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Abstract— Cardiovascular disease is a leading cause of death
worldwide. Auscultation, a common diagnostic method, in-
volves listening to heart sounds to detect valve contraction
irregularities, with heart sound segmentation (i.e., identifying
heartbeat phases) being a crucial first step. Due to the high
level of expertise required for traditional auscultation, previous
work has automated segmentation using digital sounds from
stethoscopes or phonocardiographs; however, these methods
depend on specialist medical devices, limiting continuous and
wide usage. Earable devices now offer continuous heart sound
capture via in-ear microphones (IEM) on Active Noise Cancel-
lation (ANC) earphones, opening new possibilities for portable,
continuous, out-of-hospital heart sound segmentation. However,
techniques developed for phonocardiogram (PCG) signals are
not directly applicable because of the distinct differences in
signal characteristics between IEM and PCG signals. In this
work, we are the first to demonstrate the potential of using in-
ear cardiac sounds for heart sound segmentation. We begin by
analysing the temporal and frequency differences between IEM
and PCG signals, then introduce a U-Net deep learning model
tailored for in-ear heart sound segmentation. Additionally, we
propose a more stringent evaluation method for segmentation
accuracy and use this to evaluate our method and the baselines.
We collected data from 11 participants, and our model achieved
84% accuracy, outperforming established baselines.

I. INTRODUCTION

Cardiovascular disease is a major cause of premature
mortality and rising healthcare costs. This disease is only
growing in severity, with the number of global cases doubling
between 1990 and 2019 from 271 million to 523 million [1].
One method of diagnosing cardiovascular disease is through
auscultation of the heart, the process of a medical profes-
sional listening to the sounds produced as it beats, typically
with a stethoscope [2]. For example, abnormal heart sounds
and irregular timings between heart valve contractions can
help diagnose heart murmurs and valve disease [2].

One of the first steps of auscultation is identifying phases
of the heartbeat based on the heart sounds. As shown in
Figure 1, a heartbeat can be divided into 4 main phases:
S1 (closing of atrioventricular valves), systole (ventricular
contraction/ejection), S2 (closure of semilunar valves), and
diastole (ventricular filling) [3], [4]. Once these phases are
identified, abnormal heart sounds can be classified with
a possible diagnosis made. For example, mitral stenosis
can be identified as a low rumbling sound in the diastolic
phase, whereas aortic stenosis is a harsh sounding high-
pitched noise in the systolic phase [3]. Therefore, heart
sound segmentation, identifying the timings of these four
main phases of heart sounds, is an important initial step for

Fig. 1: The 4 fundamental phases of a heartbeat in a PCG
and electrocardiogram (ECG) recording.

auscultation of the heart, which provides critical insights into
cardiac function and potential abnormalities.

However, auscultation is a difficult skill to acquire among
professionals, with only 20% of medical interns able to detect
heart conditions effectively [5] and it is often unavailable
in some regions of the world, where the patient-to-doctor
ratio sometimes reaches 50000:1 [6]. For this reason, various
algorithms for automatic heart sound segmentation have been
proposed over the past decades. Work by Lhener et al. which
dates back to 1987, used signal processing techniques on
a combination of PCG, ECG and carotid pulse signals [7].
After decades of research, segmentation methods can now
be grouped into 3 main categories: envelope-based meth-
ods [8], [9], [10], hidden Markov models [11], [12], [13],
and machine learning models [14], [15], [16], [17]. Schmidt
et al. proposed hidden semi-Markov models (HSMMs) as an
extension to the hidden Markov model, reaching sensitivities
of up to 99.1% [18]. Springer et al. built upon this work,
achieving accuracies of 95.6% [19]. However, both the
manual and traditional automatic methods require hospital
resources. Data must be collected by specialist medical
devices which limits continuous usage, or clinicians are
required. These requirements of hospital resources reduce the
accessibility of this segmentation technology, and therefore
its rate of adoption.

Recently, the wearable device industry is rapidly growing,
with 1.1 billion wearable devices in use in 2022, up from 929
million in 2021 [20]. The growing use of wearable devices
is beneficial to the medical industry as it is expected to
save around $200 billion in costs over the next 25 years
and rapidly decrease the interaction time between clinicians
and patients [21]. Additionally, ANC earbuds have become
ubiquitous in daily life. These earbuds contain a microphone
facing inside the ear canal (IEM) which achieves noise-
cancellation functionalities. Lately, it has been proven that
heart rate can be measured accurately using inwards facing



microphones [22], with other work proving that repurposed
ANC earphones can record clear and reliable heartbeat
sounds [23], [24]. In addition, the nature of the mechanisms
of production for in-ear cardiac sounds has been researched,
with a study showing they contain components from both
conducted sounds and pulse waves around the ear [25].

This suggests that earbuds can be the next frontier for
automatic auscultation of the heart. In this work, we take
the first step toward providing portable, continuous, and out-
of-hospital heart sound segmentation capabilities using in-ear
microphones on earphones. This is of significant value to the
field of auscultation for the following reasons:

• Increased accessibility: The use of commodity devices,
i.e., ANC earbuds, already owned by large portions of
the population enables wider access to cardiac ausculta-
tion, especially in out-of-hospital and everyday settings.

