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User authentication is key in user authorization on smart and personal devices. Over the years, several authentication
mechanisms have been proposed: these also include behavioral-based biometrics. However, behavioral-based biometrics
su�er from two issues: they are prone to degradation in performance (accuracy) over time (e.g., due to data distribution
changes arising from user behavior) and the need to learn the machine learning model from scratch, when adding new
users. In this paper, we propose ContAuth, a system that can enhance the robustness of behavioral-based authentication.
ContAuth continuously adapts to new incoming data (data incremental learning) and is able to add new users without
retraining (class incremental learning). Speci�cally, ContAuth combines deep learning models with online learning models to
achieve learning on the �y, thereby preventing a severe drop in the accuracy between sessions (over time). To add new users,
ContAuth employs class incremental learning methods. We evaluate ContAuth on multiple behavior-based user authentication
modalities: breathing, gait. and EMG. Our results show that our framework can help True Positive Rate (TPR) to remain high
(>85 %) compared to other methods for all the modalities except EMG (>70%) across the sessions while keeping False Positive
Rates (FPR) at a minimum (0–10%). It can achieve up to 35% improvement in TPR over a traditional deep learning model.
Additionally, iCaRL (an incremental learning method) enables ContAuth to allow the addition of new users by alleviating
catastrophic forgetting, to a large extent. Finally, we also show that ContAuth can be deployed e�ciently and e�ectively on
device, further providing data privacy.
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1 INTRODUCTION
Secure access to devices is becoming increasingly essential as users are storing a variety of information of sensitive
nature on them. Passwords are the most primitive forms of user authentication. However, the weak security
and signi�cant manual e�ort while using passwords led to the rise of biometrics-based authentication systems.
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Behavioral-based biometric systems rely on human behavior and exploit the underlying di�erences of behavior
between users to enable secure authentication. Examples of such biometrics include voice [55], touch [26, 57],
heartbeats [50], and breathing [6]. Because of their inherent uniqueness, behavioral-based biometrics can provide
reasonable security guarantees. However, this very useful characteristic of uniqueness of behavior can also
back�re; system performance (accuracy) may decrease between sessions as data distribution might change over time,
due to changes in user behavior. Figure 1 shows data distribution for a breathing based authentication across two
sessions for ten users. The di�erences can be visually seen. User 6 can be seen as having a separate cluster in
Session 1 (left hand side). While in Session 2, User 6 has overlapping data points with User 2 and 7 (top right side).
This suggests that while it would be easy to distinguish User 6 initially from other users, it would become more
di�cult (later) for an authentication system to predict User 6 from incoming data correctly as User 2 and 7 would
have similar data distributions. Past works including various biometrics based on acoustics [6, 29], touch [13],
and eye movements [46] have also reported drops in accuracy over time. Frank et al. [13] reported a drop of 5% in
the accuracy after one week for touch-based biometrics on smartphones, while Song et al. [46] saw a signi�cant
decrease (15%) when trying to unlock smartphones using eye movements. Chauhan at al. [8] reported a similar
drop for breathing based authentication. Such performance degradation in an application such as authentication
is considerable, as they jeopardize user security and a�ects user experience.

(a) Session 1 (b) Session 2

Fig. 1. TSNE plots for users in breathing based authentication across two sessions.

Another common issue that is unexplored in current authentication systems in the literature is the inability to
add new users to the system, without learning the model from scratch every time a new user is enrolled. The
current work assumes that a model will be trained only once when the training data from all the users is available,
which might not be an acceptable assumption in real-life scenarios. Also, learning models from scratch every time
will consume resources on the device. This could be particularly detrimental for resource-constrained devices.
Adding users to an authentication system is needed in various scenarios. For instance, to enable authentication
on IoT/edge devices: user authentication might be needed to open doors in smart spaces (o�ces and homes),
access smart appliances and controlling voice-enabled interfaces such as Alexa. In these cases, users can be added
to the authentication system on the device when required. IL (Incremental Learning) on such devices can be
useful while keeping all the user data privately on the device.
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Deep learning has achieved state-of-the-art results in computer vision, speech processing, and natural language
processing domains and is also increasingly being used in user authentication [8, 29, 42]. However, creating a
deep learning system with continual learning involves three key challenges:
(1) Accuracy: Because of the nature of the task, a system is acceptable only if it achieves very high accuracy.

One of the issues which prevent a machine learningmodel from obtaining high accuracy is that of over�tting
and under�tting especially when the training data size is not huge. So it is important to eliminate these
issues to achieve good accuracy,

(2) Resource Consumption: User privacy should be preserved. Running the framework on device aids this
aim. Running deep neural networks (DNN) on device is expensive, and hence the approach needs to take a
resource-friendly stance while preserving user privacy,

(3) Incremental Learning (IL): DNN models are prone to a catastrophic forgetting (CF) issue. Solving this
issue is essential to maintain high accuracy when new users are added to the system. CF makes a DNN
model unlearn most of the things it has learned in the past (already existing users/classes) when encountered
with a new class (user) and hence performs poorly while predicting the already known classes (in our case
users).

Taking into account these challenges, we design ContAuth. ContAuth is informed by an extensive evaluation of
di�erent DNN architectures, hyperparameters and continual learning methods to perform e�cient and accurate
continual learning on the device for behavioral-based user authentication. ContAuth consists of a combination of
deep learning and online learning (OL) models. The purpose of the deep learning model is to extract features that
are then utilized for training the online model and performing real-time inference. An online model uses one
example at a time and hence can learn continually intrinsically, helping maintaining accuracy. The learning of
an online model is resource-e�cient as these models are computationally inexpensive and require very small
storage. Deep learning models can be updated from time to time, when required, to learn the changing data
distributions in new data, which might correspond to user behavior changes. To achieve high accuracy, we
used LSTM (Long Short Term Memory) [19] as they are the de facto methods to model time series data in deep
learning. We prevent over�tting by trying to use simpler architecture (lesser number of layers and hidden units),
leveraging an early stopping strategy and adopting dropout as a regularizer. Simple architectures also lead to a
small memory footprint for LSTM models.

Continual learning involves neural network training and incremental learning which can be computationally
expensive to perform on device due to gradient calculation and backpropagation. Epochs e�ectively determine
the duration of the continual learning process. Hence, we focus on reducing the number of epochs. To do so, we
establish an upper limit on the number of epochs an incremental learning task can reach, along with setting a
threshold criteria on the loss observed during the training to perform an early stopping to reduce the number
of epochs. We also try to reduce the number of time steps in LSTM networks to allow faster learning on the
device. We implemented two states of the art methods for incremental learning: EWC [25] and iCaRL [39] and
found iCaRL to be the best IL method which can alleviate the CF issue. However, iCaRL requires storing some
training data from all the classes seen. To reduce the storage overhead on the device, we tried with di�erent
percentages of the size of the training data to make ContAuth feasible on the device. We also experimented with
a transfer learning approach based on �ne tuning to check how it performs compared to the IL methods. We
evaluate ContAuth on three behavioral-based modalities: breathing, gait and EMG (Electromyography). Note
that we mainly picked these three modalities as datasets using these modalities are open-sourced and contain
di�erent sessions which allow longitudinal analysis required for our study to be performed. Overall, the main
contributions and �ndings of our work are as follows:

• We propose ContAuth, a system that can support continual learning of machine learning models for user
authentication. ContAuth combines deep learning and online learning models. Adding users to the system
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is modeled as solving a class incremental task and, thus, does not require learning DNN models from
scratch each time a new user is added to the system. The novelty of our work comes from unifying two
types of learning models in such a way which o�ers a continual learning solution that can update itself
with minimal resources on a device while trying to provide high-security guarantees and usability (high
false negatives often mar user experience) in the �eld of user authentication.

