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ABSTRACT
Developing regions are often characterized by large areas that are
poorly reachable or explored. The mapping of these regions and the
census of roaming populations in these areas are often difficult and
sporadic.

In this paper we put forward an approach to aid area surveying
which relies on drone mobility. In particular we illustrate the two
main components of the approach: an efficient on-device deep learn-
ing object identification component able to capture and infer image
content with acceptable performance (latency and accuracy) and a
dynamic path planning approach, informed by the object identifica-
tion component, which exploits potential fields to navigate between
waypoints.

We report some initial performance results of the framework and
describe our implementation.

CCS CONCEPTS
• Computing methodologies → Robotic planning; • Computer
systems organization → Robotic autonomy;
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1 INTRODUCTION
Area surveying is the detailed study or inspection of an area which
employs all the essential measurements to determine the character-
istics of a particular territory. Traditional area surveying through
human observation can be a costly and difficult operation. This is
particularly true in developing regions, where areas are often hard to
reach because of limited road access, danger from wildlife or simply
unknowns.

Recent developments in Unmanned Aerial Vehicles (UAVs or
drones) sparked research in using small vehicles, remotely controlled
or autonomous, for area surveying and remote sensing. UAV-based
solutions have many benefits. The employment of drones facilitates
reaching remote and dangerous areas without any risk to people.
Drone surveying is also a lot more immediate as operations can be
started easily with limited restrictions and thus can be carried out
more frequently. For these reasons, it often constitutes a cheaper
solution compared to traditional methods, such as helicopters or
ground based surveys. Typical UAV applications for remote sens-
ing include the study of morphological characteristics of a specific
terrain [13, 17], creation of 3D models of the environment [15],
infrastructure monitoring and many more [5].

In addition to the applications mentioned, the advantages of UAVs
make them a perfect tool to monitor the movements and settlements
of populations and animals in developing regions. The informa-
tion gathered is very useful, for example, in emergency situations
as it permits rescuers to know where to send aid or supplies like
medicines, food and water. Also, if the number of people living in
an area is known, rescue efforts could be scaled to the specific needs.
Area survey is especially important to monitor nomad populations
living in those areas. Their constant migrations require rescuers to
be in possession of timely and accurate pictures of the conditions of
the area and the location of the settlements. In addition, the gathered
information could also be used to study the behaviour and the culture
of these populations and eventually to understand how they adapt to
harsh conditions.

Despite UAVs’ benefits there are still several unsolved problems.
Even if they are simpler to operate than other vehicles (i.e., full size
airplanes or helicopters), they still require someone with enough
knowledge to pilot them and to process the generated data. If we
consider a typical workflow for UAV-based surveying, the two main
phases are:

https://doi.org/10.1145/3213526.3213532
https://doi.org/10.1145/3213526.3213532
https://doi.org/10.1145/3213526.3213532


DroNet’18, June 10–15, 2018, Munich, Germany A. Montanari et al.

(1) Piloting the UAV manually or automatically to capture images
of a certain area. When piloted automatically the UAV follows
a predefined path (waypoint navigation) configured by the
operator from a ground station controller.

(2) After the flight(s), downloading the images from the drone
and processing them locally or with cloud services to pro-
duce the desired output (e.g., 3D reconstruction). Usually the
results are available a few hours or days later.

The main issue in this context regards the availability of knowl-
edgeable operators capable of efficiently flying the UAV, especially
when considering developing regions. Power consumption consti-
tutes a considerable limit as UAVs could fly only for a limited period
of time and inefficient paths or maneuvers could further reduce
their flight time [1]. Additionally, in applications that involve image
capture, smoother flights are required to ensure high quality im-
ages [15]. While autonomous waypoint navigation could guarantee
a more streamlined operation, it might miss important features on
the ground because it blindly follows the pre-defined waypoints.
Also the data processing usually requires trained personnel and the
availability of results few days later might not be convenient when
timely information is crucial, for example, in emergency situations
or to monitor illegal activities.

