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ABSTRACT

Eating at a slower pace can aid in improved digestion and
nutrient absorption. It further contributes to a lower risk of
obesity and gastric cancer. Hence, our work aims to explore
unobtrusive tools for detecting and counting chewing ac-
tivity to assist users in developing healthier eating habits.
This paper investigate the feasibility of leveraging earphones
embedded with Inertial Measurement Units (IMUs) to detect
and count chewing activity. We constructed a chewing anal-
ysis system, IMChew, consisting of two major parts, namely,
chewing detector and chewing counter. To devise the chew-
ing detector, we explored various time and frequency domain
features which we applied to 3 classic machine learning
classifiers. Additionally, we innovated a chewing counting
pipeline that detects chewing frequency in the recognised
chewing episodes from the chewing detector. We collected
data from 8 participants, encompassing both chewing activi-
ties with various food and a broad range of non-chewing ac-
tivities. Overall, the performance of our chewing detector us-
ing a leave-one-subject-out (LOSO) approach achieved both
accuracy and F1-score of 0.91, while our chewing counter
attained a Mean Absolute Percentage Error (MAPE) of 9.51%.

1 INTRODUCTION

According to World Health Organisation, in 2022, 1 in 8
people in worldwide population were living with obesity.
Additionally, adult obesity has more than doubled since 1990.
Studies on eating behaviour suggests that increasing the
number of chews per bite is a potential strategy to reduce
food intake and may aid in body-weight management [21].
Eating at a slower pace has also been found to aid in improved
digestion, nutrient absorption and further contributes to a
lower risk of gastric cancer, tooth loss, and facial distortion
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[6, 15]. Hence, chewing analysis is essential to assisting users
in developing a healthier eating habit.

A variety of devices, in particular wearables, have been
investigated for conducting chewing analysis. Microphones
are of the most popular and effective sensors for chewing
detection, embedded in various kinds of devices ranging
from smartglasses [17] to a novel head-mounted device [5].
However, these wearables are obtrusive and not socially ac-
cepted for daily-life uses, limiting their usefulness for chew-
ing analysis. Consequently, more recent studies [9, 13] have
leveraged earphones for chewing analysis, enabling unobtru-
sive, convenient, and widely adopted solutions for daily uses.
These works have achieved initial success with [13] using
microphones and IMUs on earphones for chewing detecting
and [9] using only IMUs for snacking detection.

Our work aims to take a step further in earable-based
chewing analysis. We extend the applications to include
chewing counting, a critical step towards detecting chewing
rates and ultimately analysis of users’ eating habits. Current
works on chewing counting have explored a range of devices
including microphones on glasses [19] and on user’s neck
[8], which are obtrusive. In contrast, our study introduces
a non-invasive and user-friendly solution for both chewing
detection and counting using earphones.

Specifically, we utilize IMUs in earphones, which are stan-
dard and low-cost sensors in commercial earbuds (e.g., Apple
Airpods [1], Google Pixel Buds [2] and Samsung Galaxy Buds
[3]), and show promise in capturing the jaw movements [10]
induced by chewing [13]. We propose a system, IMChew,
comprising two main components receiving IMU signals
from earphones: chewing detector and chewing counter. Em-
ploying three machine learning models (Logistic Regression,
Decision Tree, and Random Forest) with exploring various
time and frequency domain features, the chewing detector
is implemented to recognize chewing activities from various
non-chewing activities. For the chewing counter, we develop
a signal processing pipeline to detect chewing frequency in
the recognized chewing episodes from the chewing detector.

We implemented a prototype system of IMChew using the
eSense platform [12, 14], equipped with a 6-axis IMU (i.e., a
3-axis accelerometer and a 3-axis gyroscope). We collected
data from 8 participants aged 20-60 years, encompassing both
chewing activities with various foods and a broad range of
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Figure 1: Samples of accelerometer and gyroscope data under various activities.

non-chewing activities. We evaluated the system’s perfor-
mance across different participants and activities. Overall,
the performance of our chewing detector using a LOSO ap-
proach achieved both accuracy and F1-score of 0.91, while
our chewing counter attained a MAPE of 9.51%.

In summary, this paper makes the following contributions:
1) To the best of our knowledge, IMChew is the first earable-
based system for both chewing detection and counting using
IMUs. 2) We proposed an efficient pipeline for chewing de-
tection and counting using earphone IMU signals. 3) We
developed a prototype system and conducted comprehen-
sive evaluations involving various foods for chewing and a
wide range of non-chewing activities across 8 participants.
The evaluation results demonstrate the design effectiveness.

