

1 Introduction

The tremendous success of the Internet as the dominating
data communication network is largely due to its scalabil-
ity, flexibility, efficiency and relative simplicity. The In-
ternet provides immediateconnectivityto users and their
applications as one of its most prominent qualities. Those
favorable attributes have been achieved by rigorously a-
voiding any application-specific state, and even the mere
notion of the existence of applications, inside the network,
thereby following the so-called end-to-end argument. In-
stead, the Internet has been designed to forward packets as
fast as possible towards their destination address in a very
robust networking environment that is primarily resilient
to network node failures. The Internet is considered as a
rather dumb network, being mostly ignorant of any po-
tentially requested application qualities. While applica-
tion qualities are achieved by exploiting programmable
end systems in that framework, traditional telecommuni-
cation circuit switched networks have deployed state and
intelligence inside the network to yield application quali-
ties.

More recently, an additional need arose to support
multimedia-type communication applications with real-
time requirements on the Internet. For that purpose,
Quality-of-Service (QoS) architectures, notably ATM, In-
tegrated Service (IntServ) and Differentiated Services
(DiffServ) [Bernet et al. (2000)], have been designed and
partly deployed. However, it soon became clear, that there
may not exist a one-size-fits-all solution to the pending
problem of QoS support. Rather, whatever state would be
deployed in support of some type of applications, should
be incrementally changeable or easily removable if need

arises. While network flexibility has traditionally been
achieved by simplicity and statelessness, a promising al-
ternative may be given with the advent of Programmable
or Active Networks. While all QoS architectures imply
a more or less severe violation of the end-to-end argu-
ment, Programmable and Active Networks may not only
alleviate new service deployment but also help to limit
the scope in time and space of introducing application-
specific state inside the network.

DiffServ is currently being standardized while assur-
ing future flexibility and freedom, both in terms of end-
to-end services to be eventually deployed and in terms of
the implementation of possible per-hop-behaviors chosen
by a network provider within the confines of its domain.
Such a proposal calls for a vastly flexible approach in net-
work architecting so that an evolutionary process can be
explicitly supported. Supporting flexibility of DiffServ
architectures may be inherently most crucial for a suc-
cessful and long-lasting market penetration of DiffServ
itself. Since DiffServ may likely emerge as the major
QoS architecture of the future Internet, we therefore en-
vision programmable DiffServ architectures to be of ut-
most significance and use in supporting flexibility, for
programmability being the most radical solution to the
flexibility challenge.

The contribution of this paper is a presentation of an
architecture that uses mobile code technology to imple-
ment programmable network routers. We use this archi-
tecture to implement DiffServ on programmable routers.
The proposed architecture has two layers. The first layer
uses mobile code technologies to define and evolve router
configurations. The second layer provides a low-level ma-

chine that efficiently implements an abstract routing ma-
chine. The interpreter for configurations uses modifies
state and behaviour of the abstract routing machine in or-
der to adapt the routing behaviour. This two-tiered ap-
proach has the advantage that router configurations can
be defined at high-levels of abstraction while packet for-
warding in the abstract routing machine can be efficiently
implemented.

The structure of the paper is as follows: We first 2
discuss literature that is related to our work. In Section 3,
we outline our approach and the application of it to ac-
tive network context. In Section 5 we describe theXMILE

platform and we introduce an example of use for pro-
gramming of routers. Section 4 describes the architecture
the programmable network nodes on whichXMILE is de-
ployed. Section 6 evaluates the approach and discusses
related work and Section 7 concludes and lists possible
future work.

2 Related Work

Much progress has been achieved to introduce pro-
grammability on the network level by the main propo-
nents, the DARPA Active Networks research group and
the IEEE PIN1520 standardization committee [Campbell
et al. (1999b)]. Much less attention, however, has been
paid to middleware support and programming languages
supporting network programmability. In particular, the
shipping of mobile code to remote network nodes in a
manageablefashion constitutes a major remaining chal-
lenge. The challenge is mainly due to the fact that net-
work services generally emerge as distributed algorithms
in excessively large systems. Most work on network pro-
grammability has been limited to enable programmabil-
ity of single network nodes, such as router plug-ins [De-
casper et al. (2000)]. While the Genesis project does
focus on the management of programmable virtual net-
works as a whole, language support in particular has not
been incorporated [Campbell et al. (1999a)]. Also re-
lated is the NetScript project at Columbia University, pro-
viding middleware support for programmable routers and
switches [da Silva and Yemini (1999)]. NetScript pro-
grams, however, are packaged as mobile agents to be dis-
patched to network nodes for dynamic execution. Such
an approach is limited in granularity and scope as dis-
cussed further below in this section. PLAN and Safe-
tyNet [Kakkar et al. (1999); Wakeman et al. (2000)], on
the other hand, are strongly typed functional and object-
oriented programming languages, respectively, for pro-
viding security and safety in strong Active Networking,
where a single packet may contain code that could be
dynamically executed to customize individual network
nodes. A seamless upgrading of network services or a

