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Abstract— Deep learning techniques are increasingly used
for decision-making in health applications, however, these can
easily be manipulated by adversarial examples across different
clinical domains. Their security and privacy vulnerabilities raise
concerns about the practical deployment of these systems. The
number and variety of the adversarial attacks grow continu-
ously, making it difficult for mitigation approaches to provide
effective solutions. Current mitigation techniques often rely on
expensive re-training procedures as new attacks emerge. In this
paper, we propose a novel adversarial mitigation technique for
biosignal classification tasks. Our approach is based on recent
findings interpreting early exit neural networks as an ensemble
of weight sharing sub-networks. Our experiments on state-of-
the-art deep learning models show that early exit ensembles
can provide robustness generalizable to various white box and
universal adversarial attacks. The approach increases the ac-
curacy of vulnerable deep learning models up to 60 percentage
points, while providing adversarial mitigation comparable to
adversarial training. This is achieved without previous exposure
to the adversarial perturbation or the computational burden of
re-training.

I. INTRODUCTION

The plethora of sensors embedded on wearable and mobile
devices has enabled affordable biosignal collection delivering
fast solutions for monitoring physical and mental health.
Biosignals, such as brain electroencephalography (EEG) or
heart electrocardiography (ECG), can be non-invasively mea-
sured, allowing for automatic detection of many health condi-
tions such as epilepsy [1], depression [3] or heart failures [5].
Using this rich data, deep learning techniques are revolution-
izing medicine by achieving state-of-the-art performance on
a variety of tasks within the medical field. Recent work, how-
ever, has shown that deep learning models misbehave in the
presence of malign adversarial perturbations [6]. They can be
easily manipulated since current implementations overlook
robustness towards adversarial attacks. Adversarial perturba-
tions can very closely mimic physiologically plausible signal,
and therefore, become virtually indistinguishable to human
perception. Nevertheless, they can drastically decrease the
deep learning model accuracy and introduce security and
privacy vulnerabilities in safety-critical scenarios, such as
health applications.

The multiplicity of attacks grows continuously and tradi-
tional approaches that require retraining and re-deployment
of the network are a significant burden and often not fea-
sible. Currently, the state-of-the-art mitigation approaches
rely on adversarial training [11] to minimize the risk of
misclassifying the perturbed signal. However, its side-effects
are not negligible since classifiers trained with adversarial
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examples learn fundamentally different representations com-
pared to standard classifiers reducing accuracy [16]; they
also can cause disparity on accuracy between classes for
both clean and adversarial samples [18]. In addition, they are
(i) resource-consuming, (ii) mostly mitigate only against the
attacks they have been exposed to during training, and (iii)
cannot be applied to already deployed or trained networks,
suggesting limited generalization and applicability in the real
world.

To solve the aforementioned issues, we propose a miti-
gation technique which relies on recent findings interpreting
early exit neural networks (NNs) as an implicit ensemble
of models [13]. Early exit neural networks are a class
of conditional computation models that exit once a crite-
rion (e.g., sufficient accuracy) is satisfied in order to save
on computation [14]. Under a different interpretation, the
early exit paradigm can be used to mitigate the problem
of model overthinking [10] or used as an ensemble for
uncertainty quantification [13]. Our intuition on exploiting
these networks for adversarial mitigation arises from the
success of ensemble defense in improving both accuracy and
robustness [15], however, without the computational burden
of training and maintaining multiple single models.

We summarize the main contributions of our paper as
follows:

• We introduce a novel adversarial mitigation technique
which provides run-time robustness to adversarial at-
tacks it has never been exposed to before. Our approach
is generalizable to various adversarial attacks, while
maintaining a low computational burden.

• We evaluate our method on state-of-the-art deep learn-
ing architectures applied to biosignal classification
tasks. Our results show that we can increase the ac-
curacy up to 60 percentage points (pp) compared to
undefended deep learning models, as well as, provide
well-calibrated adversarial mitigation comparable to ad-
versarial training.

