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ABSTRACT
The analysis of social and technological networks has at-
tracted a lot of attention as social networking applications
and mobile sensing devices have given us a wealth of real
data. Classic studies looked at analysing static or aggre-
gated networks, i.e., networks that do not change over time
or built as the results of aggregation of information over
a certain period of time. Given the soaring collections of
measurements related to very large, real network traces, re-
searchers are quickly starting to realise that connections are
inherently varying over time and exhibit more dimensional-
ity than static analysis can capture.
In this paper we propose new temporal distance metrics to

quantify and compare the speed (delay) of information diffu-
sion processes taking into account the evolution of a network
from a global view. We show how these metrics are able to
capture the temporal characteristics of time-varying graphs,
such as delay, duration and time order of contacts (interac-
tions), compared to the metrics used in the past on static
graphs. We also characterise network reachability with the
concepts of in- and out-components. Then, we generalise
them with a global perspective by defining temporal con-
nected components. As a proof of concept we apply these
techniques to two classes of time-varying networks, namely
connectivity of mobile devices and interactions on an online
social network.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
Topology; C.2.0 [General]: Data communications

General Terms
Measurement, Algorithms, Theory

Keywords
Temporal Graphs, Temporal Metrics, Temporal Efficiency,
Social Networks, Complex Networks, Information Diffusion
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1. INTRODUCTION
The appearance of abundant and fine grained data about

social network interactions has sparked numerous investiga-
tions into the properties of human interactions [9, 10]. What
has become increasingly clear is that the time dimension of
these interactions have often been neglected or understated
while developing analytical methods for social and complex
network analysis.
We argue that static metrics such as path length, cluster-

ing coefficient and centrality [14], to name a few, are suffi-
cient where temporal information is not inherent in the net-
work but give a too coarse-grained view in networks where
the temporal dynamics is an essential component of the phe-
nomenon under observation such as human interactions over
time.
Past research by Kempe et al. proposed a temporal net-

work model with time labelled edges where paths need to
obey the time order of the appearance of edges [8]. How-
ever, this model does not allow for analysis of frequency of
contacts between nodes or groups, nor does it handle tem-
porally disconnected nodes i.e., where there is no time re-
specting transitive path between two nodes over time. Sim-
ilarly, in [11] Kostakos presented the concept of temporal
graphs and an equivalent measure of delivery time between
nodes of a temporal graph. However this provides a skewed
indication of the global delay of the information diffusion
process since it does not take into account pairs of nodes
for which a transitive path does not exist. Also the lack
of normalisation over nodes or time do not lend for easy
comparison between networks. In [10] the authors analyse
information dissemination processes focussing on identifying
the diffusion of the most recent piece of information about a
certain topic in a social network. We instead are interested
in measuring the smallest delay path of generic informa-
tion spreading processes. Spatio-temporal aspects have also
been studied for the analysis of delay and data delivery in
DTN networks [7, 3]. The Kempe-Kleinberg model has also
been adapted for social networks analysis [5, 13, 1], how-
ever the focus of these works is on the local characteristics
of time-varying networks; global aspects of the information
processes in these networks are not captured.
In this paper we present new metrics related to temporal

distance and reachability and evaluate how these are useful
to capture properties at a fine granularity with a global and
local view. The key measure that we propose is the average
temporal path length of a network quantifies how fast infor-
mation spreads to all nodes by means of transitive connec-
tions between them. From this measure, we derive others,



namely, the temporal network efficiency (a static definition
of which is contained in [12]) and connected components.
Previous work on small world effects such as the analy-

sis based on short path length and high clustering on static
graphs obtained by aggregating all the links over a certain
period of time indicated that these networks are good for
data diffusion due to a few edges acting as shortcuts, con-
necting distant nodes together [14]. However, we show that
since static graphs treat all links as appearing at the same
time, they do not capture key temporal characteristics such
as duration of contacts1, inter-contact time, recurrent con-
tacts and time order of contacts along a path. For this
reason, they give us an overestimate of the potential paths
connecting pairs of nodes and they cannot provide any in-
formation about the delay associated with the information
spreading process.
We show that our metrics are able to quantify and com-

pare in a compact way these temporal characteristics for
the study of information diffusion processes. As a proof of
concept, we apply temporal metrics on conference, campus
and online social network (OSN) traces and we show that
the network of OSN user interactions exhibit different and
slower efficiency characteristics for data diffusion than that
of human contacts.
The rest of this paper is organised as follows. In Sec-

tion 2 we present a formal definition of our model of tem-
poral graphs and temporal metrics. In Section 3 we present
preliminary results of the calculation of the metrics on the
datasets before concluding with a discussion of the results
and future work in Section 4.