partial non-disruptive removal of existing services ap-
pears as a rather compelling task without appropriate mid-
dleware support.

In this paper, we propose to use the eXtensible
Markup Language (XML) [Bray et al. (1998)] to de-
fine the configuration of virtual programmable networks.
XML standardizes the way context-free grammars are de-
fined in document type definitions (DTDs) or Schemas
[Fallside (2000)]. Off-the-shelf tools can be used to edit
documents (i.e. instances of a DTD/Schema) and to val-
idate that they conform to these grammars. In order to
define an operational semantics of an XML language, an
interpreter needs to be built that translates constructs of
the XML language into an abstract machine. The con-
struction of such interpreters is considerably simplified
again by the availability of XML parsers and implemen-
tations of the Document Object Model. XML parsers,
such as Apache’s Xerces, read a Schema and a document
and validate that the document is conform to the gram-
mar expressed in the Schema. They return a parse tree
that can be accessed and further modified using a stan-
dardized interface that is defined in the Document Object
Model (DOM)[Apparao et al. (1998)]. What remains to
be done to execute a policy written in XML is to traverse
the parse tree and translate each visited node into primi-
tives available from some appropriate abstract machine.

As in described in [Emmerich et al. (2000)] and [Mas-
colo et al. (2000)], our approach (XMILE) also assists in
distributing the same policy or policy fragment to many
different interpreters. TheXMILE approach to code mo-
bility exploits the ability to address DOM nodes in a syn-
tax tree using XPath expressions and the ability to mod-
ify parse trees using operations defined in the DOM. It
achieves the ability to perform incremental changes to
a, possibly large, number of policy copies. We exploit
this ability in order to facilitate the deployment, evolution
and management of the configurations of routers, which
exist on many different network routers. The focus of
our approach is on the reconfiguration of a high number
of routers which all together contribute to the routing of
packets on the network. We are aware of the developed
approaches both in policy management and distribution
[Sloman and Lupu (1999)], and in single router reconfigu-
ration [Kohler et al. (2000)]. Our aim is to merge the aims
of those existing work, using XML based technologies
for the policies definition and update, and targeting the
reconfiguration not only of single routers but of groups
of routers. Some work has been carried out also in the
context of programmable network languages. The advan-
tage of using XML as meta language for the definition of
programming network languages with respect to approach
such as in [Wakeman et al. (2000); Kakkar et al. (1999)],
is the ability to extend and evolve the language easily,
offering an additional degree of flexibility. In NetScript

<config>

</config>
 <bandwidth value="1MB"/>

Input Port Output Port

XML Interpreter
(Java)

Packet Forwarding

Forwarding Ctrl API

Module (C)

Router

Input Port Output Port

XML Interpreter
(Java)

Router

Abstract Routing
Machine (C)

 Ctrl API

Figure 1: Programmable Router Architecture

[da Silva and Yemini (1999)] components can be com-
posed at runtime into the routers in order to add features
and functionalities. Our approach takes a more fine-grain
perspective on compositionality. The XML based ap-
proach we are exploiting allows us to manipulate single
lines of code and single values, as well as to modify com-
plete components.

3 Description of the Approach

The aim of this work is to define a platform for router pol-
icy management and update. The approach introduces a
scripting language based model for the definition of router
policies. Policies specified in this language can be up-
dated, and other policies may be added or deleted from
the set of router policies. The grammar of the policy defi-
nition language can be modified as well in order to allow
the definition of new type of policies. The grammar for
policy definition can be defined by the designer and be
bound to particular kind of policies that need to be ex-
pressed in the specific application context.

Specific policy grammars can be used to define policy
sets to configure router behavior. The policies defined will
then drive the router in the process of packet forwarding,
dropping, routing and so on.