2 FEASIBILITY STUDY

We initially explored the feasibility of using earphone IMUs
for chewing analysis. To this end, we collected eSense IMU
data during a variety of daily activities, including chewing.
Figure 1 showcases the time-domain plots of IMU data
during chewing, head turning and watching a movie, respec-
tively. Distinct features are presented in the signal during
each activity. Chewing has a distinguishable pattern of reg-
ular small spikes which indicates to the regular motion of
biting down. An oscillation can be observed in the x-axis of
the gyroscope and the y and z axes of the accelerometer dur-
ing the head turning activity, corresponding to the turning
of the head from left to right repeatedly. Watching a movie is
characterised by erratic changes in the gyroscope signal with
small amplitudes of less than 5 deg/s. Given these prominent
features of each activity, it can be concluded that it is feasible
to use IMU signals for chewing analysis. In particular, the
regular spikes in the signals during chewing activity suggest
that both time-domain and frequency-domain features are
relevant and beneficial in chewing detection and counting.

3 SYSTEM DESIGN

Our proposed chewing analysis system, IMChew, as shown
in Figure 2, has two main components, namely, chewing
detector and chewing counter. More specifically, the chewing
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Figure 2: System overview of IMChew.
detector classifies and detects the chewing activity from
earphone IMU signals. Then, the chewing counter counts
the total number of chews within the chewing activity.

3.1 Chewing Detector

The chewing detector aims to classify and detect the chewing
activity from the IMU signals with different classifiers.

Segmentation. The earphone IMU signals collected un-
dergo preprocessing before being fed into the subsequent
modeling steps. Following previous work [13], we segment
the input signal into 3 seconds of non-overlapped windows.

Feature Extraction. Next, a feature extractor will be
applied to extract both time and frequency domain features
of the IMU signal. In the time domain, we calculate the the
mean, variance, and power [13] for each of the 6 axes of
the IMU signal. This process results in a total of 6 X 3 =
18 time domain features for each window. The frequency
domain features include the Spectral Centroid (SC) and Mel
Frequency Cepstral Coefficient (MFCC) [13]. SC is a measure
used to characterise a spectrum by indicating the location of
the centre of mass of the spectrum. We calculate the SC for
6 axes of the IMU signals. Moreover, we extract MFCCs with
12 coefficients on each of the 6 axes of IMU signal based on
its effectiveness on IMU feature extraction [13]. This results
in 78 frequency domain features.

Chewing Classifiers. The outcome of the processing
step is 96 features from each window of the IMU signal.
These features are then used to train three classifiers: Logistic
Regression, Decision Tree, and Random Forest for Chewing



or Non-Chewing activity classification. We define a chewing
episode as a sequence of chewing activities.

Chewing Episode Aggregation. When IMChew first
detects a chewing activity, it begins the process of chew-
ing episode recognition. Chewing is marked as 1’ and non-
chewing as ’0’. This marking continues until IMChew marks
three consecutive ’0’s, indicating the end of aggregation. To
determine the episode from the sequence spanning from the
first ’1’ marked window to the last ’1’, we use majority voting.
Specifically, if more than half of the 3-second windows are
classified as Chewing activity, we will aggregate the Chew-
ing windows and recognize them as the chewing episode
and then feed them into the chewing counter module.

3.2 Chewing Counter

After detecting the chewing episode using chewing detector,
we employ the chewing counter to count the chewing occur-
rences by analyzing the chewing frequency in the episode.
This approach is based on the observation from the prelimi-
nary study, which reveals that chewing signals have regular
intervals between peaks. This finding suggests that chewing
frequency is relatively constant and should be detectable as
the frequency in the signal with the highest intensity.

Preprocessing. First, the chewing episodes are segmented
into longer fixed-size windows, i.e., 10s in IMChew imple-
mentation. The IMU signals of each window are then filtered
using Butterworth bandpass filter with a low and high cutoff
frequencies of 0.1Hz and 3Hz, and a moving average filter to
determine the chewing frequency.

Chewing Frequency Detection. To calculate the chew-
ing frequency within each window, we first apply the Fast
Fourier Transform (FFT) to convert the preprocessed IMU sig-
nals from the time domain to the frequency domain. Based
on the previous work [18], we select the frequency with
the highest intensity in the range of 0.5Hz to 2.5Hz as the
representative chewing frequency. Next, we multiply the fre-
quency with the size of each window to find the number of
chews that occurred within that specific time frames. Finally,
the sum of chewing counts of all the windows is calculated
and output as the count of chews in the chewing episode.