2. TEMPORAL METRICS
A temporal graph can be represented by means of a se-

quence of time windows, where for each window we consider
a snapshot of the network state at that time interval. The
metrics we developed over this view of the temporal graph
retain the time ordering, repeated occurrences of connec-
tions between nodes, contact time and deletions of edges.
We now formally introduce the definition of temporal graph
Gw

t . Given a real network trace starting at tmin and ending
at tmax we define a contact between nodes i, j at time s with
the notation Rs

ij . A temporal graph Gw
t (tmin, tmax) with N

nodes consists of a sequence of graphs Gtmin , Gtmin+w, . . .,
Gtmax , where w is the size of each window in some time unit
(i.e., seconds). Then Gt consist of a set of nodes V and a
set of edges E, such that i, j ∈ V , if and only if there exists
Rs

ij with t ≤ s ≤ t + w.2 We now introduce the temporal
distance metric and then the global and local metrics which
we have derived from this.

2.1 Temporal Distance
Given two nodes i and j we define a temporal path:

ph
ij(tmin, tmax) (1)

to be the set of paths starting from i and finishing at j
that pass through the nodes nt1

1 . . . nti
i , where ti−1 ≤ ti and

1Contact in this paper expresses the general concept of a
node having some sort of interaction with another node such
as physical proximity or exchange of a message.
2The limit case is a time window with duration equal to the
minimum interval between the appearances of two consec-
utive contacts. By selecting this window size, there is no
approximation in the calculation of the temporal metrics.
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Figure 1: Example Temporal Graph I, Gt(0, 3),h = 2 and
w = 1.
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Figure 2: Example static graph based on temporal
graph I (Figure 1).

tmin ≤ ti ≤ tmax is the time window that node n is visited
and h is the max hops within the same window t. There
may be more than one shortest path. Given two nodes i
and j we define the shortest temporal distance:

dh
ij(tmin, tmax) (2)

to be the shortest temporal path length. Starting from time
tmin, this can be thought of as the number of time windows
(or temporal hops) it takes for information to spread from
a node i to node j. The horizon h indicates the maximum
number of nodes within each window GT which information
can be exchanged, or in practical terms, the speed that a
message travels. In the case of temporally disconnected node
pairs q, p i.e., information from q never reaches p, then we
set the temporal distance dpq =∞.
To compute dh

ij(tmin, tmax) we have implemented a depth
first search algorithm that gives the distance from a source
node i to all other nodes. The algorithm assumes global
knowledge of the temporal graph and keeps track of two
global lists, D and R, indexed by node identifier. D keeps
track of the number of temporal hops to reach a node and
R keeps track of nodes that are reached. We initialise the
value of every nodes of D to 1 and R to False. Starting with
the first time window, we check that the source node i has
been sighted. If so, we perform a depth first search (DFS) to
see if any unreached nodes have a path to a node that was
reached in a previous window. The maximum depth of DFS
is dictated by the horizon h and if there are more than one
path we choose the shortest. If a node j is reachable then we
set R[j] = True otherwise we increment the distance D[j].
If the source node i is not reachable then we increment all
D[j] since we cannot establish a transitively connected path
from the source. We then repeat this for the next window.

2.2 Example
As pointed out in the introduction, we argue that aggre-

gated (i.e., static) graphs are unable to model temporally
rich networks since they assume contact between nodes oc-
cur all at once. Let us consider the temporal graph in Fig-



ure 1 and its static version in Figure 2 where all contacts
are aggregated into a single graph. If node A wanted a piece
of information to reach F , according to the static graph it
could do so via nodes B, C, D, and E. Also, reversing
the path, if node F wanted to reach A it could do so i.e.,
suggesting paths are symmetric. In fact over time, contacts
between A and F occur in the wrong time order to facili-
tate this. As we can see, the static graph incorrectly showed
that information could spread between node A and node F .
We now show how our algorithm calculates the temporal
distance between nodes in the network.
Starting with the first window we calculate the reacha-

bility of a message sent from node A. Figure 3 shows the
snapshot of contact graph at t = 1 and the upper table shows
the state of lists R and D after the initialisation phase. We
first check if we can see the source node A. Since node A
appears in this first window, R[A] is set to True. We then
iterate through every other node in the window to check for
reachability. Since there is a path between A and B and also
since A was reached already we update R[B] to True. How-
ever for node C, there are no contacts to any other nodes
so we increment the distance D[C]. The same applies to
nodes D, E and F and the lower table shows the state of D
and R after processing the first window. The second win-
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Figure 3: Distance and Reachability of Window 1.