The approach we use is based on an XML based sys-
tem calledXMILE . The advantages ofXMILE are de-
scribed in detail in the next section, however, in brief, they
are related to the ability of dynamically modifying code
at a very fine-grain level. We use the approach to update
the policy definitions on the router at run-time at the level
of single policy parameter or statement. In Section 5 we
give an example of this. The ability to dynamically mod-
ify the behaviour of an active network node at run-time
has already been underlined by the research in the area.
However, we think the ability to define application spe-
cific policy languages, and to update network node poli-
cies at run-time at a very fine-grain level is an added value

of our work.
The policy definition set is dynamically modified at

run time, when some environmental conditions emerge.
Once a policy is modified, or added to the router policy
set, the router state and behaviour need also to be modi-
fied consistently. The approach we propose has the advan-
tage of decoupling the high level policy update from the
low level router behaviour update. Once the system is in
place, the policy designer and manager is able to change
the network node policies just using the high level policy
language defined. If new router behaviour is needed be-
cause a new policy is added to the system our middleware
takes care of fetching and linking the new module to the
router code.

Figure 1 shows the architecture that we propose for
our approach. The high level XML policy language is in-
dependent from the implementation language used for the
network node forwarding behaviour. This mean that the
platform may be flexibly ported on different architectures
and systems.

4 Architecture

Due to the ease of updates to router policies at the script-
ing language level, and the run-time ability to react to
the environment, remote management of policies for a set
of network nodes can be achieved (Figure 2). The net-
work manager can observe the network with some per-
formance tool and distribute policy changes on a set of
routers which run theXMILE platform. A mechanism for
automated distribution of changes on the different router
can be installed as well in order to further ease the pro-
cess.

5 The Xmile Platform

XML provides a flexible approach to describe data and
document structures. We now show how XML can be

Network Manager

Active Node 1

Active Node 2

Active Node 3

Policies

Policies

Policies

Figure 2: Router policy distribution.

used to describe code and explain how XML can be used
to definepolicies.

XML Schemas [Fallside (2000)] define the gram-
mar for XML documents. The structure of all the el-
ement that can be put in an XML file are defined in a
schema. XML Schemas (or DTDs, Data Type Defini-
tion which are the predecessors of Schemas) are very
similar to attribute grammars [Knuth (1968)]. Each el-
ement in an XML Schema corresponds to a production
of a grammar. The complex type of an element defines
the right-hand side of the production. Contents can be
declared as enumerations of further elements, element
sequences (i.e.,<xsd:sequence>) or element alterna-
tives (i.e.,<xsd:choices>). These give the same ex-
pressive power to Schemas as BNFs have for context free
grammars. Elements of XML Schemas can be attributed.
These attributes can be used to store the value of iden-
tifiers, constants or static semantic information, such as
symbol tables and static types. Thus, XML Schemas can
be used to define the abstract syntax of programming or
policy languages. We refer to documents that are in-
stances of such Schemas as XMLpolicies. XML policies
can be interpreted and interpreters can be constructed us-
ing XML technologies. By sending XML policies or frag-
ments of them from host to host we achieve a very fine
granularity for the unit of code mobility. In the context
of active networking the code we are interested in updat-
ing and maintaining is the set of policies for the router
behaviour update.

We use a simple example to demonstrate this idea.
Consider a simple set of policies for the routing of pack-
ets on a network node. The initial set of policies allow the
router to drop or shape packets when the packet forward-
ing rate is above certain levels. Figure 3 shows the XML
policy defining the policies for a specific router. The pol-
icy is written in an XML policy language whose syntax is
defined by a Schema, an excerpt of which is shown in Fig-
ure 4. The policy starts with the definition of the policy
set. The example we are using here is very simple. How-
ever new and more complicated policies could be defined.

The policies defined in Figure 3 instruct the router to drop
any kind of packets if the forwarding rate is higher than
a certain value (i.e., the tagDrop) and to shape packets
delaying the packets destined to the Janet network in case
the rate is too high.

<?xml version="1.0"?>
<policies>

<Drop whenRate"100">
<Shape whenRate="50" delay="20"

destination="janet.ac.uk"/>
</policies>

Figure 3: XML code for router policies definition.

<xsd:element name="policies">
<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Drop"/>
<xsd:element ref="Shape"/>

...
</xsd:choice>

</xsd:complexType>
</xsd:element>
<xsd:element name="Drop">

<xsd:complexType content="elementOnly">
<xsd:attribute name="whenRate" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Shape">

<xsd:complexType>
<xsd:attribute name="whenRate" use="required"/>
<xsd:attribute name="delay" use="required"/>
<xsd:attribute name="packetsFrom" use="required"/>

</xsd:complexType>
</xsd:element>
...