• Through extensive experiments, we show that ContAuth can achieve a True Positive Rate (TPR) of more
than 85% across sessions for all the datasets except EMG. Compared to this, the joint model (traditional
DNN model which is not updated) only obtains more than 45% TPR for the same setup. False Positive
Rate (FPR) remains lower than 11% for ContAuth. The model sizes for the DNN (LSTM) and the online
model (SGD) are small. The LSTM model size ranges from 500 KB–3300 KB, and the SGD model needs
less than 25 KB of storage on the device. For the class incremental scenario, we show that iCaRL almost
completely alleviates catastrophic forgetting issues, thereby allowing ContAuth to add users on the �y
without impacting accuracy. Additionally, iCaRL only needs to store 5%–40% of the total training samples
(budget) which requires less than 100 MB of additional storage on the device. iCaRL has been proven
e�ective in solving vision tasks on CNN based models in the current literature. Through our work, we
show the e�ectiveness of iCaRL for time-series mobile sensing data. We also show that it performs better
than the transfer learning method.

• We did the �rst-ever evaluation of EMG and breathing based authentication in a longitudinal fashion. We
observed that both the modalities su�er from a decrease in accuracy over time. For example, the TPR for
EMG dropped to less than 40% just after one session. With ContAuth, we manage to improve the TPR by
30%–35% across sessions.

• We also explore the feasibility of performing on device incremental learning for the �rst time. We imple-
mented ContAuth on Nvidia Jeston TX2 and found that data incremental learning can be performed in 25
to 300 seconds on the GPU. While an SGD based online model can be updated in 0.0045–0.0055 seconds.
The class incremental learning scenario takes 10 minutes to 280 minutes on the CPU depending on the size
of the dataset, the DNN architecture, the budget size, and the number of LSTM time steps. However, the
same task can be performed in 80 seconds to 17 minutes using a GPU. The majority of the total time is
spent on training rather than executing an incremental learning method when executing ContAuth on
CPU.

2 RELATED WORK
To motivate our work, we review recent research on the continual learning paradigms in the machine learning
literature and progress made in the �eld of user authentication.

2.1 Continual Learning and Similar Paradigms
Continual Learning allows machine learning models to accumulate new knowledge with time from incoming
data while retaining old knowledge [37]. It has also been addressed as incremental learning (IL) [39], lifelong
learning [37], and sequential learning [34]. Generally, in a continual learning setting, the methods typically
su�er from the issue of catastrophic forgetting (CF), thereby forgetting previously learned aspects when trying
to learn new things [33, 34]. Many approaches have been proposed to mitigate or avoid CF. The �rst group of
approaches is regularization-based methods [25] which add regularization terms to the loss function to minimize
changes of important weights of a model for previously learned knowledge to prevent forgetting. Another group
of approaches is replay-based methods [27] where model parameters are updated for learning a representation by
using training data of the currently and sometimes previously available classes [30, 39].
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There are other related �elds in the machine learning literature which share similar ideas to continual learning
but do not solve the issue of catastrophic forgetting. The most common and closest method is that of Transfer
Learning (TL) which aims to improve the performance of a target task by using knowledge learned from a source
task or domain [22, 36]. Similarly, in Domain Adaptation, the source and target tasks are the same, but the data is
drawn from di�erent domains [2]. Khan et al. [22] used domain adaptation to allow Human Activity Recognition
(HAR) models trained in one context to be readily adapted to a di�erent contextual domain. Note that unlike IL,
the performance on the source task(s) is not considered during training in both Transfer Learning and Domain
Adaptation and hence not applicable to be used in ContAuth. We implemented TL by �ne tuning in our work
and as expected found TL to be performing worse than the best performing IL method. Other methods such as
Multi-Task Learning (MTL) and active learning are good at learning many tasks at the same time similar to a
naive deep learning model where the number of classes is already �xed. This is completely di�erent from our
case in which classes can be incrementally learned, and hence such methods cannot be applied. MTL tries to
learn across many di�erent tasks [38, 47] at the same time while exploiting commonalities and di�erences across
tasks. Xu et al. [38] proposed AROMA, a multi-task learning system using deep neural networks to jointly solve
simple and complex activity recognition tasks. MTL assumes that simultaneous access of the model to all the
tasks is possible. MTL does not include continuous adaptation after the model has been deployed in contrast
to continual learning. Active Learning is another related area which provides an unsupervised way of labeling
incoming data by actively querying the user or an oracle when in doubt. Active learning helps to learn a classi�er
in an iterative manner when the number of classes or tasks is �xed and already known [20] In this work, we are
leveraging concepts from continual learning to propose a system that can incrementally add new classes (new
users) for user authentication. To date, the IL methods developed in the literature have been shown to work on
CNN and vision tasks. However, it is unclear if these methods will work for time series data and which method
can work e�ectively for authentication. We are the �rst to explore the applicability of IL methods in this direction
and their impact on resources (memory, computation time, etc.) on the device.

2.2 User Authentication
Passwords are the most primitive method of user authentication. However, they su�er from two prominent
issues. The �rst one is that of shoulder sur�ng attacks which compromise the security of the user [48]. The
other is to memorize and type passwords every time when accessing the device which hinders the usability of
password-based schemes [41]. To address both the issues, biometrics-based access methods started to emerge.
Biometrics based methods are of two types: physiological and behavioral. Physiological methods rely on the
physiological traits of the person such as the face [4], palm [53], iris [31], and �ngerprint [12]. Although these
methods are highly usable, they often su�er from easily carried out spoo�ng attacks [18] and may require
expensive sensors as in the case of iris scanning.
Behavioral-based biometrics rely on user behavior. Examples of behavioral-based methods include gait [10],

voice [40], heartbeat [50], breathing [6] etc. Wang et al. [50] utilized vibration of the chest (as measured from the
accelerometer) in response to the heartbeat as biometrics to authenticate users on smartphones. With 20 users,
they could achieve an accuracy of 96.49%. Chauhan et al. [6] proposed to use the acoustics of breathing gestures
(sni�, normal and deep) as recorded from the microphones of mobile devices for secure access. They achieved an
accuracy of over 90% for 10 users.
Recently, with the success of deep learning in other domains such as computer vision and natural language

processing, we also see an emergence of using deep learning models for authentication [7, 21, 28, 29, 45, 58]. Liu
et al. [29] used DNN methods to achieve a balanced accuracy of 91.4% using an LSTM-based deep-learning model
with 29 subjects for a vocal-resonance based behavioral authentication. TrueHeart [28] relies on authenticating

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 122. Publication date: December 2020.