4 IMPLEMENTATION AND USER STUDY

4.1 Implementation

To collect our dataset, we used the Nokia Bell Labs eSense
platform [12, 14]. The eSense is a sensor equipped wireless
earable augmented with a 6-axis IMU and a microphone.
We sampled the IMU data at 60Hz. Users wore only the left
earbud as this is the one containing the IMU for the duration
of the data collection. For ground truth data collection, we
simultaneously recorded a video of the experiment which
we used to label the IMU data.

Table 1: Non-eating activities performed by participants

Non-eating Activities Duration
Sitting Still 2 minutes
Moving Head from Side to Side 30 seconds
Making a Happy Face 30 seconds
Making a Sad Face 30 seconds
Making an Angry Face 30 seconds
Speaking 2 minutes
Drinking 1 minute
Watching a Movie (in the wild) 3 minutes

Additionally, to obtain more precise ground truth of chew-
ing counting, we relied on users manually annotating their
chewing events. To do this, we wrote a script that would
record the timestamp each time the spacebar was pressed.
We then asked participants to press the spacebar each time
they chewed. Thus we were able to combine both the video
and the user annotations to obtain accurate ground truth.

4.2 Data Collection

To assess our chewing detection and counting algorithms,
we collected data from participants while seated and under-
going various head-related, eating and non eating, activities.
Our experiment was conducted with approval by the Ethics
Committee of our institution. We collected data from 8 par-
ticipants (4 male, 4 female) aged 20-60 years.

Participants underwent five different eating tasks, each
with a duration of two minutes. We studied five different
foods (chips, pretzels, apples, mangoes, and bread), and in
each task participants consumed one food type. When select-
ing our foods, we chose foods with different textures as they
produce different levels of vibrations when chewed, which
can then be detected by IMU sensors [11].

Participants then performed 8 non-eating tasks, with dif-
ferent durations involving comparable periods of head, facial,
and body movements, as shown in Table 1. The non-eating
data was collected to ensure that our chewing detection al-
gorithm can distinguish chewing activity from other head
movements which occur frequently during eating episodes.
Participants were asked to execute the activity and then go
back to a baseline state and then execute the activity again.
For example, for the smiling activity, participants smiled,
then returned to a neutral face, then smiled again for the du-
ration of the task. Overall, we obtained 10 minutes of data for
chewing activities and 10 minutes of data for non-chewing
activities per participant.

5 PERFORMANCE EVALUATION

We assess the performance of our two subsystems: the chew-
ing detector and the chew counter. We examine the perfor-
mance of the chewing detector models using 80/20 train-test
split and LOSO cross validation (CV). The 80/20 train-test
split is performed by splitting 80% of each user’s data for



training and using the other 20% for testing. This means
that data from all the participants was seen by the model
prior to the testing. Meanwhile, LOSO CV better reflects
the real-world application since all new users are unseen by
the system. For these evaluation methods, we report Recall,
Precision, F1-score and Accuracy. The performance of the
chewing counter was evaluated using MAPE.

5.1 Chewing Detection

Table 2 presents the overall performance of different classi-
fiers for chewing detection when evaluated with an 80/20
train-test split. Random Forest (RF) outperforms Logistic Re-
gression and Decision Tree. Likewise, for LOSO CV, RF is the
best performing classifier. From Table 3, we see that LOSO
CV has slightly worse performance (0.86) than 80/20 split
(0.97), due to the model making predictions on fully unseen
data. However, this result indicates that our system has good
performance even on unseen data, and that we have the
potential for huge improvements through personalisation.
Table 2: Evaluation of chewing detection using 80/20 train-
test split

Recall Precision F1  Accuracy
Logistic Regression  0.85 0.85 0.85 0.85
Decision Tree 0.94 0.94 0.94 0.94

Random Forest 0.97 0.97 0.97 0.97

Table 3: Evaluation of chewing detection using LOSO CV

Recall Precision F1  Accuracy
Logistic Regression  0.74 0.74 0.73 0.73
Decision Tree 0.75 0.75 0.75 0.75

Random Forest 0.86 0.86 0.86 0.86

We further breakdown the results to examine the per class
performance of detecting chew vs non chew. This is provided
in Figure 3a and Figure 3b for 80/20 split and LOSO evalua-
tion, respectively. Overall, the 80/20 split resulted in a higher
recall, F1-score and accuracy (0.95 - 1) than LOSO CV (0.84 -
0.93). We see that for the 80/20 split, recall of the chewing
activities is higher than non-chew, however for the LOSO
CV, the recall of the non-chew is higher. This indicates that
chewing is a highly personalised activity, since each individ-
ual has a vastly different chewing pattern. Nonetheless, our
solution performs well under both evaluation methods.