</xsd:schema>

Figure 4: XML schema for the policies.

The root of the grammar in Figure 4 is the definition of
thepolicies element, which contains the different tags
for policies definition. TheDrop element contains just
an attribute defining the packet forwarding rate limit for
beginning to drop packets. The policy can be defined in
a more complex way, maybe also defining attributes for
limiting the dropping of packets only from certain net-
works. TheShape tag defines three attributes, one for the
rate above which beginning to shape, one for the shaping
delay to be assigned to packets, and one for defining the
network the packets to be shaped are destined.

The XMILE approach allows us to update the policies
on a router by transferring fragments of new code from
another server to the router and then dynamically patch-
ing the original code. Unlike Java programs, which are
sent in a compiled form, XML policies are transferred in
source form and then interpreted on the remote host. We
refer to such code fragments as XMLpolicy increments.
Hence, we can specify complete policies as well as ar-
bitrarily fine-grained increments in XML. The XML in-

crements will be shipped together with some information
on how to modify the remote XML policy. For instance,
let us assume that we want to update the router policies
adding the ability of shaping packets destined to the net-
work routerucl.ac.uk. For this we need to add a new pol-
icy. Figure 5 shows the policy increment that is shipped
to the router.

<Shape whenRate="50" delay="30"
destination="routerucl.ac.uk"/>

Figure 5: XML policy increment.

The policy increment that we need to update can be
sent separately without the need to re-send the complete
policy policy.

The XML policy structure makes the dynamic manip-
ulation of the code a lot easier. An XML policy can be
seen as a tree and the DOM API [Apparao et al. (1998)]
provides operations for the navigation and modification
(adding/deleting/changing) of branches of the policy tree.
The addressing of the particular branch that needs to be
modified is performed using the XPath language [Clark
and DeRose (1999)]. Going back to our example, Fig-
ure 6 shows the XPath expression addressing the point
where the new increment needs to be added in the policy.

xpath="/policies/"

Figure 6: XPath expression addressing insertion point.

XMILE was conceived with the requirement that code
updates need to be performed on-the-fly . We exploit the
DOM tree structure to determine when and how the up-
dates and the code interpretation may be interleaved. For
example, while policies are updated the packet forward-
ing process is going on.

<xsd:element name="Remark">
<xsd:complexType>

<xsd:attribute name="fromNtw"
use="required"/>

<xsd:attribute name="howtomark"
use="required"/>

</xsd:complexType>
</xsd:element>

Figure 7: XML Schema update code.

As described earlier, XML Schemas are themselves
XML files. This allows us to dynamically modify the
grammar of an XML policy language. In the above exam-
ple, we did not have to change the grammar and assumed
that our XML policy language already has aShape oper-
ator that we then used in the XML code increment. If we,

however, want to modify the language, for example by
adding a “remarking” operator so that in a subsequent up-
date we can also include a remarking tag to the policy, we
could transmit the schema update shown in Figure 7 with
a specific XPath expression to define the update point.

We now describe the architecture of the platform for
dynamic active network nodes updates. The policy man-
agement engine and the packet forwarding engine are kept
separate; the former engine is in fact based on an inter-
preter that accepts and processes XML files (Figure 8).

XML

Increment

XML

XPointer
directions

policies Schema

 XMILE

NODE 1 NODE 2

Figure 8: XML policy update architecture

Concerns that have to be programmed in a router, such
as the configuration of virtual private networks or secu-
rity policies are defined in a high-level markup language,
which is implemented using XML technologies. Edit-
ing support for these languages is available off-the-shelf
in the form of XML Editors, such as XML Spy or Mi-
crosoft’s XML Pad. These editors are akin to the syntax-
directed editors contained in programming environments
and enforce well-formedness; they also check whether
programs and policies are valid.

A control API exploiting Java JNI to embody the
XML policies and to control the router control state and
the packet forwarding component. Note also that the ar-
chitecture is independent of the implementation language
chosen for the router packet forwarding process.

Once such an XML policy is written, it can be dis-
tributed to different routers to be executed by an XML in-
terpreter for the markup language. During this execution,
the interpreter accesses the low-level API of the packet
forwarding module of the router. Using this API, the in-
terpreter modifies local information that influences how
the packet forwarding is performed.