122:6 • Chauhan et al.

users on WiFi signals obtained when a user respires. EchoPrint [58] leverages acoustics and vision for secure and
convenient user authentication without requiring any special hardware on a smartphone.

Behavioral-based authentication methods o�er a good alternative to physiological based biometrics but su�er
deterioration in the accuracy over time. Vocal resonance-based behavioral authentication [29] su�ered a 5% drop
in accuracy after two weeks. While breathing based authentication performance is degraded by 15% between two
sessions [8]. The current works overlook this challenge. To overcome this challenge, we propose a novel system
that can incrementally learn from incoming data. By analyzing the performance of our system on three di�erent
modalities (open-sourced data with di�erent sessions), we show that our system can generalize to di�erent types
of sensor data and improve the performance of the authentication systems. To the best of our knowledge, no
work has tried to address the tackled challenge across these many modalities using either simple traditional
machine learning or deep learning techniques. The closest work to ours is done by Wang et al. [49]. This work
shows that the performance of gait based authentication (only) can be improved by regularly updating the deep
learning model. In comparison, our work employs a combination of deep learning and online learning models
which can adapt faster and can be more accurate for a variety of modalities (see Section on Results). Additionally,
our system can work in cases where new users are added incrementally while providing good performance,
which alleviates the need to retrain the entire model from scratch.

3 SYSTEM DESIGN
This section discusses our continual learning system. We describe the overall architecture of the system followed
by how it enables di�erent types of incremental learning scenarios: data and class. Then, we describe the machine
learning algorithms which form the basis of our system. Finally, we try to describe a practical scenario where
such a system can be used.

3.1 Incremental Learning System
The incremental learning system comprises of deep and online machine learning models and is shown in Figure 2.
Four di�erent �ows can be seen in the Figure. The decision module checks for the labels of the class and decides
if the framework should perform incremental learning or learn from scratch (initial model). Initially when the
decision module encounters the data for the �rst time, a DNN (Deep Neural Network) model is created. This is
the case for the classes for which the training data is already collected. We used LSTM (Long Short Term Memory)
because of their ability to model temporal relationships in the data. This initial DNN also generates features
which are then used to train an online classi�er. Such classi�ers can learn on a sample by sample basis and hence
are termed online, i.e., not batch (using multiple samples at a time to learn). We used SGD (Stochastic Gradient
Descent) algorithm as an online classi�er. The features are obtained from the last layer of the DNN before the
softmax layer.
The incremental learning algorithms are used when the decision module encounters a new class (class

incremental learning (CIL) but an initial model is already present in the system. We experimented with EWC [25]
and iCaRL [39] as IL algorithms as they are the most prominent and state of the art algorithms able to cope with
catastrophic forgetting issues. More details about these two algorithms are presented in the next subsection.
These algorithms allow our framework to incorporate new classes on the �y without retraining the whole model
from scratch, which is an important advantage for e�cient on-device processing.

The framework processes each test sample through two routes. Firstly, each test sample goes to the DNN where
features are extracted, and then an inference decision is made on these features by the online classi�er. The online
classi�er also updates itself at the same time from the sample. The process is quite fast, which makes it ideal to
use as an online classi�er in incremental setting scenarios. In this way, the online classi�er always remains up to
date and can adapt quickly to the changing data distribution which might correspond to changing user behavior
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without consuming excessive computing resources. However, the same setting might not remain very useful
if the DNN model is not updated. The reason is that the online classi�er depends on features generated by the
DNN, and if the DNN is not updated regularly, then the features generated would not represent the changing
data distribution. Hence, the incoming test samples are stored and are used to update the DNN model and are
termed as data incremental learning (DIL). The decision of when to update the DNN model can be based on
factors including time elapsed, need to �ush stored samples if memory becomes an issue, or enough samples are
collected or the availability of energy (battery level) on the device. In a nutshell, CIL represents a scenario where
a new class is to be added to the system, and IL methods are employed to support the scenario. While in DIL, an
already existing deep learning model (existing classes) is updated with new incoming data for existing classes (no
new class added and no need to employ IL methods such as iCarL or EWC). This is usually achieved by training
the existing (already saved) deep learning model for a few epochs. Note that both CIL and DIL forego the need to
train a model from scratch.

DNN

Train Data

Decision 
Module

Test Sample Online 
ClassifierFeatures Prediction

Output Class

Create / Train
Data Incremental Learning
Class Incremental Learning
Inference

Storage
Time (t) Retrain Model

(Stored Data)

Update Model 
with new Class

Fig. 2. Framework for Incremental Learning

3.2 Incremental Learning Algorithms
We used EWC and iCaRL as incremental learning algorithms. EWC is the most well known IL algorithm based
on regularization which adds a penalty to regular loss function when learning a new task. In detail, EWC imposes
a quadratic penalty on the di�erence between the weights for the old and the new tasks. More importantly,
given two tasks, EWC attempts to protect the performance of the previous task while learning a new task by
identifying the most important parameters for the previous task. Then, from a probabilistic perspective, the
relative importance of the parameter � regarding a data D of a given task can be modeled as the posterior
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distribution p(� |D). Assuming that we have two independent tasks A with DA and B with DB , the mentioned
conditional probability is given by the Bayes’ rule as follows:

lo�p(� |D) = lo�p(DB |� ) + lo�p(� |DA) � lo�p(DB ) (1)
Note that the posterior probability lo�p(� |DA) embeds all of the information about task A, i.e., the previous

task and thus contains which parameters were important to task A, which is a key component to EWC. Yet, this
term is intractable. Hence, EWC approximates the posterior as a Gaussian distribution with mean given by the
parameters � ⇤A and a diagonal precision given by the diagonal of the Fisher information matrix F . Based on this
approximation, the loss function L that EWC aims to minimize is given by

L(� ) = LB (� ) + �/2
’
k=0

Fk (�k � �⇤
A,k )2 (2)

When EWC is givenmore than two tasks, EWC try to keep the model parameters close to the learned parameters
with respect to task A and B. In a more generic scenario where the number of tasks to be learned is i, the loss
function of EWC can be modeled as follows:

L(� ) = Li (� ) + �/2
i�1’
j=0

Fj (�i � �⇤
j )2 (3)

where L(� ) is the total loss, � is the network’s parameters, Li (� ) is the loss for the new task, and �⇤
j are the

important parameters of all previous tasks. � is a hyperparameter that controls how much importance should
be given to previous tasks compared to the new task. F is the Fisher matrix used to constrain the parameters
important to previously learned tasks to stay close to their old values. Note that the task in our case means adding
a new user.

iCaRL stands for Incremental Classi�er and Representation Learning (iCaRL) and is the most widely used
algorithm for IL which relies on storing data from previous tasks (i.e., exemplars) to do incremental learning.
The classi�cation is performed by using a nearest-class-mean (NCM) rule which relies on features extracted
from the deep learning model, where the class means are calculated from the stored examples. When new tasks
(classes) arrive, iCaRL creates a new training set combining the exemplars from all the previous tasks with the
data samples of the new task. Next, for each example present in the exemplar set, the current model is evaluated,
resulting in outputs for all previous tasks. Finally, the model parameters are updated by minimizing a loss function
which encourages the model to output the correct class for the new task (classi�cation loss) and to reproduce the
scores stored in the previous step for the old tasks (distillation loss) using each data sample of the new task.