dow is shown in Figure 4. We iterate through all unreached
nodes C, D, E and F and perform DFS to see if they can be
reached via already reached nodes i.e. A or B. As we can
see there are contacts amongst the unreached nodes, how-
ever none are with A or B so again the distance D for nodes
C, D, E and F are incremented. The state of D and R are
shown in Figure 4 after processing the second window.
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Figure 4: Distance and Reachability of Window 2.

In the third and final window starting from node C, we
check if there is a path to a previously reached node. In this
case performing DFS gives us two nodes we can reach D and
B in the current window, but only node B has been reached
in a previous window. We only care that there is a valid
path not the number of hops within the current window, so
we set R[C] = True. Since the value of D[C] is 3 and R[C]

is True, we now know that a message from node A can reach
node C in 3 time windows. Therefore the temporal distance
dAC = 3. For node D there is a path to node C and node
B, but since only node B was reached in a previous window
we use this path and set R[D] to True. For nodes E and
F , a message from node A has still not arrived and so the
final state shown in Figure 5 reflects this. For all values of
R that are False we can treat the distance D as ∞.

A B

F

DC

E

A B C D E F

D 1 1 3 3 4 4

R T T T T F F

Final

Figure 5: Distance and Reachability of Window 3.

Table 1 shows the temporal path length calculated for ev-
ery node pair, where the diagonal describes when a node was
first seen by another node. As we mentioned earlier paths
in static undirected graphs are assumed to be symmetric,
for example in Figure 2 there is a path between node A to
C and vice versa. However, in Table 1 this is not the case
due to the ordering of the contacts and this can be verified
visually in Figure 1.

A B C D E F

A 1 1 3 3 ∞ ∞

B 1 1 3 3 ∞ ∞

C ∞ 3 2 3 2 2

D ∞ 3 3 3 ∞ ∞

E ∞ 3 2 3 2 2

F ∞ 3 2 3 2 2

Table 1: Temporal path length for all nodes.

2.3 Global Temporal Metrics
Global temporal metrics capture the dynamics of the whole

network, in particular how easy information flows from source
to destination across the whole time space. In the spirit of
static global efficiency Eglob [12], we define the temporal ef-
ficiency ETij between nodes i and j and between the time
interval tmin to tmax as:

Eh
Tij

(tmin, tmax) =
1

dh
ij(tmin, tmax)

(3)

where temporally disconnected nodes intuitively have ETij =
1/∞ = 0. Therefore, given a horizon h, we can then define
the characteristic shortest temporal path length Lh and tem-
poral global efficiency Eh

glob for a temporal graph as:

Lh(tmin, tmax) =
w

N(N − 1)

X
ij

dh
ij(tmin, tmax) (4)

Eh
glob(tmin, tmax) =

1

N(N − 1)

X
ij

Eh
Tij

(tmin, tmax) (5)

Notice that L multiplies the average number of windows,
by the window size w. This gives us a real time in the
chosen time units. To fully characterise a temporal graph,
temporally disconnected nodes are captured in the average.



In the case of efficiency this is straightforward since tempo-
rally disconnnected node pairs have a zero efficiency. In the
case of temporal path length we assume that information
expires after a certain time period i.e. tmax. Therefore, the
maximum temporal length that we consider is (tmax−tmin).

2.4 Local Temporal Metrics
Local temporal metrics capture the dynamics of each node

and its neighbours across the whole time space. The gener-
alisation of the local efficiency Eloc for temporal graphs we
propose is as follows.
We first define Ni(tmin, tmax) as the set of all first-hop

neighbours seen by node i at least once in the time interval
[tmin, tmax]. We indicate as ki(tmin, tmax) the number of
nodes in the set Ni(tmin, tmax). We then consider the se-
quence of subgraphs G

Ni(tmin,tmax)
t , t = tmin, tmin+w, . . . , tmax

where each GNi(tmin,tmax) is the neighbour subgraph of node
i, considering only the nodes in Ni(tmin, tmax) and retaining
the edges from Gtmin .
We can define the local efficiency of node i in the time

window [tmin, tmax] as:

Eloci(tmin, tmax) = ET {GNi(tmin,tmax)
t t ∈ [tmin, tmax]} (6)

that is the efficiency of the time varying graph of the first
neighbours of i in the time window [tmin, tmax], i.e. the
shortest-path for time-varying graphs are computed for
G
Ni(tmin,tmax)
t , t ∈ [tmin, tmax]. Note that by definition, for

Eloc the horizon is always 1 since we are only considering
the direct neighbours of node i.