The fundamental problem of these approaches is that they rely
heavily on manual operation and the data processing is done offline.
The goal of our work is to develop a system to mitigate these prob-
lems. Our vision, is to devise a completely autonomous, efficient and
affordable system which combines context sensing and on-device
processing in order to autonomously generate optimal flight paths
with respect to energy, dynamic goals and latency trade offs. The
system should be simple enough to be used by local populations to
gather data periodically or in case of exceptional conditions. Pro-
cessed data will be available immediately after each flight and could
be used for various decision making processes.

In this paper we present the architecture design and initial results
of our system to efficiently detect human settlements in developing
regions with UAVs following an adaptive flying path. The foundation
of our system consists of the on board visual perception through the
use of Convolutional Neural Networks (CNNs) [11] for the accurate
and robust detection of ground-level objects. The detection output
is subsequently used by a reactive navigation approach based on
Artificial Potential Fields [4] to dynamically adapt the flight in order
to gather useful information of the environment, while keeping the
flight smooth and efficient. We show also a prototype platform based
on a fixed-wing aircraft and initial results for the deep learning-based
perception.

2 RELATED WORK
In the context of conservation in developing regions satellite images
are usually employed for mapping and monitoring of land use [3].
However, satellite sensing or airborne manned systems are costly
and inaccessible, especially for researchers in developing countries.
Satellite images also suffer from adverse weather conditions that
might affect the quality of the images. For example, tropic areas
around the equator are often covered by persistent clouds that com-
pletely prevent a clear view of the ground [9]. Ground surveys, by

contrast, are typically employed for biodiversity monitoring. Never-
theless, by being expensive and time consuming they are impossible
to be conducted at the proper frequency for studying animal popula-
tion trends [7] and they are further limited by difficult or inaccessible
terrain.

To mitigate these issues, over the years, UAVs have been used
extensively for various remote sensing tasks for conservation [10].
For example, they have been used for counting various species of
animals [24], for vegetation monitoring [6, 10] and to gather illegal
hunting evidence for law enforcement [20]. However, the issue with
these systems is that they are not fully autonomous and do not take
complete advantage of the benefits offered by unmanned vehicles.
In fact, in these works UAVs have been flown with pre-programmed
flight paths and the images gathered have been inspected and anal-
ysed manually by researchers. This results in a time consuming
process which needs trained personnel in order to be accomplished,
limiting the usability for local researchers.

Other works explored the possibility of automatic detection of
salient features in the images. Van Gemert et al. analysed methods
to automatically count animals in aerial images [23]. The authors
concluded that approaches relying on deformable part-based models
(DPM) should be suitable for UAV applications given their reduced
computational cost but offer a limited detection speed (up to 5 frames
per second). However, they did not benchmark these algorithms but
reported only previous results. Recent works considered thermal
cameras to overcome some of the limitations imposed by traditional
ones (i.e., simplify the distinction of objects from the background
and monitoring during the night). In this area, Longmore et al. eval-
uated a traditional computer vision technique which makes use of
Histogram of Oriented Gradients (HOG) and Support Vector Ma-
chines (SVM) to detect cows and humans in thermal images [12].
However, even in this case the authors did not report any result about
the speed of the detection and how the systems would run on an
actual aircraft. Thermal images have also been used by Bondi et
al. who developed a system to detect humans (e.g., poachers) using
convolutional neural networks (Faster RCNN) running on a laptop or
on the Azure cloud service [2]. This approach has two main issues:
firstly, the UAV needs a constant and robust link with the base station
in order to send video frames to be processed, a condition that might
be difficult to satisfy and considerably limits the vehicle’s maximum
range. Secondly, the detection speed (up to 3 frames per second) is
limited and not sufficiently high to support autonomous navigation.