• Our experiment on four major adversarial attacks, show
the potential of early exit ensembles in providing adver-
sarial robustness and how we can exploit its orthogo-
nality to adversarial training to build robust models we
can trust.

II. METHOD

Early exit ensembles are a collection of weight sharing
sub-networks created by adding exit branches to any back-
bone neural network architecture. During inference, they
provide an ensemble of predictions in a single forward pass



which allows for efficient and robust adversarial mitigation
by aggregating the predictions from individual exits.

Formally, any neural network fθ(·) can be decomposed
into B blocks such that fθ(x) = (f (B)◦f (B−1)◦· · ·◦f (1))(x)
where (f (i) ◦ f (j))(x) = fθi(fθj (x)) denotes function
composition for i ̸= j and θ = ∪B

i=1θi, x ∈ RD denotes
a D-dimensional input. Let h(i) ∈ RKi×Di denote the
intermediary output of the i-th block having Ki features
of dimension Di ≤ D such that h(i) = fθi(h

(i−1)) for
1 ≤ i ≤ B − 1, and h(0) = x.

A. Early Exit Ensemble

An early exit block is defined as a NN gϕi
(·) which

takes as input the intermediary output h(i) from the i-
th block of fθ(·), henceforth referred to as the backbone.
Each exit block learns a predictive distribution pϕi

(y|x) =
σ(gϕi

(h(i))) where σ(·) is the softmax transform and y ∈
{1, . . . , C} a corresponding discrete target taking one of C
classes. As such, any NN is able to output a set M =
{pϕ1(y|x), . . . , pϕB−1

(y|x), pθ(y|x)} which represents an
early exit ensemble. The ensemble M contains up to B − 1
distributions from early exits blocks, in addition to the
standard output from its final block. As such, ensemble size
|M| = B.

During training a weighted sum of each exits’ individual
predictive loss is optimized. This procedure allows the train-
ing of the whole ensemble jointly. More formally:

L = LCE(y, fθ(y|x)) +
B−1∑
i=1

αiLCE(y, gϕi
(y|x)) (1)

where LCE(·, ·) is the cross-entropy loss function and αi ∈
[0, 1] is a weight hyperparameter corresponding to the rela-
tive importance of each exit.

During inference, a single forward pass of a NN with
early exits produces an ensemble M of predictions. The
overall prediction from M can be computed as the mean
of a categorical distribution obtained from averaging the
predictions from the individual exits:

pθM(y|x) ≈ 1

|M|
(
pθ(y|x) +

B−1∑
i=1

pϕi
(y|x)

)
. (2)

B. Exit Block Architecture

Exits from earlier blocks inherit intermediary outputs with
weaker representational capacity, which negatively impacts
ensemble accuracy. To address this issue, we design a
conditional architecture for the i-th exit block as follows:

gϕi
(h(i)) =

{
W

(i)
2 ρ(W

(i)
1 s(h(i))), γ > 0

W
(i)
3 s(h(i)), γ = 0

(3)

where s(·) denotes global average pooling, ρ(·) is an acti-
vation function, W(i)

1 ∈ RKγ×Ki , W(i)
2 ∈ RC×Kγ , W(i)

3 ∈
RC×Ki are the weights the of linear layers (biases are
omitted to enhance notation clarity). The hyperparameter
γ ≥ 0 is a learning capacity factor used to increase the
number of features from Ki to Kγ

i of the i-th intermediary

output such that Kγ
i = (

√
1 + γ)B−i for 1 ≤ i ≤ B − 1

where KB is the number of features in the last block defined
by the backbone. Intuitively, when γ > 0 the number of
features in each exit block is inversely proportional to the
exit point i.e. earlier exits use additional parameters to learn
more complex features.

III. ADVERSARIAL ATTACKS

In this work, we consider 4 types of adversarial attacks:
three white box attacks (PGD, PGD-AVG, and PGD-MAX)
aimed at early exit neural networks [9] and one universal
adversarial perturbation attack [4]. Given a clean signal x,
an adversarial attack introduces small perturbations ∇ such
that the prediction for x and xadv differs.