3.3 Online Learning Algorithms
We used SGD as an online learning algorithm. SGD is an iterative process that is used to �nd the values of the
parameters of a function that can lead to the lowest cost for the function. Contrary to batch gradient descent, SGD
calculates the cost function using a single example at each iteration instead of using all the examples. Interested
readers can �nd more details about SGD in an article by Buttou et al. [3]. SGD is an ideal candidate for performing
data incremental learning as it can learn from one data sample at a time and hence always remain updated when
data distribution changes quickly without the need to update the computational heavy DNN.

3.4 Practical Scenario
We envisage that ContAuth can be useful in authentication systems where multiple users need to be added, and
the underlying machine learning model has to be updated over time (not from scratch), which is quite common
in smart homes, o�ces and where a central system coordinates the access. New users can register (mobile app,
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Fig. 3. Overview of ContAuth illustrating a practical, and real-world scenario.

web form or a GUI) to the ContAuth by providing their data, and the system assigns a designated id (label) to
these users. The users can provide as much data as they want until they want to proceed to use the system.
All registered users form positive classes in our case. To counter cases where a third party (an attacker) wants
to access the system, we create an extra class (one negative class) to represent the attackers or the users who
have not registered. This is akin to creating a “null" class in human activity recognition (HAR) applications
where the null class represents all other activities which are not to be classi�ed. Initially, such a class in our
case can be created by using open-sourced data (see next section). After creating an initial model, ContAuth can
incrementally add newly registered users (CIL) or adapt itself to the new incoming data (DIL). Over time we
expect that the data for positive classes will continue to arrive as the existing users will use the system. The data
for a negative class is expected to arrive when a real attacker tries to gain system access, which might happen
infrequently. So, from time to time, attacker data can be retrieved from open-sourced large databases to simulate
attack scenarios. Figure 3 illustrates an overview of a practical, real-world scenario where our system can be
deployed.

4 EVALUATION METHODOLOGY
In this section, we discuss the evaluation methodology. We �rst describe the datasets we used in our study. Then
we discuss our experimental setup. Finally, we provide details about the metrics and the device we used in our
work.

4.1 Datasets
We evaluated ContAuth on six di�erent datasets: breathing (sni� and deep breathing), longitudinal breathing
(sni� and deep breathing), gait, and EMG. We now describe the preprocessing and the datasets in more detail.

4.1.1 Breathing. We used the breathing dataset [6] which showed the feasibility of using breathing acoustics
(obtained through microphone with various gestures such as sni� and deep breathing) as a means to user
authentication. The dataset has 70 breathing samples (audio �les) for each breathing gesture collected from
10 participants in three di�erent sessions. The time gap between each session was 3–4 days. 30 samples were
collected in the �rst two sessions, and 10 samples were obtained in the last session. A sni� gesture consists of two
quick consecutive inhalations. Whereas, a deep breathing gesture involves a long inhalation, followed by a long
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exhalation. For our experiments, we pick �rst consecutive 45 samples for training (80%) and the next 5 samples
for validation (20%) from each user. The next consecutive 10 samples (the last 10 samples from the second session)
were used to assess security performance (we refer to it as test 1). The 10 samples from the last session used
to measure security performance are referred to as test 2. As was shown in Figure 1, the performance between
two sessions can change due to changes in data distributions of the user, and it re�ects as a drop in accuracy
between the two sessions. We ultimately want to prevent the degradation in the accuracy, as well as improve the
accuracy by continuously adapting the models. To incorporate a negative class, we used data from �ve users
chosen randomly from the longitudinal breathing dataset (10 users) for training and validation. The negative
class represents an attacker class that contains data from many people to resemble a universal attacker class. We
picked some random samples from these �ve users for our purpose to avoid a large data imbalance issue between
the positive classes and one negative class. The data from other four users were used to launch the attacks during
the testing session: test 1. We did not launch any attacks in the last session testing to simulate a practical scenario
when there would be no attacks on the system. This setup of the negative class was followed for all the other
datasets. Note that we did not utilize data from one user for this and the next dataset (Longitudinal breathing) as
they were present in both the breathing datasets.
We created 10ms (sni�ng) and 100ms (deep breathing) frames from each sample using Hamming window

smoothing, and for each frame, we calculated 96 Gamma Frequency Cepstral Coe�cients (GFCC) features; 32
GFCC, 32 delta GFCC, and 32 double delta GFCC. GFCC is based on signal power in a set of frequency bands. We
used GFCC instead of MFCC as Chauhan et al. [6] showed that GFCC provided better accuracy than MFCC. The
ability of GFCC to provide �ner resolution at low frequencies than MFCC makes GFCC not only more robust in
noisy environments [56], but also good at detecting low-frequency sounds which is the case for breathing as its
dominant energy lies at lower frequencies. Next, we combine frames to create di�erent windows of di�erent
sizes. Finally, we created overlapping windows for a given breathing sample. We used the window sizes of 30 and
25 (corresponding to a duration of 300 ms and 2500 ms), respectively, for the sni� and deep breathing gesture
with an overlapping window of size one. Note that we used a small window size for deep breathing gesture than
the one used by Chauhan et al. (250). This is because in our early experiments we found that training LSTM with
very large window size (corresponds to the number of timestamps in LSTM network) such as 250 takes a few
hours to train on Nvidia Jetson CPU which would be infeasible in real scenarios. We recommend using small
time stamp sizes (50 or less) to enable on-device IL for LSTM. Nonetheless, the aforementioned approach is used
to create windows for training data from breathing samples present in the training set. Similarly, windows for
validation data and test data are created from breathing samples for the validation set and test sets, respectively.
The created windows henceforth are used as the data for training, validation, and testing.

Table 1 shows the statistics for datasets employed in our study, including the training set, validation set, and
di�erent testing set sizes. We tried to use simpler architectures and smaller time steps to allow practical on-device
incremental learning. There are three and four testing sessions for longitudinal breathing (sni� and deep) and
EMG dataset, respectively. For all other datasets, there are two test sessions. They are referred to as Test # for a
particular numbered session.

4.1.2 Longitudinal Breathing. Weused an additional dataset to study the performance of ContAuth on longitudinal
breathing data. This dataset has 10 users (6 males and 4 females) who performed breathing gestures (sni� and
deep breathing) on their phones for four weeks on the microphone while doing di�erent activities (walking,
standing, sitting and after exercising) and in di�erent contexts. In total, this dataset has 2355 sni�ng and 2233
deep breathing samples. The preprocessing steps to create the windows remain the same as the breathing dataset
except that the size of the overlapping windows was set to three. The datasets were divided into �ve parts:
training, validation, test 1, test 2, and test 3. The data from the �rst week was used for training (90%) and validation
(10%). The data from the subsequent weeks was used for testing sessions: second-week data for test 1, third-week
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Table 1. Overview of the employed datasets. Task represents adding a class (new user).