2.5 Temporal Components
As discussed above, a node j is reachable in the time in-

terval [tmin, tmax] from node i if there is a temporal path
from node i to node j or, in other words, if a message can
be delivered from node i to node j in that time interval.
In static analysis, individual node reachability is defined

by the in-component and out-component, which define the
set of nodes that can reach and be reached by a node i; and
collective reachability among groups of nodes in a network
is defined by the connected components CC, which defines
the sets of nodes that can reach eachother such that there
may be disjoint islands of nodes.
Formally, for an undirected static graph G = (V, E) this

is defined as the maximal set of vertices C ⊆ V such that
for every pair of vertices i, j ∈ C, there exists a path from
i to j [2]. This definition means that each node can only
belong to a single component. In the static graph (Fig-
ure 2), since it assumes all nodes have a path to all other
nodes, there is only one component set consisting of nodes
{A, B, C, D, E, F}. Such a graph with a single connected
component is also described as connected.
In a directed static graph, reachability can be defined in

terms of weakly connected components or strongly connected
components. In the latter case, the strongly connected com-
ponent for a directed graph G = (V, E) is the maximal set of
vertices C ⊆ V such that for every pair of vertices i, j ∈ C,
there exists both a path from i to j and from j to i [2]. In
the former case the direction of links are ignored.
We now extend these concepts to our temporal model with

the aid of example temporal graph II (Figure 6), noting that
the resulting aggregated static graph equal to the previous
example (Figure 2). The calculated temporal path length
matrix is shown in Table 2.
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Figure 6: Example Temporal Graph II, Gt(0, 3), h = 2

and w = 1.
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Figure 7: Temporally connected components of tempo-
ral graph II (Figure 6).

We define the temporal out-component OUT h
ti

(tmin, tmax)
of a node i as the set of nodes that i can reach in the time
interval [tmin, tmax] with horizon h. Analogously, we define
the temporal in-component INh

ti
(tmin, tmax) of a node i as

the set of the nodes from which node i can be reached in the
time interval [tmin, tmax] with horizon h.

A B C D E F

A 1 1 2 2 ∞ ∞

B 1 1 2 2 ∞ ∞

C 3 2 1 2 1 1

D 3 2 2 2 ∞ ∞

E 3 2 1 2 1 1

F 3 2 1 2 1 1

Table 2: Temporal path length matrix for temporal
graph II (Figure 6).

To define the temporal connected components CCh(tmin, tmax),
first recall that there are inherently asymmetric temporal
paths between pairs of nodes and so again we can define
both weak and strong temporally connected components.
However, the inherent directionality of time cannot be ig-
nored. For this reason we are only interested in providing a
definition for the latter case3. We will then omit the word
strongly from now on. In a temporal network we define a
temporally connected component as the set of nodes where
a temporal path exists between each member of the set or,
in other words, a set where each element of the set is in the
temporal out-component of each other. If there exists one
single temporally connected component then we refer to the
temporal graph as temporally connected.
In static components, an element can belong only to one

component. This is not the case in temporal graphs where
3Though note that a weakly temporal connected component
can be shown to always be equal to the static connected
component of the graph which renders its definition trivial.



INFOCOM REALITY FACEBOOK
Start 2005-03-13 2004-07-26 2007-03-18
Duration 4 days 280 days 12 Months
Times day1:6pm-12pm 12am-12pm 12am-12pm

day2:12am-12pm
day3:12am-12pm
day4:12am-5pm

No. of nodes 41 100 164,135
Contacts(av. per day) 4817 231 17835
Granularity 120 secs. 300 secs. N/A

Table 3: Experimental Data Sets.