Projected Gradient Descent (PGD) in an iterative uni-
versal first-order attack which aims to find the adversarial
perturbations by moving in the opposite direction to the
gradient of the loss function L(x, y) w.r.t. the signal (∇):

xadv
0 = x̂,xadv

n+1 = clipϵx{xadv
n + βsign

(
∇xL

(
xadv
n , y

))
} (4)

where ϵ is the step size which restricts the l∞ of the
perturbation, and

x̂ = x+ ϵ1 ∗ sign
(
N
(
0d, Id

))
(5)

(with parameters ϵ1, ϵ such as ϵ1 < ϵ) is an additional
prepended random step which avoids going towards a false
direction of ascent. This represents a single attack defined
to fool fθ(·) only, without considering the intermediate exits
gϕi, expressed as:

xadv = argmax
x∈|X′−x|∞≤ϵ

|L(fθ(x′, y))| (6)

PGD Average Attack (PGD-AVG) considers all interme-
diate exits gϕi by maximizing the average of all losses such
that the adversarial sample xadv can attack any exit in the
ensemble:

xadv
avg = argmax

x∈|x′−x|∞≤ϵ

∣∣ 1
B

(
L(fθ(x

′, y)) +

B−1∑
i=1

L(gϕi(x
′, y)))

)∣∣
(7)

PGD Max-Average Attack (PGD-MAX) emphasizes on
the individual exits, not just at maximizing an all-averaged
loss like in eq. 7. It creates M single attacks xadv such as
eq. 6 and denoting the collection of single attacks as Ω:

xadv
max ← xadv

j∗ , wherexadv
j∗ ∈ Ω

j∗ = argmax
j

∣∣ 1
B

(
L(fθ(x

adv, y)) +

B−1∑
i=1

L(gϕi(x
adv
j , y)))

)∣∣
(8)

This attack is the strongest of the three since xadv
max not only

maximally fools the individual exit but is also transferable
between exits.

Universal Adversarial Perturbation (UAP) seeks a per-
turbation ∇ to fool fθ(·) on most data samples:

fθ(x+∇) ̸= fθ(x) (9)

where perturbations are constrained to l∞ ≤ ϵ to be visually
imperceptible to humans. UAP aims at crafting a single
perturbation for all data samples. The version used in this
work is based on DeepFool [12].



ECG - FCNet (F1/ECE) EEG - VGG16 (F1/ECE)
Mitigation No attack UAP PGD No attack UAP PGD
No mitigation 0.98 / 0.01 0.70 / 0.16 0.33 / 0.27 0.81 / 0.11 0.76 / 0.05 0.18 / 0.66
PGD AT 0.92 / 0.07 0.93 / 0.03 0.73 / 0.13 0.80 / 0.03 0.80 / 0.03 0.82 / 0.05
Ours 0.99 / 0.01 0.89 / 0.15 0.77 / 0.11 0.85 / 0.03 0.80 / 0.06 0.81 / 0.04

TABLE I
ADVERSARIAL PERTURBATIONS’ IMPACT ON F1 SCORE AND ECE FOR UNDEFENDED, PGD 6 ADVERSARIAL TRAINING (AT) AND OUR APPROACH ON

THE TWO MODEL-DATASET COMBINATIONS. PGD: ϵ = 100mV AND ϵ = 10mV FOR EEG AND ECG, RESPECTIVELY, AND β = ϵ/4

(iterations = 20, AT iterations = 10). UAP: min fool rate = 0.8 AND sample size = 100.

