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Abstract

Machine learning for automated heart auscultation of-
fers a scalable solution with the potential to broaden the
accessibility of vital healthcare services. While conven-
tional short-time Fourier transform-based audio represen-
tations contain both amplitude and phase information, the
vast majority of proposed machine audition methods only
consider the magnitude, discarding the phase information.
In this work, we explore, for the first time, the potential of
complex-valued neural networks (CVNNs) for heart sound
classification, leveraging all available input information to
derive complex representations from sound segments.

We showcase the effectiveness of complex-valued neu-
ral networks for sound analysis by directly comparing
them with real-valued counterparts of our employed neu-
ral architectures. On the patient-independent test set of
the PhysioNet 2022 Challenge dataset, a complex-valued
treatment of two neural network architectures — includ-
ing HMS-Net, the winning model of PhysioNet 2022 —
leads to a consistent 1% absolute improvement in murmur
detection accuracy compared to the real-valued baseline.
Ensemble model using the non-complex and complex vari-
eties of the two network architectures exhibits a further 6%
improvement in sensitivity of murmur and 15% increase
in sensitivity of unknown. This highlights the benefits of
leveraging the complex domain in deep learning for heart
sound analysis.

1. Introduction
Heart auscultation, while cost-effective and broadly ac-

cessible, has limited accuracy due to its reliance on human
hearing. As a result, in clinical practice newer diagnostic
tools that require less training are gaining prominence for
their comparable or superior precision. To retain the acces-
sibility of auscultation while eliminating the need for ex-
tensive auditory training, the research community has been
increasingly exploring the application of machine learning
techniques for audio-based diagnostics.

The field of automated cardiac auscultation has seen a
wide range of approaches, reflecting broader trends in the

machine learning domain. Initially, researchers focused on
signal processing methods, such as signal envelopes and
feature-engineering approaches [1]. Traditional machine
learning models and probabilistic models (such as hid-
den Markov models) emerged as the field matured [2, 3].
More recently, there has been a marked shift towards deep
learning-based methods [4], specifically focusing on im-
proving heart murmur detection accuracy.

The PhysioNet 2022 Challenge significantly contributed
to this area by releasing the largest heart sound dataset to
date [5]. This challenge invited the design of algorithms
for heart sound classification, focusing specifically on mur-
mur detection and outcome prediction [6]. In our work, we
concentrate on the murmur detection task, as early identi-
fication of murmurs can be crucial for timely intervention
and effective management of potential heart conditions.

Humans perceive audio in the time domain. However,
the convention for signal processing and machine learn-
ing is to convert audio into the frequency domain. Since
the Discrete Fourier transform (DFT) is subject to Heisen-
berg’s uncertainty principle, the Short-time Fourier trans-
form (STFT) is frequently used to overcome this problem.
STFTs, as the name suggests, capture frequency ampli-
tudes over short windows, thus creating a two-dimensional
matrix. Since DFT is intrinsically complex, STFT inherits
this property. Spectrograms, derived from STFT by calcu-
lating the magnitude, are widely used due to their compat-
ibility with vision-based neural architectures.

Some of the recent research efforts focused on utilis-
ing spectrograms alongside deep learning to provide the
best performance seen to date [7, 8]. The winning entry
of the PhysioNet 2022 Challenge, HMS-Net, utilised real-
valued multiscale spectrograms in a hierarchical convolu-
tional network for effective murmur detection and identifi-
cation of poor-quality samples (i.e. unknown class) [9].

However, real and imaginary components of the DFT of
an audio signal are statistically dependent on each other,
which is not captured upon extracting a magnitude spectro-
gram from STFT. By using a model that is able to directly
process raw, complex-valued STFTs, we may be able to
harness all the available information. In a complex space,
neurons process data in two dimensions, which allows the



network to learn more nuanced relationships in the data. In
addition, the added constraints of this approach may yield
a more consistent and stable performance.

Complex-valued neural networks (CVNNs) have a long
history [10], but they are not commonly used. In acoustics,
they have been explored for audio denoising [11] and mu-
sic transcription [12], but not for automated auscultation.

For the first time, this work explores the potential of
CVNNs for murmur detection. Specifically, the contribu-
tions of this paper are as follows:
• We implement and replicate a real-valued HMS-Net [9],
and introduce its complex-valued variant.
• We demonstrate the effectiveness of CVNNs in heart
sound analysis by examining two distinct architectures —
a convolutional neural network (CNN) and the HMS-Net.
Across both, our results consistently indicate a 1% im-
provement in accuracy when transitioning from their real-
valued variants to their complex-valued counterparts.
• We achieve a decrease in standard deviation for five-
fold cross-validation, demonstrating a more stable perfor-
mance of complex models in comparison to their real-
valued counterparts across different folds.
• An ensembling approach using the non-complex and
complex varieties of the CNN and HMS-Net models shows
a 6% improvement in the sensitivity of murmur and a 15%
increase in the sensitivity of unknown.