connected components can be overlapping. Indeed, the tran-
sitivity properties are different in temporal graphs since we
have temporal ordering and, therefore, the property of reach-
ability is not symmetric. For example, in the temporal graph
in Figure 6 the sets of nodes (A, B, C, D) can communicate
to each other in the time interval [t1, t3]. The same happens
for the nodes of the set (C, E, F ). In other words, we have
two distinct temporally connected components as shown in
Figure 7. However, the fact that the node C belongs to both
components does not imply that the two (sub-)components
form a single component given by the union of the two as in
the static case given the asymmetric temporal reachability
property.
Through this simple example, we have shown that since

static analysis ignores the time ordering it cannot capture
the true connected components. In more practical terms,
this means that static analysis gives us a misleading esti-
mation of the connectedness of the network. This aspect is
essential for the analysis of real-world phenomena, such as
message dissemination and epidemics spreading.

3. EVALUATION
In our evaluation we use three datasets: Bluetooth traces

of people at the 2005 INFOCOM conference [6], campus
Bluetooth traces of students and staff at MIT [4] and in-
teractions between a large group of members of a large on-
line social network, namely Facebook users affiliated with
the London network [15]. We shall refer to these as INFO-
COM, REALITY and FACEBOOK, respectively. Table 3
describes the characteristics of each set of traces.
The INFOCOM traces were collected in a conference en-

vironment using Bluetooth colocation scanning every 2 min-
utes. With 41 nodes it is quite a small trace but temporally
dense in that there are a high number of contacts per day.
The REALITY traces were collected at the MIT campus be-
tween Bluetooth phones sightings of students, research staff
and professors, with Bluetooth scanning every 5 minutes.
We split these two traces into individual days. The FACE-
BOOK traces were crawled over a one year period (March
2007 to February 2008) from the members of the London
network. We consider two types of user interactions, the
posting of contents on a user webpage (called wall postings
in Facebook) and comments on user photos. Pairs of nodes
with less than 10 interactions were filtered so that only the
most active users remain. To make the experimental results
comparable between the INFOCOM and REALITY traces
we fix the window size w to 5 minutes which is equal to the
longest Bluetooth scanning rate of the REALITY trace. We
discuss the effects of different values of window size in Sec-
tion 3.4. Given the different time scale and the fact that the
FACEBOOK traces are very sparse, we use a window size
of 1 hour.

Static Temporal
Day N 〈k〉 L CC L∗ CC Disc
1 37 25.7 1.291 1 4.090 5 0.28
2 39 28.3 1.269 1 4.556 2 0.13
3 38 22.3 1.420 1 4.003 2 0.19
4 39 21.4 1.444 1 4.705 3 0.14

Table 4: INFOCOM Static and Temporal Metrics (h =

max, tmin = 12am, tmax = 12pm, w = 5min).

3.1 Comparison with Static Metrics

3.1.1 Distance Metrics
Firstly, as a comparison between the temporal and the

static metrics, we show the results calculated for the INFO-
COM data set. As argued before, paths in static graphs ig-
nore duration of contacts, inter-contact time, recurrent con-
tacts and time ordering of contacts and so overestimate the
number of connected node pairs and underestimate the path
lengths. Table 4 shows calculations for both static and tem-
poral path length, L. As a note, since our temporal L metric
presented in Equation 4 is in real time, it is hard to compare
with static L. To bridge the gap we show temporal L∗ which
is calculated as the average shortest node to node hop that
obeys time ordering of edges. This is fair since temporal L
uses the same time ordered path but measured in terms of
elapsed time. As we can see in the static results for Day 1,
path length is low. Now looking at the temporal aspects, we
have calculated the same metrics but obeying time ordering,
duration and recurrence of contacts. The third column, Disc
shows the ratio of disconnected node pairs. In the case of
static graphs, there were no disconnected node pairs. As we
can see temporal L∗ � static L and there are also much
more disconnected node pairs due to the observed asymme-
try and time ordering of paths. In other words, temporal
L give us a better understanding of the network with re-
spect to the temporal dimension since they can provide us
an accurate measure of the delay of the information diffusion
process that is not possible with traditional static metrics.