The system we are proposing here by contrast, takes advantage of
modern deep-learning and hardware architectures in order to perform
object detection completely onboard, without any connection with
a base station. This way the maximum range of the UAV is only
limited by its endurance (e.g. battery capacity). Additionally, we use
the detection of objects of interest to autonomously and efficiently
adapt the flight path of the UAV in order to gather additional images
of those objects which could be useful at a later stage for additional
analysis. These two characteristics make our system simple to use
also by non-expert people because it simply involves launching the
UAV and gathering the results once it is back from the autonomous
mission.

Only one work evaluated the YOLOv2 and TinyYOLO architec-
tures on the Nvidia Jetson TX2, as we do in this work [22]. The
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Fig. 1: System overview. The software uses the camera feed as input to
perform object detection. When an object is detected, its location is used
by the path planning module to dynamically alter the UAV’s path. Data
(such as the number of detected objects and their location) is collected,
along with images captured during the flight, for later analysis.

authors were able to achieve a higher frame rate for both architec-
tures (up to 12fps for TinyYOLO) because they adopted an optimised
C implementation while we run Keras and Tensorflow using Python.
We plan to move to a more efficient implementation in the near fu-
ture. However, the authors did not consider how to use the detections
for the autonomous navigation of the aircraft as we do in this work,
where we propose a comprehensive system.

3 SYSTEM ARCHITECTURE
In this section we describe our approach in detail. At a glance, the
system is composed of two main components: (i) the image capturing
and inference component and (ii) the autonomous and dynamic flight
planning which is informed by i). The UAV will perform autonomous
flight with the purpose of gathering information and images of the
territory. Perception and sensing of ground-level objects will be used
to take instant decisions regarding path planning. Specifically, the
UAV will detect and locate people or cattle present on the ground
using deep learning techniques. The path planning component is
informed by the object identification and dynamically alters the path
of the UAV with the overall objective of increasing the information
gained within the area. An overview of the system architecture is
shown in Figure 1.

This type of approach based on real-time detection has the benefit
of running autonomously without relying on cloud computation or
network coverage, which is often unattainable in rural and inaccessi-
ble areas. However, low latency in the end-to-end system is essential
to successfully perform the task. Therefore, the system was designed
with the aim to perform object detection with a speed of ∼ 10 Hz.
Furthermore, the embedded system was optimized with respect to
weight and computational power.

We now describe the two main components of the system in detail.

3.1 Deep Learning-based Perception
In order to accurately and reliably detect people and animals in
frames from the onboard camera, we directed our attention towards
convolutional-based models for object detection. Object detection is
a computer vision task that provides the coordinates of objects in the
frame along with their class and confidence. The result is commonly
visualized with a bounding box, as shown in figure 1. Our choice

was motivated by the performance of these models; they proved
to have very good accuracy results, outperforming previous years’
approaches, since the first implementations [8, 21]. Additionally,
given the availability of sufficient training data, these architectures
benefit from the possibility of being trained end-to-end, from raw
pixels to bounding boxes, removing the need for hand-crafted fea-
ture extraction and hence simplifying their application to different
detection tasks.

The main issue that prevented the use of convolutional neural
networks on small and lightweight UAVs, so far, is their requirements
both in terms of memory and processing power. This is particularly
true for object detection networks which are typically more complex
than networks used only for classification. Usually these models
run on large clusters or data centres using multiple graphic cards
(GPUs). However, the power consumed by these high-end cards
is in the order of hundreds of Watts1 and therefore are prohibitive
for a fixed-wing UAV that usually has a power consumption in the
order of tens of Watts. Additionally, their big form factor limits the
usability on small aircrafts where space and weight are premium.

Our system requires a network design which provides a good
trade off between detection accuracy, speed and resources usage.
High detection speed is required since the object detection is used
to autonomously adapt the path during flight. At the same time the
onboard computer running the architecture has to be limited in size
and therefore also in computational power, meaning that it might
not be able to run large networks. These two requirements of having
small and efficient but accurate networks are interdependent given
that smaller networks generally run faster but are less accurate.