2. Methods

2.1. Complex-valued Neural Networks

In this work, we explore a fully complex-valued neu-
ral network (CVNN) approach. If z, z′ ∈ C are the in-
put and output of a complex-valued layer, respectively, we
could compute the output z′ as: z′ = Wz + b , where
W and b are the complex-valued weights and biases, re-
spectively. This way the complex network variants mir-
ror their real-valued counterparts, with individual elements
(layers, dropout, pooling, activations, and backpropaga-
tion) being replaced by their complex equivalents using the
NEGU93/CVNN Python library [13].

In CVNNs, constraints arise from the coupling of real
and imaginary parts, leading to interdependent activations
in the complex neurons. Holomorphic activation functions
impose additional mathematical constraints, contributing
to stable learning dynamics [14]. Despite the increase in
parameters due to complex numbers, this coupling can
effectively reduce the degrees of freedom, constituting
a form of regularisation. These constraints can make
CVNNs more robust and less prone to overfitting, poten-
tially resulting in more stable and consistent performance.

We evaluated multiple complex activation functions, se-
lecting the best-performing ones for our final results. The
intermediate layers utilise cartReLU activation, in which a

rectified linear unit is applied to both real and imaginary
parts [12]. For the output layers, we applied softmax to the
real and imaginary parts separately before averaging.

2.2. Deep Network Architectures

In order to facilitate a fair comparison of CVNNs and
their real-valued counterparts, we investigate two real-
valued models: a vanilla convolutional neural network
(CNN) with six layers, and a hierarchical multi-scale con-
volutional network, HMS-Net, proposed by one of the
winners of the PhysioNet Challenge 2022 [9].

The architecture of the CNN model consists of an input
layer, followed by six convolutional layers, each increasing
in filter depth, each with ReLU activation function. Each
convolutional layer is succeeded by a 15% dropout and
max-pooling for dimensionality reduction. Finally, there is
a flattening layer to transition from convolutional segments
to a dense layer. The final output layer has a softmax acti-
vation. The Adam optimisation algorithm with a learning
rate of 0.0001 is used for training.

HMS-Net is a variant of ResNet [15], in that it processes
spectrograms across varied scales. There is a module ded-
icated to learning latent representations for each of these
inputs. After appropriate sub-sampling, these representa-
tions are progressively merged via concatenation, before a
joint processing step, followed by global average pooling
of the time and frequency dimensions.

2.3. Dataset and Features

For this study, we used the PhysioNet 2022 publicly re-
leased training dataset [5] which contains heart sound (HS)
labels for each patient, as well as for individual samples.
The dataset comprises 695 patients without murmurs, 179
patients with a murmur present, and 68 unknown.

We adopt a preprocessing methodology similar to the
winning entry of the PhysioNet 2022 Challenge [9].
Specifically, we filtered and downsampled the audio to
2000 Hz. All the recordings were segmented into 3 s over-
lapping windows with a hop length of 1 s. Each segment
was treated as a separate sample for the model training.

For feature extraction, we computed STFT at three dif-
ferent scales, denoted as x1, x0.5, and x0.25. These scales
had varying DFT bins, window lengths, and hop lengths.
The x1 scale used 446 bins with window and hop lengths
of 200 and 27 samples, respectively; the x0.5 scale utilised
222 bins with 100 and 54 samples; and the x0.25 scale had
110 bins with window and hop lengths set to 50 and 108
samples. While the HMS-Net employed all three scales,
the basic neural network only used the x1 scale.

We further use an audio quality metric [9] (frequency
energy ratio between 20-200 Hz and 0-1000 Hz) to retain



all murmur samples and re-label poor quality normal sam-
ples (i.e. with a power spectral density ratio below 0.3) as
unknown. Moreover, to ensure that the model is exposed
to a relatively balanced dataset, we upsample the murmur
class in the training set by a factor of three.

For real-valued architectures, we derived the magnitude
from the STFTs using Magnitude =

√
ℜ2 + ℑ2. For the

complex-valued models, however, raw STFT was utilised.
Since murmur sensitivity is one of the most clinically

important performance metrics, we focused on boosting it
by implementing an ensemble algorithm which combined
patient predictions of all four models. It produced the final
result based on two rules: if at least one model predicts the
patient to have a murmur, the final result is murmur; and
the same rule was then applied for unknown.

2.4. Prediction and Evaluation

The prediction and prediction aggregation process for
both models, in their real and complex-valued forms, was
conducted in a tiered manner:
• Segment-level predictions: For each 3 s segment, initial
predictions were generated using the respective models.
• Audio recording-level aggregation: This represents the
diagnosis for one auscultatory location per patient, deter-
mined by selecting the most frequent prediction among all
segments of a recording.
• Patient-level aggregation: Based on the aggregated re-
sults of audio recordings, a patient is diagnosed with a
murmur if at least one location indicates its presence. If
half or more recordings for a patient are classified as un-
known, the overall diagnosis defaults to unknown.