Dataset Dimension #Train # Valid # Test 1 # Test 2 # Test 3 # Test 4 # Classes Architecture Tasks
Breathing -
Sni�

30*96 8424 887 1782 1699 - - 10 1/64 6

Breathing -
Deep

25*96 9920 1142 2302 1660 - - 10 1/128 6

Longitudinal
Breathing -
Sni�

30*96 192815 2317 13628 11076 8772 - 10 1/64 6

Longitudinal
Breathing -
Deep

25*96 12346 1278 9382 7005 6116 - 10 1/128 6

Gait 50*4 13683 2114 2115 9829 - - 14 1/256 8
EMG 50*8 62222 7296 7996 42773 42246 40419 10 1/256 6

data for test 2, and fourth week’s data for test3. For the negative class, we used data from �ve users chosen
randomly from the breathing dataset (10 users, previous subsection) for training and validation. The data from
other four users were used to launch the attacks during test 1 and test 2 sessions: two attackers in each session.

4.1.3 Gait. As an additional modality, we incorporated a gait dataset consisting of inertial data from the 3-axis
accelerometer and the 3-axis gyroscope [14]. The gait dataset, IDNet [14], was collected based on Android
smartphones from 50 volunteers. The data was recorded when the smartphone was worn in the participants’
trousers’ right front pocket. The data was acquired in such a way that a subject was asked to walk comfortably in
variable conditions (e.g., di�erent shoes and clothes) to mimic the real-world scenarios. Also, six devices were
used for the data acquisition: Asus Zenfone 2, Samsung S3 Neo, Samsung S4, LG G2, LG G4, and a Google Nexus
5. We select 14 subjects who have atleast three sessions recorded in the dataset, similar to the breathing dataset.
Then, analogous to the breathing datasets, we choose the �rst session and the �rst half of the second session in
the gait dataset for training. For the second session’s remaining data, the former half is used for validation, and
the latter half is used for testing: test 1. After that, the third session is used for test 2. The rest of the 36 subjects
were used as attackers. 26 out of 36 subjects were chosen randomly to train and validate the negative class in our
system. We used the remaining 10 subjects to cast attacks during the testing session: test 1.

As our preprocessing steps, we downsample the gait data to 50Hz and normalize them to zero mean and unit
variance. We adopt the same sliding window size of one second as in [14]. After that, to augment the gait dataset,
we use a 50% overlap between two neighboring windows for all subjects, similar to [59]. For each data point at
the timestamp of i = 1, 2, ... the magnitude of the accelerometer data and gyroscope data is computed as follows:

ma�(i) =
p
x(i)2 + �(i)2 + z(i)2 (4)

Hence, the dimension of our resulting features is 50 ⇥ 4 for the accelerometer only data and 50 ⇥ 8 for the
accelerometer and gyroscope combined data. We experimented with both the aforementioned datasets and
identi�ed that the accelerometer only data produces the best results. Thus, we adopt the accelerometer only data
in further analysis throughout our experiments.

4.1.4 EMG. Since the surface electromyography (EMG) can also be used in the authentication task as in [11],
we employed an EMG dataset from a Ninapro database which is widely used in research relying on EMG
signals [1, 35]. Ninapro Database 6 (DB6) [35] was chosen in our experiments because it contains EMG signals of
multiple sessions over the course of �ve days, thus providing di�erent sensor modalities than microphones and
IMU sensors present in breathing and gait datasets, respectively as well as allowing us to conduct a longitudinal
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Table 2. Overview of the experimental setup with respect to di�erent learning strategies. Note that in None, classes are
added incrementally but without employing any IL method. Transfer Learning is similar to None except that classes are
added incrementally by fine tuning. Baseline - Incremental and ConAuth uses IL methods such as iCaRL.

Setup Data Incremental Class Incremental Online
Joint x x x

Joint-Incremental X x x
None x X x

Transfer Learning x X x
Baseline - Incremental X X x

ContAuth X X X

analysis. We present the detailed summaries of the dataset and how we use it in our experiments as follows. The
Ninapro DB6 includes EMG data recordings from 10 subjects while performing seven gestures (e.g., Index �nger
extension, medium wrap, and writing tripod). Besides, each subject performs 12 repetitions per movement with
four seconds rest between the repetitions. To construct the training dataset, we use recordings on day 1 and the
�rst half of the data on day 2. For the remaining recordings on day 2, the �rst half of the remainder (25%) is used
for the validation set, and the other (25%) is used for test 1. Thereafter, test 2, test 3, and test 4 consists of all the
recordings on day 3, 4, and 5 respectively. To get data for attackers, we used Ninapro Database 2 (10 users). It
is similar to Database 6 except that it had only a single session. We used seven users to train and validate our
negative class. The rest of the three users were used as attackers: one in each session: test 1, test 2, and test 3.
As our preprocessing steps, we downsample the sEMG data to 200 Hz and normalize them to zero mean and

unit variance. We used a sliding window size of 250 ms with a 50% overlap similar to the one used in [54]. Note
that we tested with the di�erent sizes of the window (e.g., 200 ms, 250 ms, 500 ms, 1 s), and the trained model
with a window size of 250 ms performs the best.

4.2 Experimental Strategy
The core DNN architecture of our framework used layered LSTM with 32, 64, 128, or 256 hidden units followed
by a dropout layer, then a fully connected (FC) layer and a �nal output layer providing softmax based predictions.
The con�gurations which provided us the best results are shown in Table 1. ADAM was used as an optimizer [24]
with a default learning rate of 0.001 unless otherwise stated and mini-batch sizes of 32 (default). To prevent
over�tting, we adopted two techniques: early stopping and dropouts. For dropouts, we used the values between
0.3 and 0.7 at steps of 0.1. Early stopping comes into play when the validation loss does not improve consecutively
for 10 epochs and is not decreased by a certain threshold. We tried three di�erent thresholds of 0.001, 0.0001, and
0.00001. We apply a weighted loss function [23] by estimating the inverse class distribution. So we can give more
importance to the loss of a class with fewer data samples to tackle the data imbalance issue.
We tried a standard SGD classi�er with a hinge loss function, l1 and l2 penalty (regularization), and optimal

learning rate. We changed alpha between 0.0001 and 0.1 where alpha is a term that is multiplied with the
regularization.

4.2.1 Experimental Setup. Here, we describe our experimental setup including various strategies (baselines).
Table 2 shows an overview of the comparison.

Joint: It represents a scenario when the training data for all the classes is present from the beginning, and a
model is trained as usual (naive, usual traditional deep learning case). This is a case which represents models that
do not update themselves.
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Joint-Incremental: It is similar to joint except that the deep learningmodel are updated (only data incremental)
after every testing session.