Considering our constraints we decided to opt for the architecture
YOLO v2 (You Only Look Once) proposed by Redmon et al. [18],
which represents the state-of-the-art in terms of accuracy and detec-
tion speed. The model, also called Darknet-19, is in fact composed
of a reduced number of convolutional layers (19) and only 5 max-
pooling layers. The final layer predicts both class probabilities and
bounding boxes coordinates from the feature map given in output
by the previous layers. YOLO was designed to be simpler than ap-
proaches based on region proposal [19]. Region based algorithms
scan the image for possible objects generating region proposals.
Every region proposal is then run over a convolutional neural net-
work for extracting the features which are then fed into a classifier.
Computing thousands of region proposals and then run CNN over
them is computationally expensive, making the detection process
too slow for real-time processing. YOLO overcomes this limitation
by treating the detection problem as a regression one and running a
CNN over the input image just once.

A reduced version of YOLO v2, TinyYOLO was also imple-
mented [18]. TinyYOLO is based off of the Darknet reference net-
work. It is composed by fewer convolutional layers (9) and fewer
filters in each layer. This structure allows TinyYOLO to run much
faster at a cost of a lower detection accuracy. We considered both
YOLO v2 and TinyYOLO as candidates for the real-time object de-
tection pipeline (more details about initial results are in Section 5).
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Fig. 2: Approach for dynamic path planning. The UAV deviates from
its pre-defined path to circle around the detected objects to maximise
the information gained about them. Then it continues the mission to
explore additional areas.

3.2 Reactive Navigation
The just described object identification system is pivotal to the driv-
ing of the dynamic path planning component of the system which
we now illustrate. To efficiently gather information of the area, the
UAV must dynamically adapt its path at runtime. In the event of
detected people or cattle, the UAV will fly closer to the objects to
collect more images, and then continue to monitor the area. The
proposed solution has the following outline (figure 2):

(1) The user defines the area that shall be surveyed.
(2) Waypoints are calculated to cover the entire area, since there

is no prior information of the whereabouts of people and
cattle. The waypoints generate an area coverage path that the
UAV follows unless interesting objects are detected.

(3) If objects are detected by the camera their position in the
frame is mapped to real world coordinates. If there is more
than one object in a single frame, we can ensure that the
objects are densely located and therefore, a weighted average
of their locations is used.

(4) The UAV adjusts its heading towards the location of the ob-
ject. Once the location is reached the UAV circles around
the objects to gather information and take images for later
analysis. Once sufficient information has been gathered, the
UAV continues towards the next waypoint.

(5) Once a waypoint has been reached, the remaining flight time
is estimated based on the battery voltage. If there is suffi-
cient battery power to go to the next waypoint and back to
the starting position, the drone will go to the next waypoint.
Otherwise, it will return to launch.

The chosen approach uses an artificial potential field [4] for navi-
gation, a method that models the configuration space as a field of
forces. The UAV moves towards the point in the field with lowest
potential, and moves away from points with high potential. This

1Maximum 250 W for Nvidia Tesla P100 [16]

method was chosen due to its computational speed and ability to
model different aspects of the system, such as waypoints, detected
objects and the motion constraints of the prototype platform.

Waypoints and detected objects are modeled as points with low
potentials, and will influence the UAV with an attractive force. Given
the location of the UAV q = [x ,y]⊤ and a goal location, such as a
waypoint or a detected object, qдoal = [xдoal ,yдoal ]⊤, the attractive
potential is given by the function

Uatt (q) =



1
2ζd

2 (q,qдoal ) d (q,qдoal ) ≤ d∗

d∗ζd (q,qдoal ) −
1
2ζd
∗2 d (q,qдoal ) > d∗

(1)

where ζ is a scaling factor and d (q,qдoal ) is the distance between
the UAV’s location q and a goal location qдoal . Here, a quadratic
function is used for locations closer to the goal than a distance
d∗ and a conical function for locations further away than d∗. The
quadratic function is needed because of the discontinuity of the
conical function at the goal position.