ECG - FCNet (F1/ECE) EEG - VGG16 (F1 / ECE)
Mitigation No attack PGD-AVG PGD-MAX No attack PGD-AVG PGD-MAX
Ours 0.99 / 0.01 0.71 / 0.10 0.55 / 0.11 0.85 / 0.03 0.76 / 0.04 0.48 / 0.24
Ours + PGD AT 0.92 / 0.11 0.95 / 0.06 0.94 / 0.06 0.83 / 0.07 0.80 / 0.04 0.82 / 0.07
Ours + PGD-AVG AT 0.93 / 0.18 0.87 / 0.10 0.86 / 0.08 0.82 / 0.11 0.81 / 0.10 0.81 / 0.09
Ours + PGD-MAX AT 0.92 / 0.28 0.90 / 0.03 0.86 / 0.01 0.82 / 0.04 0.78 / 0.30 0.82 / 0.04

TABLE II
ADVERSARIAL PERTURBATIONS’ IMPACT ON F1 SCORE AND ECE FOR OUR METHOD AND OR METHOD COMBINED WITH TRADITIONAL PGD

ADVERSARARIAL TRAINING (AT) AND EXIT AWARE AT (PGD-AVG, PGD-MAX).

IV. EXPERIMENTS

Datasets & architectures. For the evaluation, two
publicly-available biometric signal statasets are used: Elec-
trocardiogram heart attack (ECG) [2], and Electroencephalo-
gram artifacts (EEG) [7] where only eye-movement artifacts
are considered. All datasets are split into 80%/10%/10%
train/validation/test maintaining class proportions. Each
dataset is paired with a different architecture: FCNet [17]
(fully-convolutional 5-layer network) for ECG and VGG16
for EEG.

Electrocardiogram heart attack (ECG) [2] is a dataset of
univariate timeseries of ECG signals of length 140 extracted
from a single patient. Each signal falls into one of 5 classes
which are combined to make two labels: Normal (N) and
Abnormal (R-on-T, PVC, SP, UB).

Electroencephalogram eye movement artifact (EEG) [7]
consists of univariate timeseries of length 2000 extracted
from 213 patients from the Temple University Artifact Cor-
pus (v2.0). A set of 21 EEG channels were retained from
all patients and signals were resampled to 250 Hz. All EEG
signals were bandpass filtered (0.3-40 Hz) using a second-
degree Butterworth filter and notch filtered at the power
lower frequency 60 Hz. Segments of clean and eye movement
artifact signal were used for this specific task.

Metrics. Performance is evaluated using class weighted
F1 and expected calibration error (ECE). While F1 indicates
model accuracy, ECE measures model calibration as the
expected difference between accuracy and predicted confi-
dence. ECE =

∑M
m=1

|Bm|
n |acc(Bm) − conf(Bm)| where

accuracy and confidence for bin Bm are

acc(Bm) =
1

|Bm|
∑

b∈Bm

1(ŷb = yb)

conf(Bm) =
1

|Bm|
∑

b∈Bm

p̂b

such that ŷn = argmaxc∈{1,...,C} pθ(yb = c|xb) is the
predicted class. There are M bins of size 1/M and n samples,
and bin Bm covers the interval (m−1

M , m
M ]. Confidence p̂b is

the probability of the top model prediction for sample b.
Baselines. We compare early exit ensembles against the

undefended backbone model without any exits (No miti-
gation) and backbone model trained completely with PGD
adversarial attacks (PGD AT). Additionally, we provide anal-
ysis on adversarial training applied to early exit ensembles
where the early exit ensemble unified model has been trained
with adversarial examples and at test time the averaging of
the predictions from the individual exits is applied. For (Ours
+ PGD AT) the model training procedure perturbed training
samples having access to only the last output of the early exit
model, while for (Ours + PGD-ADV AT) and (Ours + PGD-
MAX AT) it had access to all individual exits, members of
the ensemble. The latter two attacks are not applied to the
backbone (without exit) model since they would be the same
as a naive PGD since the ensemble size is 1.