P P
= accuracy = accuracy
08 -1 08 -1

Chewing Activities  Non-Chewing Activities Chewing Activities  Non-Chewing Activities

(a) 80/20 Train-test split (b) LOSO
Figure 3: Comparison of Random Forest performance for
chewing and non-chewing activities.
Finally, we evaluate the performance of our chewing episode
recognition using majority voting on a 10s window of data.

From Table 4, we see that RF had the best performance
with recall, precision, F1-score and accuracy of 0.91. Existing
work [13] achieves accuracy of 0.94, precision of 0.87, recall

of 0.92 and F1-score of 0.89.
Table 4: LOSO evaluation of chewing episode recognition via
majority voting

Recall Precision F1  Accuracy
Logistic Regression  0.83 0.86 0.84 0.86
Decision Tree 0.81 0.81 0.81 0.82

Random Forest 0.91 0.91 0.91 0.91

5.2 Chewing Counting

The performance of chewing counting is assessed based on
the chewing episodes detected by the chewing detector. We
first examine the impact of different filters on the input sig-
nal in Table 5. Applying Butterworth bandpass and moving
average filters results in the best performing model with a
MAPE of 9.51%. Existing work on detecting chewing count-
ing show results of MAPE in a similar range: 12.2% using
head-mounted accelerometer [20], 8.38% using video record-
ings [4] and 10.32% using throat microphone [8]. Thus our
work is competitive with chewing counting systems in the
literature with a more convenient and ubiquitous form factor.
Table 5: Evaluation of chewing counting with various filters

MAPE (%)
Raw Signal 10.82
Butterworth Bandpass 9.60

Butterworth Bandpass & Moving Average 9.51

Figure 4 depicts the performance of the chewing counter
for each user and each activity on the left and right respec-
tively. The worst performance of the chewing counter was
for User2 with a MAPE of 12.92%. User0, and User3 also have
high MAPE scores of over 12%. In general, we find that the
larger the chewing rate (i.e. the more chews per second), the
higher the estimation error will be. This is likely because
of the parameters chosen for the moving average filter. The
chewing counter performed best for User4 who had a lower
chewing rate, as per Table 6. For the individual activities,
there was the highest error for mangoes (12.38%), and the
lowest for bread (7.41%). This is likely due to the softness of
mango, which does not require as much jaw movement to
chew as harder or chewier foods such as bread and pretzels.
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Figure 5: Evaluation of chewing counting across window
S1zes.

Finally, we assess the impact of the length of the chew
episode on chew counting in Figure 5. It was discovered
that the best performing window size was at 10 seconds,
producing the minimum MAPE (9.51%). Hence, our model
uses 10 seconds window as a chewing episode for counting
the number of chews.

Table 6: Average chewing rate of each user (chews/second)
UserID 0 1 2 3 4 5 6 7
Rate 1.15 0.79 1.14 1.16 0.87 1.05 0.81 0.87

6 RELATED WORK
6.1 Wearable Chewing Detection Systems

A range of devices and sensors have been investigated for
automatic chewing detection. Nakamura et al. [15] investi-
gated the feasibility of using 2 channel microphones placed
under the ear for the detection of chewing and swallowing.
AutoDietry [7] utilised a neck-mounted microphone to de-
tect chewing and perform food-type recognition. [17] used
microphones in smart glasses for detecting chewing activity.
However, these works are obtrusive and are unlikely to be
adopted in everyday life due to inconvenience and discom-
fort of using the devices.