Obstacles and other places that are undesirable to visit are mod-
elled with a repulsive potential, according to the equation

Ur ep (q) =



1
2η(

1
d (q,qobs )

− 1
Q∗ )

2 d (q,qobs ) ≤ Q∗

0 d (q,qobs ) > Q∗
(2)

where η is a scaling factor and d (q,qobs ) is the distance between
the UAV’s location and the obstacle. When the UAV is within a
radius Q∗ from the obstacle, it is affected by the repulsive force.

The total potential of the UAV’s location in the field is given by
the sum of the attractive and repulsive potential, i.e.

U (q) = Uatt (q) +Ur ep (q). (3)

The force affecting the UAV is inversely proportional to the gra-
dient of the potential;

F = −∇U (q). (4)

The UAV moves towards the minimum point in the field using
gradient descent. Objects detected by the vision system are given
a larger scaling factor than the initial waypoints, ensuring detected
objects to be prioritized over the predefined path.

When the UAV has reached an object and gained sufficient in-
formation by circling around it, the location of the object is given
a repulsive potential, making the UAV to exit the circular path and
continue surveying the area following the planned waypoints. The
repulsive potential also prevents the UAV from returning to the same
object at a later stage.

4 EXPERIMENTAL PLATFORM
This section describes the hardware and software used to realize the
functionality of the UAV.

Firstly, an appropriate airframe was chosen. UAVs are divided into
two main categories; fixed-wing and multirotor. Fixed-wing UAVs
are less maneuverable than multirotors, but superior in endurance
and flight time. Due to the lift force generated from the wings, all
thrust from the motor can be used for forward propulsion. This
makes them energy efficient, and suitable for surveying larger areas.
The airframe used in this project is a X-UAV Mini Talon, shown in
Figure 3. It has a generous wing area that promotes long endurance



Surveying Developing Regions Through Context Aware Drone Mobility DroNet’18, June 10–15, 2018, Munich, Germany

Fig. 3: The selected airframe, X-UAV Mini Talon.

Fig. 4: Hardware overview. The lines correspond to the physical cabling
of the system.

flight and a large fuselage with space for extra components, allowing
embedded applications.

To achieve autonomous flight with on-device computation, addi-
tional hardware was used. As shown in Figure 4, in the end-to-end
system the camera provides a stream of images to the embedded
Jetson TX2 platform, which runs object detection and path planning.
The flight controller (Pixhawk) uses the Ardupilot[? ] code base to
execute a low level controller for path execution as well as stabilize
the UAV and reads inputs from GPS and onboard sensors to estimate
the UAV’s location. The flight controller outputs signals to the elec-
tric speed controller (ESC), which provides the correct current to the
motor, and to the servos that are used to keep the control surfaces
in the right position. The system is powered by a 7500 mAh li-ion
battery to support long endurance flight, and a voltage divider is
used to supply the correct voltage to the components.

The embedded platform is a NVIDIA Jetson TX22, chosen for its
computational power and support for deep learning technologies. It is
equipped with a NVIDIA Pascal-family GPU which makes it suitable
for running image inference in real time. The deep learning models
were implemented and deployed using Keras3 with TensorFlow4

backend.
Future work focuses on full system integration. Robot Operating

System5 (ROS) is a framework for robotics applications, which will
be used for integrating the object detection, path planning and flight
control. Communication between the Jetson TX2 and the Pixhawk
will use the MAVLink6 protocol, a lightweight and redundant library
for UAVs. The aim of the system integration is to maintain a low
latency in the end-to-end system, so that navigation decisions can be
made during flight.

2https://developer.nvidia.com/embedded/buy/jetson-tx2
3https://keras.io/
4https://tensorflow.org/
5https://ros.org/
6https://mavlink.io/

5 PRELIMINARY RESULTS
This section reports preliminary results about the performance of the
object detection networks (see Section 3.1 for details) on NVIDIA
Jetson TX2 with respect to framerate, measured in frames per second
(fps), and mean average precision (mAP).