Figure 1 shows the general architecture of our sys-
tem. TheXMILE engine (more details in [Emmerich et al.
(2000); Mascolo et al. (2001)] that we use at this level
also relies on Java class loading for the fetching of the be-
havioural classes needed to implement the policies writ-
ten in XML. The interpreter embedded in the engine ex-
ecutes the policy each time an update occurs. Every tag
of the XML policy (e.g., Drop in Figure 3) corresponds
to a Java class which is executed by the interpreter (if the
class in not on site the interpreter fetches it with Java class
loading). This class checks whether the corresponding be-
havioural function for the packet forwarding engine (for
instance for the Dropping policy) is present in the Dy-

while(true){
inPort.readP();
Port outPort=processP(packet);
if(outPort!=null){

port1.writeP(packet);
}

Figure 9: Code for the packet forwarding process.

namic Linking Library; if not the function is remotely
fetched. Then, a pointer to this function is inserted into
the list of functions to be used by the forwarding process,
and the parameters are passed for the call. For the time
being this list is created dynamically every time the in-
terpreter executes, however some optimization exploiting
the information of where a fine-grain XML update is per-
formed can be implemented. Some XML policies may
require the insertion of more than one function into the
function list but we do not discuss this issue in this paper.

The packet forwarding process will approximately
look like the pseudo-code we report in Figure 9. The
router accepts packets from the input port. The processing
functionprocessP will sequentially execute the function
of the list generated/updated by the interpreter for each
packet. For example for the policy in Figure 3 the list will
contain a dropping function and a shaping function. The
packet is first passed into the dropping function which
will check the actual forwarding rate of the router (in the
router status component). If the rate is higher than 100 the
packet will be dropped and the following function will be
skipped. If not, the packet is then passed to the shaping
function which will decide, based on the packet destina-
tion if the packet needs to be delayed. If yes the packet
is put into a queue and reconsidered for forwarding when
time is ready. The final function of the list is the actual
forwarding function which returns the right output port
for the packet. In Figure 9 the packet is then passed to the
destined output port for forwarding.

When the policies are updated with the update defined
in Figure 5 the interpreter re-runs to update the function
list. When the policy grammar is updated, like in Fig-
ure 7, the interpreter that handles the grammar file also
takes care of loading the DLL function corresponding to
the new operator introduced in the grammar, so that the
operator can be freely used in the XML policy file, and
the corresponding function loaded in the function list of
the router packet forwarding component. Figure 10 shows
the two layers of our architecture in more detail.

6 Discussion and Evaluation

The XMILE approach supports the update of code and
policies at run-time and at different levels. As explained

in Section 3 the XML policy file can be updated adding,
modifying and deleting single lines or parameters. The
grammar itself can be updated usingXMILE . This would
facilitate the use of different policies in the policy defini-
tion files used to control the router. It is also possible to
have dynamic update of the functions used by the router
at the packet forwarding level.

The flexibility of the XMILE approach also support
the update of multiple routers from a common source:
given the XML tree structure defined for every policy file
on the remote routers a global manager could deploy the
same update strategies on all the router, or could vary the
strategy depending of the different local network states.
These features are novel with respect to approaches such
as Kohler et al. (2000) where the authors focus on the
reconfiguration of specific routers instead of global net-
work management. The fact that network administrators
are allowed to define, update and extend the domain spe-
cific languages based on XML for policies description in-
troduced new flexibility which is not available in other
approaches such as Sloman and Lupu (1999); Wakeman
et al. (2000). In Smith and Hutchison (2000) XML is also
used for active networking. In particular, the definition
of a specific language for the packets payload. Our ap-
proach is more articulated but shares the view that XML
can be used to define specific structures for policies or
data. WithXMILE we allow the dynamic update which is
not contemplated by Smith and Hutchison (2000).

7 Conclusions and Future Work

XMILE is based on the interpretation of XML tags and
Java class-loading. As previously addressed, the system
we described has a two layer architecture, which exploits
the flexibility of XML at the router language and policy
definition level and the performance of C or other com-
piled languages for the packet forwarding process.

Security issues need to be addressed. We plan to take
advantage of the Schema-XML relationship to validate
XML policies against a properly defined grammar. We
are also introducing typing to run more static checks, but
we believe more work in the direction of security could
be done.

We also plan to optimize the function list for the
packet forwarding component. At the moment the list is
regenerated every time the interpreter re-execute after a
policy update. However, it is possible to exploit the struc-
ture of the XML policy file and the XPath expression for
the update to know exactly how the function list need to
be updated without regenerating it.