ContAuth: In this setting, we assume that we have training data available for only half of the classes and the
attacker class. We picked at least half of the users so that we have a reasonable amount of data to train our �rst
DNN model. The rest of the classes are added incrementally one by one as it will happen in real-life scenarios.
As stated earlier, we experimented with EWC and iCaRL which have their own parameters that can be tuned
depending on the application. We treat each task as adding a new user to the system. In the case of EWC, we
tried values of 1, 10, 100, 1000, 10000, 100000, 1000000 for parameter � which controls how much importance is
to be given to old tasks compared to the new task. For iCaRL we tried four di�erent budget sizes: 1%, 5%, 10%,
20% and 40% of total training data. Recall that budget size determines how many samples need to be stored to
perform class incremental learning. The initial task (�rst DL model) was trained in a usual manner as any DL
model would be trained with N/2 users and an attacker class. Then the next tasks (adding one more user) were
performed using the IL algorithm. A learning rate of 0.001 (default) was tried for all the tasks. At the end of each
task, the features generated from the DL model for users newly added to the system are used to incrementally
update the OL model. Note that after all the tasks are �nished (all users added), the system can function as a
data incremental learning setup to update according to new incoming data until a new class is encountered. As
explained earlier, a new user has to register to use the system and provide their data to which the system provides
an id (used as a label in the deep learning model).

As more data comes in (during test time once a model is deployed, test 1 and subsequent test sessions), the OL
model does the inference using features generated from the LSTM model and also updates itself with every single
sample. At this time, the LSTM model is not updated. It is updated only when enough samples are collected (we
assume after each testing session is �nished). Updating the LSTM model here means training the last saved model
to a few more epochs with stored data (from the last test session). The stored data is divided into 80% for training
and 20% for validation. Over�tting in data incremental scenario was prevented by early stopping as explained
earlier. The OL model keeps getting updated as more data arrives at the system during each testing session.

Baseline-Incremental: This case is similar to ContAuth except that the online model component is absent.
Both CIL and DIL happen in this setup.

None: This represents the case when classes are added incrementally, but no incremental learning method is
used. Catastrophic forgetting (CF) can have a considerable impact on such cases. This case is similar to ContAuth
but without any IL method being used. DIL and online learning are also absent.

Transfer Learning: To compare our system’s performance with similar methods, we tried the transfer learning
approach (the most common method to design adaptive deep learning models). The experimental setup remains
the same as that of ContAuth, but we used �netuning (a type of transfer learning) instead of the IL method. In this
case, we try to add a new user by unfreezing the last FC layer (learning, backpropagating) with the new user’s
data while keeping the initial LSTM layers frozen (not learning). This is done to avoid over�tting the existing
model by the new user’s data. We repeat this procedure for every new user (class) after learning an initial model
like ContAuth. DIL and online learning are absent as in None setup.

4.3 Metrics and Device
The following metrics were used to assess the performance of our IL framework: True Positive Rate (TPR), False
Positive Rate (FPR), False Negative Rate (FNR), True Negative Rate (TNR), storage and computation time or latency.
TPR is de�ned as the rate at which a target user is correctly identi�ed as the true (correct, positive) user. FNR
is the opposite of TPR, where a true user (positive class) is mistaken as someone else and could not access the
system. FPR is the rate at which an attacker (negative class) can access the system maliciously. In comparison,
TNR signi�es when the system blocks the access of an attacker. In a reasonably accurate authentication system,
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TPR should be very high with a very low FPR. We also discuss storage requirements for the DNN models, OL
models, and storage associated with the IL algorithms. In terms of computation time, we show how much time it
takes to do incremental learning in case of data and class settings for both IL and OL models. We implemented
ContAuth on the Nvidia Jetson TX2 platform which consists of hex-core ARMv8 64-bit CPU, 8 GB RAM, and GPU
(closely resembling high-end smartphones of current generation such as Google Pixel 4 and Samsung Galaxy
S10).

To explain why IL method such as iCaRL works well, we also calculate other metrics used in the literature [5].
We consider how much an IL method forgets previous tasks and learns new tasks after it was trained from task 1
to k to assess the actual performance of IL methods by considering the following metrics.

• Average Performance Measure (A): We denote the performance measure of a model on the j-th task
(j  k) as ak , j 2 [0, 1] after the model is trained from task 1 to k. The average performance measure at task
k is de�ned as follows:

Ak =
1

k

k’
j=1

ak , j (5)

The output space consists of [k
j=1Ä

j , and ak , j is based on a weighted F1-score in this work. Note that ak , j
can be used to indicate an accuracy, proportion of correctly classi�ed samples.

• Forgetting Measure (F): The forgetting measure provides an estimate of how much a model forgets about
the task given its present state. The forgetting for the j-th task after the model has been trained up to task
k > j can be quanti�ed as:

f kj = max
l 21, ...,k�1

al , j � ak , j , 8j < k (6)

The average forgetting at k-th task is denoted as Fk = 1
k�1

Õk�1
j=1 f kj by normalizing the number of tasks

seen previously. The lower the Fk , the less forgetting on previous tasks.
• Intransigence Measure (I): Intransigence is de�ned as the inability of a model to learn new tasks. To
quantify the inability to learn, the joint model, often considered upper bound, which has access to all
the datasets seen so far ([k

l=1Dl ) is compared and its performance is denoted as a⇤k . We then denote the
intransigence for the k-th task as:

Ik = a⇤k � ak ,k (7)
where ak ,k represents the performance of a model on the k-th task trained up to task k. Lower Ik implies that
a model performs as close as a joint model or performs even better than the joint model when intransigence
is negative (Ik < 0). Note that we use ak ,k and Ik as the main performance indicators of a model since we
are interested in the current performance of the model on all learned tasks from 1 to k.

5 RESULTS
This section presents the results for di�erent settings. We report TPR, FPR, storage requirements and the execution
time along with metrics explaining the good performance of iCaRL.

5.1 Accuracy
True Positive Rate (TPR) results are shown in Figure 4. Note that we show the best results for the di�erent setups.
Joint model always starts with a high TPR in the �rst session but then begins to degrade as the model is not
updated. This degradation varies with datasets with the worst being observed for EMG (50%) and longitudinal
deep breathing (15–20%). When the joint model is incrementally updated after each session (Joint-Incremental),
we see a marginal increase in the performance except the gait modality. This can happen if the newly arrived
data has a completely di�erent data distribution than the one encountered by the existing model previously.
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(a) Breathing-Sni� (b) Breathing-Deep (c) Longitudinal-Breathing-Sni�

(d) Longitudinal-Breathing-Deep (e) Gait (f) EMG

Fig. 4. True Positive Rate during di�erent sessions for all the datasets.