5.1 Model Training
The deep learning models (YOLO v2 and TinyYOLO) were trained
with a dataset composed by two classes; cattle and people. The
training dataset was selected in order to reflect the environment
where the UAV will operate. In other words, the selected images
were taken from a UAV’s perspective, rather than from a satellite or
from the ground. The class cattle was represented by the Verschoor
Areal Cow Dataset [23]. After manual removal of incorrect samples,
the dataset contained 4809 images. For the class people, the UAV123
dataset [14], was used. Also this dataset required modifications;
several images contained people for whom the corresponding ground
truth bounding boxes were not available, therefore these images were
discarded. This resulted in a dataset containing 11309 images with
one person each.

Both models were trained with an image input resolution of
416 × 416 in order to keep the size of the network small with the
objective of achieving the fastest possible speed. The imgaug7 li-
brary for Python was used to implement real-time augmentation
during training, in order to artificially generate new images starting
from the existing ones with the purpose of improving the model’s
capability to generalize and prevent overfitting. The transformations
were chosen in order to reflect all the possible UAV’s operating
cases. They include: scale, rotation, translate, change in brightness,
blurness or contrast and Gaussian noise addition.

The anchor boxes, i.e, the prior bounding boxes used to simplify
training and hence the final accuracy [18], were recomputed on our
dataset, using k-means clustering, to ensure they reflect the sizes of
the objects we want to detect. Five anchor boxes were used for both
models.

5.2 Model Testing
For our application we are interested in evaluating two aspects of
the object detection models: their accuracy in detecting objects on
the ground and the speed at which they can process images (i.e.,
frames per second). The latter is particularly important because
the convolutional network should not introduce excessive latency
which might negatively impact the responsiveness of the navigation
module.

The detection accuracy was tested using a dataset disjoint from
the training set containing 1612 images. The metric we used for
this evaluation is the mean over all classes (two in our case) of
the Average Precision [? ]. This is a common metric used for the
evaluation of object detection methods and it is usually called mAP.

The detection speed was tested by deploying the Keras+Tensorflow
models on the Jetson TX2, feeding 500 still images of size 416× 416
pixels to the network and measuring the average time needed to pro-
cess an image. This evaluation was performed for both networks, one
at the time, and while the Jetson was mounted on the developer kit,

7https://github.com/aleju/imgaug

https://developer.nvidia.com/embedded/buy/jetson-tx2
https://keras.io/
https://tensorflow.org/
https://ros.org/
https://mavlink.io/
https://github.com/aleju/imgaug
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Fig. 5: Comparison of YOLO v2 and TinyYOLO.

hence not inside the aircraft. Jetson TX2 has five different frequency
modes that were tested. By choosing a frequency model, the user
can make a tradeoff between speed and power consumption. In the
results presented below, the mode with the highest GPU frequency
was used to attain maximum inference speed. The average fps and
mAP for YOLO v2 and TinyYOLO are presented in Figure 5.

As seen in the figure, the highest framerate was 8.68 fps, achieved
by the TinyYOLO network. TinyYOLO is almost three times faster
than YOLO v2, but it achieved similar results in terms of accuracy.
Therefore, TinyYOLO is the preferable network to use, due to the
strict latency constraints of our application. For a more complex
detection task, e.g. with more classes, the performance in terms of
accuracy may differ more, and the larger network might be needed.
Other aspects that might be tuned to improve the detection accuracy
are the input image size and the number of anchor boxes. We leave
the exploration of these parameters for future work.

As mentioned in the previous sections, the desired framerate for
our system is ∼ 10 fps. The achieved results are slightly lower, but it
could still be considered enough for real-time detection applications.
When compared with results from similar works, such as in [22]
where a framerate of almost 12 fps was reached, we conclude that
the detection rate could be improved, if required by the latency
constraints.

6 CONCLUSION
We have presented a framework for dynamic drone mobility with two
main components: an efficient object identification system which
uses deep learning on drone collected images on device and a dy-
namic path planning component which relies on potential fields to
incorporate the inference information of the object detection compo-
nent dynamically to inform the path planning. Future work include

the full integration of the path planning component and large scale
testing of the framework.
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