Packet Forwarding Engine

Router Status

Dynamic
Linking
Libriary

Fct. List

Control API

InputPort OutputPort

Figure 10: Detailed two layer architecture

Acknowledgements

We would like to thank Jon Crowcroft, Richard Gold, An-
thony Finkelstein and Adam Greenhalgh for comments,
discussion and suggestions on an earlier draft of this pa-
per.

References

V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Ja-
cobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor,
C. Wilson, and L. Wood. Document Object Model
(DOM) Level 1 Specification. W3C Recommen-
dation http://www.w3.org/TR/1998/REC-DOM-Level-
1-19981001, World Wide Web Consortium, October
1998.

Y. Bernet, S. Blake, D. Grossman, and A. Smith.
A Conceptual Model for Diffserv Routers.
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-
model-04.txt, 2000.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language. Recommendation
http://www.w3.org/TR/1998/REC-xml-19980210,
World Wide Web Consortium, March 1998.

A. Campbell, M. Kounavis, D. Villela, J. Vicente, H. De
Meer, K. Miki, and K. Kalaichelvan. Spawning net-
works. IEEE Network, July/August 1999a.

A. Campbell, H. De Meer, M. Kounavis, K. Miki, J. Vi-
cente, and D. Villela. A survey of programmable net-
works.ACM Computer Communications Review, April
1999b.

J. Clark and S. DeRose. XML Path Lan-
guage (XPath) Version 1.0. Recommendation
http://www.w3.org/TR/1999/REC-xpath-19991116,
World Wide Web Consortium, November 1999.

S. da Silva and Y. Yemini. NetScript: A Language
and Environment for Programmable Networks .
http://www.cs.columbia.edu/dcc/netscript/index.html,
1999.

D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Route
plugins: A software architecture for next-generation
routers. IEEE/ACM transactions on Networking, 8(1),
July/August 2000.

W. Emmerich, C. Mascolo, and A. Finkelstein. Imple-
menting Incremental Code Migration with XML. In
M. Jazayeri and A. Wolf, editors,Proc. 22nd Int. Conf.
on Software Engineering (ICSE2000), pages 397–406,
Limerick, Ireland, June 2000. ACM Press.

David C. Fallside. XML Schema. Technical
Report http://www.w3.org/TR/xmlschema-0/, World
Wide Web Consortium, April 2000.

Pankaj Kakkar, Michael Hicks, Jonathan T. Moore, and
Carl A. Gunter. Specifying the PLAN networking
programming language. InHigher Order Opera-
tional Techniques in Semantics, volume 26 ofElec-
tronic Notes in Theoretical Computer Science. Elsevier,
September 1999. URLhttp://www.elsevier.
nl/locate/entcs/volume26.html .

D. E. Knuth. Semantics of Context-Free Languages.
Mathematical Systems Theory, 2(2):127–145, 1968.

Eddie Kohler, Robert Morris, Benjie Chen, John Jan-
notti, and M. Frans Kaashoek. The click modular
router. ACM Transactions on Computer Systems, 18
(4), November 2000.

C. Mascolo, W. Emmerich, and A. Finkelstein. Xmile:
An Incremental Code Mobility System based on XML
Technologies. InPoster Session of the. 2nd Int. Sym-
posium on Agent Systems and Applications Mobile
Agents, Zuerich, Switzerland, September 2000.

http://www.elsevier.nl/locate/entcs/volume26.html
http://www.elsevier.nl/locate/entcs/volume26.html

C. Mascolo, L. Zanolin, and W. Emmerich. XMILE: an
XML based Approach for Incremental Code Mobility
and Update. 2001. Submitted for Publication.

M. Sloman and E. Lupu. Policy Specification for Pro-
grammable Network. In Springer, editor,First Int.
Working Conference on Active Networks (IWAN99),
Berlin, June 1999.

P. Smith and D. Hutchison. New Telecommunication Ser-
vices using Active and Programmable Networks. Tech.
Report Univ. of Lancaster 00-04, 2000.

I. Wakeman, A. Jeffrey, T. Owen, and D. Pepper. Safe-
tyNet: A Language-Based Approach to Programmable
Networks. http://klee.cs.depaul.edu/an/spec/, July
2000.

	Introduction
	Related Work
	Description of the Approach
	Architecture
	The Xmile Platform
	Discussion and Evaluation
	Conclusions and Future Work