The evaluation was conducted using patient-independent
five-fold cross-validation, adopting an 80:20 training-to-
testing ratio. Results are presented as the mean and stan-
dard deviation across the five folds. We reported precision
and sensitivity for each class, the accuracy of known (ex-
cluding the unknown class) and the total accuracy.

3. Results and Discussion

In order to confirm our hypothesis — that using STFTs
directly within a complex-valued neural network architec-
ture allows for a richer understanding of amplitude-phase
relationships — we explore the performance of four dis-
tinct architectures: non-complex and complex CNN, and
non-complex and complex HMS-Net. The results are sum-
marised in Table 1.

For CNN models, we see that the complex model out-
performs its non-complex counterpart across all metrics,
except the sensitivity of unknown. It is important to note
that all unknown samples consist of normal or murmur
heart sounds with elevated levels of noise. Therefore, the
dip in unknown sensitivity when using the complex model

might be attributed to the following reasons: the complex
model is more robust to noise, thereby efficiently sort-
ing the noisy samples into normal or murmur classes, or
the complex model is more sensitive towards class imbal-
ance. Since unknown sounds is such a minority class, we
can reasonably expect the performance to fluctuate a lot.
Therefore, going beyond the evaluation scheme of the Phy-
sioNet 2022 challenge, we also report the accuracy of the
known, which is between the two bigger classes. Both ac-
curacy of known and total accuracy are higher for the com-
plex variant than for the real-valued counterpart.

HMS-Net was a tied winner in the murmur detection
task during the PhysioNet 2022 Challenge. In our ef-
fort to faithfully replicate this pipeline, our closest attempt
achieved an average accuracy of 82%. This discrepancy
with the reported average accuracy of 83.7% may stem
from variations in the train-test split or minor differences
in final processing and model training. However, when
comparing our leading HMS-Net variant with its complex-
valued counterpart, we demonstrated an equivalent im-
provement of 1% in favour of the complex variant.

Overall, the HMS-Net outperformed the CNN model in
terms of sensitivity for both murmur and unknown classes.
This could be attributed to the HMS-Net’s multi-scale pro-
cessing capability, which enables the model to capture both
granular and broader audio features. The enhanced total
accuracy of the complex models could be explained by the
ability of complex-valued networks to learn from all avail-
able information encoded in raw STFTs, resulting in more
comprehensive representations of the heart sounds.

It is also worth noting that the complex variants ex-
hibited lower standard deviations compared to their non-
complex counterparts. This observation aligns with the hy-
pothesis that the intrinsic constraints of the complex model
contribute to a more stable performance.

The ensemble model achieves the highest sensitivity
in murmur and unknown, at 74% and 62%, respectively.
Since the total accuracy has remained at 83%, we argue
that the ensemble model provides significant improvement
due to the clinical importance of the murmur sensitivity.

4. Conclusions

We have explored complex-valued neural networks for
heart murmur detection, directly leveraging STFTs. Our
results show that the complex-valued approach, especially
when adapting the HMS-Net architecture, outperforms its
real-valued counterparts across most metrics.

Our research suggests the potential benefits of a method-
ological shift: complex-valued neural networks might im-
prove the performance of an existing real-valued network.

The improved sensitivity for both murmur and unknown
classes using the ensemble model indicates that real and
complex-valued architectures correctly identify distinct



Table 1. Final results for the vanilla CNN model, HMS-Net, and the Ensemble model for both real and complex-valued
inputs and models. The results are reported for a 5-fold cross-validation as mean ± stdev.

CNN HMS-Net Ensemble modelnon-complex complex non-complex complex
Precision of normal 0.87± 0.02 0.87± 0.02 0.90± 0.03 0.89± 0.03 0.92± 0.04
Precision of murmur 0.93± 0.09 0.95± 0.08 0.88± 0.07 0.92± 0.06 0.86± 0.07
Precision of unknown 0.31± 0.16 0.33± 0.12 0.29± 0.18 0.30± 0.15 0.34± 0.13
Sensitivity of normal 0.91± 0.02 0.93± 0.03 0.90± 0.03 0.92± 0.02 0.87± 0.03
Sensitivity of murmur 0.60± 0.11 0.63± 0.10 0.68± 0.17 0.64± 0.11 0.74± 0.12
Sensitivity of unknown 0.44± 0.23 0.40± 0.19 0.47± 0.30 0.46± 0.31 0.62± 0.22
Accuracy of known 0.85± 0.03 0.87± 0.03 0.85± 0.05 0.86± 0.03 0.84± 0.04
Total accuracy 0.82± 0.03 0.83± 0.02 0.82± 0.04 0.83± 0.02 0.83± 0.05

sets of murmur samples. Since these models focus on dis-
parate aspects of the signal for their final predictions, en-
sembles combining real and complex-valued architectures
offer a promising avenue for performance improvement.

A promising area for future research is to compare ar-
chitectures successful in other acoustic applications with
their complex-valued versions, specifically for murmur de-
tection, as well as for other audio-based diagnostics.
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