3.1.2 Connected Components
With respect to the temporal reachability of the network,

the importance of considering the temporal dimension is ap-
parent. In fact, if we compare the static and temporal con-
nected components (CC) for INFOCOM (Table 4) we can
see that the static model overestimates the connectedness
of the network, since it ignores time order and, therefore, it
overestimates the available paths. Notice also for the first
and last days, there are more temporal connected compo-
nents since the days were shorter. This phenomenon is not
captured in static analysis.
Let us consider for example the distributions of tempo-

ral in-component and out-component for INFOCOM days 1
and 2 (Figure 8). We can observe that the out-component
is similarly large for many nodes which tells us that nodes
were able to send and deliver messages easily. We would ex-
pect a similar distribution for the in-component, and indeed
for the day 2 this is the case, however notice with the first,
there is a drop in the number of nodes which can recieve
messages. This means that although the set of nodes which
can succesfully send and deliver messages is large, the set
of nodes which actually receive these messages is smaller for
the first and last days. This drop with in-component was
also observed for day 4.
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Figure 8: Frequency distributions of temporal in-
component and out-component for each day of INFO-
COM.

3.2 Temporal Efficiency of Human Contacts
We now calculate temporal L from Equation 4 as a real

time along with the temporal efficiency E. The left hand
side of Tables 5, 6 and 7 show the temporal metrics for
INFOCOM, REALITY and FACEBOOK, respectively. The
right hand side of the tables will be discussed in the next
section.
First looking at INFOCOM, recall in Table 4 that static

L and L∗ only told us the average number of hops in a
path but gave us no indication of how long each hop took.
Our temporal metrics give us a value that takes account of
time and also captures disconnected nodes. From Table 5
we can see L for Day 1: if two people started gossiping at
the start of the day, it would take 19 hours to spread to all
participants. We also see it is quicker to spread information
in the second, third and final day of the conference at about
10 hours. From Table 3 this makes sense since on the first
day participants did not start until 6pm (i.e., there is an
initial delay equal to 18 hours).
What we see from the low values of Eglob and Eloc are

that contacts between all participants. Contacts between
acquaintances did not allow for a high capacity to spread
information. Since temporal local efficiency Eloc measures
how people you meet interact amongst themselves, we can
study this phenomena in more detail and analyse on a local
view if the interaction between such acquaintances are any
better for spreading information. In this case, Eloc for each
day is similar to but slightly lower than Eglob: this tells us
that acquaintances do not congregate together very often.
The REALITY data set has many more days so it gives

us a better overview of day to day trends.
In Table 6 we show 10 consecutive Wednesdays starting

from the first day of the Fall ’04 semester (8th Sep to 9th Dec
2004)4. For the first day we can see that it is slow for infor-
mation to spread since L = 23 hours. Since both local and
global efficiency are at zero, participants infrequently inter-
acted with eachother. This makes sense since relationships
are unlikely to have formed and so there are less contacts.

4http://web.mit.edu/registrar/www/calendar0405.html

Temporal Metrics Reshuffled
Date L Eglob Eloc L Eglob Eloc

1 19h 39m 0.003 0.003 5h 29m 0.100 0.077
2 9h 6m 0.024 0.020 2h 45m 0.239 0.194
3 10h 32m 0.018 0.013 4h 6m 0.167 0.144
4 9h 55m 0.013 0.009 3h 3m 0.165 0.104

Table 5: INFOCOM Temporal Metrics (h = 1, tmin =

12am, tmax = 12pm, w = 5min),(shuffledruns = 50).

During the subsequent Wednesdays the information spread-
ing process is quicker and there is also a steady decrease in
the average temporal path length. However still compared
to the conference environment, on a campus it is twice as
slow for information to spread.
The final FACEBOOK dataset gives us an indication of

how information can be spread in a large online social net-
work. Table 7 shows temporal metrics calculated for four
months. We observe that the temporal path length for the
first month of March is 19 days. This seems slow, but we
should put this value into perspective: firstly interactions
occur instantaneously since online interactions do not ne-
cessitate users to be together for extended periods of time,
unlike human contacts in INFOCOM and REALITY ; sec-
ondly, users generally do not reply to wall posting immedi-
ately or even at all for photo comments and so introduces
natural delay between interactions. Yet for information to
disseminate between all 104 node pairs it takes only 19 days
on average which is reflected in the low temporal efficiency
values. Data diffusion is then quicker in subsequent months,
taking just over half a month for all nodes to send messages
to each other.