6.2 Earable Chewing Detection Systems

Due to the ubiquitous nature of earables, research efforts
have been taken into using earables for chewing detection.
Papapanagiotou et al. [16] used PPG sensors on the ear, and
found the method to be feasible for chewing detection while
snacking with both recall and precision of over 91%. The eS-
ense platform, with embedded IMU sensor and microphone,
have been found to be capable of detecting chewing activity
with an accuracy of 97% when utilising both audio and IMU
signals [13]. Bin et al. [9] further found the eSense earbuds
could be used for snacking detection when applied to a per-
sonalised model, obtaining around 90% F1 score. IMChew
encompasses a broader range of non-chewing activities and
a greater variety of foods for the development of its chew-
ing detector. Additionally, IMChew advances earable-based
chewing analysis by extending its applications to include
chewing counting. This enhancement is a crucial step to-
wards detecting chewing rates and ultimately contributes to
the analysis of users’ eating habits.

6.3 Chewing Counting

Even though chewing counting is less explored in the lit-
erature, a number of works have already been conducted
on this using a variety of sensors and data. Video recording
was investigated for chewing counting [4] with the pro-
posed system counting chewing occurrences with MAPE
of 8.38%. However, using video recordings raised the con-
cern of reduced anonymity and user’s privacy protection,
leading to the system being less applicable in real life. Billah
et al. [8] used a throat microphone for chew counting with
an average MAPE of 10.32%. Head-mounted accelerometer
was also found to be able to estimate chewing count with
MAPE of 12.2% [20]. To our knowledge, less intrusive devices
and methods have yet to be explored for the application of
chewing counting. Hence, our work makes an important
contribution by investigating the feasibility of extending the
applications of earables, specifically earbuds, from chewing
detection to chewing counting.

7 DISCUSSION AND FUTURE WORK

Firstly, our study found that earables with IMU sensors can
be used to detect and count chewing occurrences. We have
studied this approach on a range of food types with varying
textures, from softer to harder food. The model had also
been trained and tested on data from a sample with a range
of chewing rates from 0.79 to 1.16 chews per second (see
Table 6). Our chewing detection model was able to recognise
chewing signal pieces with an accuracy of 0.91 while our
chewing counting algorithm performed with MAPE of 9.51%.
Combined with the unobtrusive nature of earbuds, it can be
concluded that earables with IMU sensors are feasible tools
for detecting and counting chewing activities.However, there
are a few limitations to our approach in the study including
noisy labelling and potential data collection bias.

Noisy labelling. The IMU signals collected from eSense
earbuds in each session were labelled uniformly with the
same label. For example, every data point collected during an
eating activity will be labelled as Chewing. This is inaccurate
since, during sessions of eating activities, participants pause
and stop chewing every now and then to put more food
in their mouths or grab a new piece of food. The chewing
detection algorithm is most affected by this as a smaller
window size was used (3 seconds), and the training or testing
label of each window may be inaccurate. In future work, we
will use video recording or create novel software to annotate
the data points more precisely.

Data collection bias. Furthermore, our method for ground
truth collection for chewing counting may lead to potential
bias in our data. As shown in Table 6, the range of chewing
rate in our sample is only 0.79 to 1.16 chews per second,
while the literature claims that the range of human chewing
rate is 0.94 to 2.5 chews per second [18]. A potential cause of



the lower chewing rate observed in our sample is the ground
truth collection. As participants have to press on the lap-
top’s Spacebar every time they chew on the food, it is likely
that participants chew at a slower rate to press the Spacebar
more accurately and conveniently. This limitation should be
handled in future work to improve the generalisability of
our study by preventing any disruption or intervention with
participants’ chewing habits.

Simultaneous activities. Our study did not evaluate the
chewing counting model’s performance when chewing is
combined with other simultaneous activities, such as head
turning, facial expressions, or speaking, which are common
in real-life scenarios. In future work, we will further apply
IMChew in more complex free-living situations.

8 CONCLUSION

This paper investigates the use of earphone IMUs for de-
tecting and counting chewing events. We propose a system,
IMChew, with two key components: chewing detector and
chewing counter. For the chewing detector, we experimented
with various time and frequency domain features across
3 classic machine learning classifiers. We also developed
a novel chewing counting pipeline to detect chewing fre-
quency within identified chewing episodes. Our evaluation
of IMChew on 8 participants, involving various chewing and
non-chewing activities, demonstrated that the chewing de-
tector recognizes activities with a recall, precision, F1-score,
and accuracy of 0.91 using a LOSO approach, while the chew-
ing counter achieved a MAPE of 9.51%. This indicates that
earables are a viable platform for monitoring chewing activi-
ties and could potentially aid users in maintaining healthy
eating habits. Future work could explore alternative data
collection methods to improve the generalizability of our
approach and refine our model for real-world applications.
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