Hyperparameters. All models are trained using the Adam
optimizer and an optimally tuned learning rate, batch size,
and epochs: FCNet (1e−2, 200, 250), and VGG16 (1e−4,
200, 200). All results for our approach are based on a loss
with αi =1 as well as a learning capacity factor and exit
strategy optimally tuned as follows: FCNet (γ=0.0, Block-
wise), and VGG16 (γ=0.5, Semantic) with an ensemble size
M = 5 as suggested in [13]. To prevent overfitting, early-
stopping is based on the best validation accuracy with a
patience of 5.

For the PGD (incl. AVG and MAX) adversarial attacks
20 maximum iterations are used. The perturbation strength
is set at ϵ = 100mV and ϵ = 10mV for EEG and ECG,
respectively, while β = ϵ/4 for both. PGD attacks (especially
on EEG data) can bring strong and perceptible square-
wave displacements, which would allow both expert and
non-experts to distinguish them. With the aforementioned



values, we provide the strongest perturbations possible while
keeping the attack imperceptible to at least a non-expert
eye. For UAP, we used the default values in the original
work [4] min fool rate = 0.8 and a sample size = 100.
For adversarial training, we use the same configurations as
the attacks with 10 iterations for the PGDs.

V. RESULTS

Table I summarizes the accuracy (as measured by the F1
score) and the expected calibration error (ECE) results when
the models are under adversarial attack. As expected, our
technique provides better accuracy on clean data (no attack)
compared to both the undefended (no mitigation) model
provided by the implicit ensemble paradigm. Additionally,
PGD AT shows a lower accuracy on clean data demon-
strating one of the disadvantages of adversarial training as
mentioned in Section I. As an universal adversarial attack,
UAP, degrades accuracy less than PGD, however, early
exit ensembles can significant mitigation on it with a 19pp
improvement on ECG-FCNet. The PGD attack applied in
this scenario, is a white box attack which can see only
the final output, allowing for the intermediate exits in the
ensemble to disagree with the attacked exit and provide the
desired mitigation. Compared to the undefended model, our
technique improves accuracy by 44pp and 63pp for ECG-
FCNet and EEG-VGG16, respectively. These results show
that early exit ensembles can provide comparable (even
better in some instances) mitigation to the state-of-the-art
adversarial training without any previous exposure to the
adversarial attack presenting a general (non attack-specific)
approach.

In a second scenario, Table II, shows the impact of adver-
sarial attacks which are aware of the intermediate exits of
the model and maximize the overall loss accordingly. Here,
early exit ensembles can still provide adversarial robustness,
although the more the attacker aims the individual exits
weaker the mitigation. The strength of our approach still re-
lies on the fact that it does not depend on a specific attack or
training procedure, making it a perfect technique to combine
with adversarial training. In a real world deployment, early
exit ensembles have the potential to have a high level of
robustness provided by adversarial training of known attacks
as well as robustness towards new and unknown attacks.
As dicussed in Section III, PGD-MAX is the strongest
attack given it transfereability characteristics. We can see
this in our results too, where early exit ensembles benefit
more from the PGDs adversarial training to compensate the
accuracy loss caused by PGD-MAX. However, contrary to
the lightweight approach provided by early exit ensembles,
PGD-MAX is very expensive to produce, circa 10x more
expensive than PGD and PGD-AVG. Crafting a PGD-MAX
attack for training purposes on a VGG16 model (batch size of
250 samples), costs 475 seconds on an Nvidia Tesla-V100
GPU, while PGD and PGD-AVG cost 38 and 48 seconds,
respectively [8]. Early exit ensembles, instead, only add a
slight memory overhead of 16% and computation overhead
of 12% in the worse case scenario (VGG16).

VI. CONCLUSIONS

In this paper, we propose a novel adversarial mitigation
technique which provides robustness exploiting early exit
ensembles. Our approach achieves remarkable performance
and efficiency trade-offs, comparable to the state-of-the-art
adversarial training on various biosignal classification tasks.
We believe that the ease of implementation of our method,
its orthogonality to adversarial training and the promising
results offer the foundations for further exploring early exit
ensembles in the adversarial machine learning context.
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