The performance of Baseline-Incremental is similar to the Joint-Incremental. In both the setups, models are
updated after each session. However, Baseline-Incremental involves learning class incrementally which is absent
from the Joint-Incremental setup. Hence, the similar performance shows that the IL algorithm (iCaRL) present
in Baseline-Incremental setup helps to alleviate the CF issue to a large extent. ContAuth further shows that IL
combined with OL can achieve the best results: highest TPR (also means low false negative rates which translates
to good usability) consistently across all sessions and modalities: 85% or more for all the modalities except EMG
(>=70%). Nonetheless, ContAuth can improve between 2%-35% over the Joint model (traditional deep learning
model) across datasets. This is also evident by looking at the gait dataset where ContAuth degrades by 7% and
shows that it can handle the changing data distributions quite quickly. While, at the same time Joint model
shows a drop of 50% in TPR. Even when compared to the Joint Incremental setup where deep learning models
are updated (Joint–Incremental) with time [49], ContAuth achieves better performance due to the presence of OL
model in the system.
We also highlight that in previously published research [8] on breathing based authentication, the test 2

accuracy was around 75%. We have improved upon that by 15–20% and getting it closer to 99% using ContAuth.
This increase is attributed to the use of GFCC as features and measures taken to prevent over�tting. The None
and Transfer Learning setup provide the worst performance. This is expected as None does not employ any IL
method, and TL simply cannot avoid the CF issue as it tends to forget the prior knowledge when learning new
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(a) Longitudinal-Breathing-Sni� (b) Longitudinal-Breathing-Deep (c) EMG

Fig. 5. False Positive Rate during di�erent sessions for datasets. Results for other datasets: Breathing, and gait are described
in the text.

tasks. We executed TL for all the breathing datasets and found its performance to be abysmal and hence did not
execute it for the rest of the datasets. We followed the same rationale for EWC: It helps alleviate the CF issue to a
large extent but falls short of accuracy that might be acceptable for user authentication. We obtained near to 60%
TPR for the breathing datasets with EWC.

False Positive Rate (FPR) results are depicted in Figure 5. The FPR obtained for the three datasets not shown in
the Figure are: 7%, 0%, and 28% for Joint (and Joint-Incremental) setup; 8%, 0.3%, and 11% for Base-Incremental;
0.85%, 0.6%, 11% for ContAuth for breathing – sni�, breathing – deep, and gait dataset respectively. None setup
always ended up in 100% FPR for all the datasets. In general, ContAuth achieves the best results (reasonably low
FPR) across datasets. FPR for breathing-based modality is quite low (< 1%) for it to be deployed as a standalone
modality in authentication systems. We observe that for the gait and EMG dataset the achieved FPR is a bit high
(⇠10%) which might not be acceptable for applications requiring very strong security guarantees (e.g., �nancial
transactions) but acceptable to applications where a very high degree of security is not required (e.g., enable
personalized interactions in a smart home). Not to mention, the FPR we reported is similar to the reported FPRs
in some of the existing literature [11, 15, 16, 32, 43]. We think that one of the reasons for FPR on EMG based
authentication modality being a bit high in our case is because we combined all the seven gestures to be used as
data, which has the potential to confuse the classi�er and degrade the overall performance. The existing works
on EMG utilize data from only a single or very few gestures for authentication [11, 43, 44]. Similarly, the existing
works on gait-based authentication seem to bene�t from using multiple gait cycles-based inference [52]. We aim
to perform a study using aforementioned two approaches to improve the performance of ContAuth in future for
EMG and gait based authentication: identifying a few gestures which can provide a very low FPR (EMG), and
performing a majority voting based decision (based on multiple samples) at the inference time to further decrease
the FPR. At the least, we believe that gait or EMG can be used as a secondary modality as in a multi-factor
(modality) authentication system to provide extremely strong security. Further, ContAuth can also be extended
to accommodate multi-modal authentication scenarios.

5.2 Storage
The model sizes required to be stored on the device to enable continual learning are shown in Table 3. The LSTM
models only need to store the parameters (weights and biases) and are thus extremely light–weight. Depending
on the number of hidden units, the LSTM model sizes varied between 500KB to 3.3MB. The higher the number
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of hidden units, the larger the size of the model. The same pattern can be seen in the sizes of the SGD based
online model. The size increases almost linearly (2x–3x times) with the feature size. Note that the OL model is
constructed using features generated from the LSTM model which can be 64, 128 or 256 in length depending
on the number of hidden units present in the LSTM model. The lower and upper bound of storage required for
models to be stored thus lies in between 500–3400 KB, which is meager compared to the amount of storage on
modern devices. The extra temporary storage needed to store the samples for updating DNN after each testing
session depends on the number of testing data samples present in each testing session. In our case, it ranges
from 4 MB to 316 MB for all the datasets. This storage is �exible, depending on the device’s storage capacity
and other requirements as to when to update the DNN model and how often. The devices with a large storage
capacity can store more samples, and hence DNN models can be updated less frequently, resulting in lower
energy consumption. Otherwise, DNN models need to be more frequently updated on devices with a smaller
storage capacity, which can cause faster battery depletion. However, one can always process samples to check if
it needs to be stored or not. For example, if the sample is highly similar to the already stored samples, then it can
be discarded.

Table 3. Model Size (KB) for DNN and Online Model

Hidden Units and Feature Size LSTM SGD
Breathing - 64 508 6.31
Breathing - 128 1400 11.43

Gait - 256 3300 24
EMG - 256 3300 24

Table 4. Extra Storage (MB) for ContAuth. Results in bold are the budgets where ContAuth obtained best performance. Bold
entries inside () are the dropout rates.

Dataset – Hidden Units Budget -> 1% 5% 10% 20% 40%
Breathing (Sni�) – 64 2.5 12.5 25 (0.3) 50 100
Breathing (Deep) – 128 2.45 12.25 (0.5) 24.5 49 98

Longitudinal Breathing (Sni�) – 64 4.7 23.5 47 94 (0.6) 188
Longitudinal Breathing (Deep) – 128 2.58 12.9 25.8 (0.3) 51.6 103.2

Gait – 256 0.25 1.25 2.5 5 10 (0.5)
EMG - 256 2.2 11 22 44 88 (0.4)

Every IL algorithm requires extra storage in order to function. EWC stores �sher matrices and means for each
task. The extra storage required is proportional to 2 ⇤ number of tasks ⇤ model size. For iCaRL, the budget size
de�nes how much storage is needed. 1% of the budget means that 1% of the size of the total training samples
would be required on the device. Hence, EWC requires less storage than iCaRL but does not match its accuracy.
The storage needed on a device for ContAuth using iCaRL is shown in Table 4. We realize that a higher budget
does not necessarily translate into better performance. Mostly, smaller budget sizes (10%, 20%) obtains better
results than higher budget sizes. This is an important result as it shows that the extra storage needed for ContAuth
to perform well on the device can be quite low: in our case, it ranges between 10 MB - 94 MB.
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(a) CIL (b) DIL

Fig. 6. Latency

5.3 Latency
We present latency results for class incremental learning in Figure 6a for di�erent datasets. The results show
the average total time in seconds to perform the entire processing which consists of training and incremental
learning on CPU and GPU. We observe that IL takes less time than training (two–20 minutes per task) on CPU
which is roughly 20%-30% of the whole processing time. Most of the total time, which varies between 10–70
minutes, is spent on training. However, the results on GPU narrates a di�erent story. The total processing time
only takes 80–1060 seconds and thus provides 5–20x times acceleration over CPU. This acceleration helps the
training to the extent that it becomes at par with the IL times. In some cases, the IL times can be even a bit
higher than training time if the iCaRL budget is large (20–40%). The primary reason is that operations involved
in training are optimized for GPU while operations involved in iCaRL (construct, reduce, etc.) are not.