3.3 Effects of Cyclic Social Behaviour
As a null model, we compare the real data sets Gt with

their randomised counterpart where we have randomly reshuf-
fled the time windows GT ∈ Gt, destroying any inherent time
order. The right hand half of Tables 5, 6 and 7 show the
metrics calculated on reshuffled temporal graphs for INFO-
COM, REALITY and FACEBOOK, respectively. As we can
see in the two human mobility based traces INFOCOM and
REALITY, in the shuffled network gives a quicker data dif-
fusion time and higher efficiency. The reason for this is down
to the cyclic behaviour of humans contacts. Humans as a
collective congregate during the working hours and are more
sociable during mid week. This means that there is a denser
number of contacts at certain times which limits the op-
portunity for transitive meetings between friends to certain
times of the day and decreases the speed of data diffusion.
Reshuffling leads to the introduction of heterogeneity of con-
tacts throughout a time period and introduces more oppor-
tunity for contacts throughout the day. In other words, if
the distribution of delivery times is concentrated midday
then shuffling spreads the concentration out throughout the
day.
As far as the FACEBOOK traces are concerned, the val-

ues of the metrics for the shuffled traces are relatively close
to the unshuffled ones. This tells us that the natural time
ordering of user activity is organised in a way that is very
effective for data diffusion, since the opportunities for data
dissemination are evenly spread during the day.



Temporal Metrics Reshuffled
Date L Eglob Eloc L Eglob Eloc

08 Sep 23h 15m 0.000 0.000 21h 58m 0.010 0.003
15 Sep 22h 47m 0.001 0.000 19h 55m 0.024 0.007
22 Sep 22h 53m 0.001 0.000 20h 42m 0.019 0.007
29 Sep 22h 20m 0.001 0.001 17h 44m 0.037 0.009
06 Oct 22h 14m 0.001 0.000 16h 23m 0.041 0.011
13 Oct 21h 37m 0.004 0.000 14h 57m 0.055 0.013
20 Oct 21h 45m 0.003 0.001 17h 4m 0.031 0.007
27 Oct 22h 1m 0.001 0.002 15h 19m 0.050 0.013
03 Nov 21h 6m 0.004 0.001 16h 17m 0.043 0.012
10 Nov 20h 5m 0.004 0.000 14h 25m 0.061 0.015

Table 6: REALITY Temporal Metrics 10 days (h = 1, tmin =

12am, tmax = 12pm, w = 5min),(shuffledruns = 50).

Temporal Metrics Reshuffled
MonthL Eglob Eloc L Eglob Eloc

Mar 19d 0h 1.83E-041.89E-06 18d 19h2.10E-042.31E-06
Jun 15d 20h4.70E-053.25E-06 15d 1h 5.70E-053.38E-06
Sep 17d 6h 5.80E-052.83E-06 17d 7h 7.40E-052.86E-06
Dec 16d 19h4.70E-052.49E-06 16d 11h5.90E-052.79E-06

Table 7: FACEBOOK Temporal Metrics 4 months (h =

1, tmin = 18th of each month, tmax =18th of following
month, w = 1hour),(shuffledruns = 1000).

3.4 Effects of Varying Window Sizes
We analyse how varying the window size affects the tem-

poral metrics. By considering a larger window size the ac-
curacy of the measurements decreases since by neglecting
the order of edge appearances, the temporal path length
is under-estimated as it considers links that cannot be ex-
ploited in reality. This is coupled with the higher granu-
larity of the measurement units leading to a lower preci-
sion in the estimation of the temporal path length (which
is over-estimated). However, the latter phenomenon is pre-
dominant in the traces taken into consideration, therefore
we observe a higher temporal path length as window size in-
creases. On the other hand, since it is inversely proportional
to the temporal path length, temporal efficiency decreases
as the window size increases.

4. CONCLUSIONS
We have presented a set of new temporal distance metrics

and applied them to characterise the dynamics and data
diffusion efficiency of social networks. We have introduced
the concept of reachability of a network in a quantitative way
by defining temporal in and out-components and connected
components.
As a preliminary case study, we have provided compara-

ble, quantitative results using three social network datasets,
however the application of the temporal model and met-
rics can be extended to many fields that involve the study
of highly dynamic networks including sensor networks, in-
ternet routing, mobility models and delay tolerant networks.
Applications outside computer science include sociology and
epidemiology (e.g., study of information and epidemics spread-
ing in mobile and social networks [9]).
In this paper we have not shown the effects of increasing

the horizon variable, but initial results show intuitively that
the temporal path length decreases and global efficiency in-
crease as the reach increases. There are also clear extensions

to the temporal path length to capture node importance in
the form of a temporal centrality measure, and to see how
the maximum diffusion range evolves over time using by in-
troducing the concept of a temporal diameter.
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