SGD does incrementally update (online learning) in an extremely fast manner. On average, the time to update
an SGDmodel takes 0.0045, 0.005, and 0.0055 seconds corresponding to feature lengths of 64, 128, 256, respectively.
The latencies for data incremental learning is presented in Figure 6b. Similar to CIL results, GPU accelerates the
training process such that even the datasets with more data (longitudinal sni�) and slightly bigger architectures
(gait) are executed in roughly �ve minutes. Latencies on CPU are higher ranging from four to 17 minutes
depending on the complexity of the data and LSTM architecture except for EMG (70 minutes). Nonetheless,
our results are promising and show that IL is practically possible on the device, especially with the help of the
GPU. The results on CPU are also encouraging, showing that it is feasible to execute an end to end IL process
(ContAuth) on a very large dataset such as EMG (on average 50K data points across sessions) without breaking
the device. As mentioned earlier, the EMG dataset can be reduced in size by only focusing on highly accurate
(few) gestures instead of all seven gestures to allow faster execution latency. We discuss more on how to expedite
the IL process in the Discussion section.
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Table 5. Performance on IL specific metrics.

Dataset – Hidden Units ContAuth Transfer Learning

Ak Fk ak ,k Ik Ak Fk ak ,k Ik

Breathing (Sni�) – 64 0.93 0.02 0.94 0.02 0.80 0.01 0.61 0.36
Breathing (Deep) – 128 0.94 0.00 0.94 0.00 0.61 0.03 0.26 0.68

Longitudinal Breathing (Sni�) – 64 0.91 0.02 0.89 0.00 0.65 0.01 0.43 0.46
Longitudinal Breathing (Deep) – 128 0.95 0.01 0.94 0.01 0.70 -0.01 0.35 0.59

Gait – 256 0.97 -0.01 0.90 0.05 - - - -
EMG – 256 0.85 0.004 0.83 0.06 - - - -

5.4 Performance on IL Specific Metrics
In this subsection, we further investigate the e�ectiveness of the IL method, iCaRL, by comparing it to the transfer
learning approach. In order to make a fair comparison of our studied methods, we use various IL speci�c metrics
such as average performance measure, forgetting measure, and intransigence measure.

Table 5 shows the results in a summarized way for ContAuth employing iCaRL and Transfer Learning method.
Note that we only show results for iCaRL as it performs better than EWC amongst the IL methods we tried.
Ak measure indicates average accuracy on all tasks, and ak ,k measure denotes the accuracy after learning all
tasks. Besides, Fk allows us to estimate how much an IL method retains old knowledge of previous tasks. Also,
Ik means how good an IL method is in learning new tasks. Note that for Ak and ak ,k the higher the values, the
better the model is. In contrast, for Fk and Ik , a low value represents a better model. For instance, low Fk and Ik
mean that the model forgets previous knowledge less and better learns new knowledge, respectively. As shown
in Table 5, iCaRL performs excellently on all IL speci�c metrics on various modalities of the authentication
task. In other words, iCaRL is good at learning new classes/tasks (low intransigence, I ) while maintaining high
performance (high accuracy, A) as well as retaining old knowledge (low forgetting measure, F ) and is an excellent
component being utilized in ContAuth. Conversely, the same is not the case for Transfer Learning. Although
Transfer Learning allows previous knowledge to be retained (low F value), it cannot learn new tasks as indicated
by a high value of intransigence (I ). Thus, it shows a low performance in general as indicated by average accuracy
(A, ak ,k ).

6 DISCUSSION AND CONCLUSIONS
The performance of the current authentication systems needs to be robust and reliable. However, this requires
the system to adapt continuously on the �y without impacting the resources on the device, excessively. In this
work, we propose ContAuth, a system that can add new users without training the underlying machine learning
models from scratch and also adapt continuously to the new incoming data. The system does so incrementally
and thus always remains updated. To add new users, ContAuth employs class incremental learning methods. It
combines deep learning models with online learning models for continuous updating. We evaluated ContAuth on
multiple behavioral-based modalities. Our results show that ContAuth can provide good accuracy for di�erent
modalities of authentication. Finally, we also showed that ContAuth could be deployed practically on the device,
further allowing data privacy.
Like all other systems, ContAuth has some limitations. As of now, ContAuth cannot handle incorrect inputs.

For example, someone trying to use voice (sounds such as ’oh’, ’ahh’, etc.) when a breathing gesture (sni� or deep
breathing) is required to use the system. This issue can be handled by creating an entry-level component that can
recognize and �lter unwanted inputs (sounds as examples) and ask a user to use the correct input. This is usually
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accomplished by training a binary machine learning classi�er on required against all other inputs [9]. The other
issue can be that an IL method employed inside ContAuth (iCaRL) might fail to perform well after adding a
certain number of classes. This can be considered as equivalent to �nding an upper bound on the number of
classes that can be added to any IL method without degrading the performance by a considerable margin. We
tried to �nd this upper bound for ContAuth by performing class incremental learning on WhuGait dataset [59]
(118 users). We initially trained a model with 10 classes and then kept adding classes (one by one) until the
performance degrades by more than 5% (threshold we used in the paper already). After adding all the 118 users,
we still found the performance acceptable in our case (90% in case of joint model vs. 85% with iCaRL on an LSTM
layer with 256 hidden units). Note that this is one of the biggest open-source dataset available for the modalities
we tried in our work. Also, note that we cannot use this dataset in our earlier analysis since it has only a single
session. Nevertheless, we aim to �nd the breaking point for class incremental learning in the future as datasets
with a very high number of users become available. We tried to expedite the IL process by using smaller DNN
architectures, early stopping, GPU based acceleration and fewer time steps in LSTM models. However, the IL
process can be further expedited on the device, which we discuss next.
Overall, our analysis shows that ContAuth can provide higher accuracy across sessions than other baseline

methods for breathing, gait and EMG based behavior authentication and can be executed on device. The most
striking observation from our evaluation is that the majority of the IL execution process was dominated by
training and seems to the major bottleneck to perform IL on device, especially on the CPU. We believe that there
are optimization techniques that might help alleviate the high training latency. The �rst is to use only FP16
or FP8 formats instead of mixed precision when training DNNs [51]. It will be interesting to see the trade-o�s
between accuracy and latency when using such techniques. Golub et al. [17] recently proposed a technique to
train DNNs faster. Their technique restricts the total number of weights updated during backpropagation to
those with the highest total gradients. For the remaining weights, their initial value is regenerated at every access
to avoid storing them in memory. This leads to a reduction in the number of memory accesses during training
and hence accelerates the training process. Although not a standard technique, like mixed precision training or
16-bit training, it can be utilized to enable faster incremental learning. We leave this as future work.

GPU accelerates the IL and speci�cally the training process to allow running ContAuth on the device practically.
New devices such as Nvidia Xavier, Nvidia Xavier NX, and even some smartphones such as Google Pixel 4 are
now shipping while �tted with Tensor cores or Neural Processing units (NPU) specialized in enabling fast neural
network processing. Although for now NPUs only support faster inference (through existing APIs), it may be
worth exploring how these can be used to expedite training DNN models on the device. We expect that with
the advent of NPUs and better optimization techniques, IL can be applied to more complex workloads (e.g.,
continuous surveillance and human activity recognition) in the future.
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