• Continuous monitoring: Earphones are portable, non-
invasive and user-friendly, and can be used comfortably
for long periods. This enables longitudinal monitoring
of cardiac auscultation.

• No clinician required: Unlike an electronic stethoscope
or phonocardiograph, positioning and operation of ear-
phones is simple. This means that it can be done at
home, thus facilitating telemedicine.

Although existing studies enable heart sound segmentation
on PCG signals [14], [19], the techniques developed for
these signals are not directly applicable due to the distinct
differences in signal characteristics between in-ear audio and
PCG signals (as detailed in Section III-A). In this work, we
investigate the feasibility of using audio collected inside the
ear canal for heart sound segmentation. We also determine
the properties of the IEM signal for cardiac auscultation and
segment the IEM cardiac sounds with high accuracy. Our
contributions are summarized as follows:

• Characterization of IEM signals: We identified: (i)
Potential timing differences between the IEM and asso-
ciated PCG signal. (ii) Frequency differences between
the IEM and PCG signals.

• IEM heart sound segmentation pipeline: We devised
a pipeline for segmenting IEM signals, using a deep
convolutional neural network (CNN), i.e., U-Net model.
We compared its performance to previous state-of-the-
art models tailored for PCG signal segmentation (i.e.,
Renna et al.’s [14] and Springer et al.’s models [19]).
Evaluations on data collected from 14 participants
demonstrated the superior performance of our pipeline.

• Segmentation evaluation: We developed an evaluation
technique to allow strict comparison between models
run on IEM signals.

II. USER STUDY

1) Devices: While in-ear microphones are now common
in ANC earbuds for active noise cancellation, no commercial
earbuds provide access to the raw data. Figure 2 illustrates
our developed hardware used for data collection. A Knowles
SPU1410LR5H-QB microphone, which has a flat frequency

Fig. 2: Data collection devices: (a) Earbuds, and (b) Thin-
klabs One digital stethoscope.

response between 10Hz and 10kHz, was embedded into a
3D-printed earbud and used as the IEM. The IEM and PCG
recordings were collected simultaneously in our experiments,
using the IEM setup shown in Figure 2(a) and a Thinklabs
One digital stethoscope [26] shown in Figure 2(b). An
appropriately sized ear tip was selected for each participant
based on their ear canal shape to ensure a tight seal and good
occlusion.

2) Data collection: We collected data from 11 partici-
pants (5 male and 6 female) with an average age of 24.9±
4.6, in a study approved by the University of Cambridge
Department of Computer Science and Technology Ethics
Committee. A summary of the collected data is provided
in Table I. The data collection involved recording participant
responses under three different background noise conditions:
silence, 60 dB, and 70 dB. During each session, subjects
sat on a chair and remained stationary. The duration varied,
with the silent condition lasting 5 minutes and the noisy
conditions lasting 2 minutes each. The number of participants
differed across conditions, with 11 in the silent condition,
9 in the 60 dB condition, and 8 in the 70 dB condition.
During data collection, heart sounds were collected by the
ground truth e-stethoscope. The average duration of each
heart sound phase, as measured by the e-stethoscope’s PCG,
is shown in Table II. Simultaneously, audio was recorded
in the participants’ ears using the IEMs in the earbuds.
The participant tapped their upper body several times at the
beginning of each data collection session to synchronize the
recordings from the two devices. This generated visible peaks
that appeared in both recordings simultaneously, facilitating
their alignment.

TABLE I: Summary of data collection.

Test
Case

Duration
(minutes)

Number of
Participants

Silence 5 11
60dB 2 9
70dB 2 8



TABLE II: Durations of each heart sound phase from PCG
signals across the entire collected dataset, presented as
mean ± sd (min − max).

Heart Sound Duration (ms)
S1 124±13 (19-179)
S2 103±12 (39-159)

Systole 180±32 (39-279)
Diastole 425±103 (159-719)

III. METHODS

In this section, we present our methodology for heart
sound segmentation of IEM signals.

A. Signal characterization

1) IEM signal: When the ear canal is blocked (or oc-
cluded), there is an increase in impedance inside the ear
canal. This causes low-frequency sounds inside the ear canal
to be amplified, and higher frequency sounds to be attenu-
ated [22]. Specifically, this affects bone-conducted sounds:
sounds that are propagated by bones to the inner ear, causing
vibration in the ear canal walls. Among the most relevant
of these bone-conducted sounds are sounds related to heart
activity [22]. By placing a microphone inside the occluded
ear canal, these heart signals can be captured. Recent work
identified that these signals contain a combination of com-
pressive sound waves (heart sounds) originating from the
chest and pulse waves from arterial expansion near the ear
canal [27].

The heart signals captured from the IEMs are shown in
Figure 3(b). Figure 3(a) shows the simultaneously captured
heart signals from the digital stethoscope. By comparing
Figure 3(a) and Figure 3(b), it is evident that due to the
compressive component, the cardiac signal contains clear
heart cycles, with evidence of an S1 peak, S2 peak, and
systolic and diastolic periods between these. These cycles
also align with those in the PCG signal.

2) Frequency content variation between PCG and IEM
signals: However, in agreement with Christofferso et al. [27],
it is also evident that the in-ear cardiac signal has different
characteristics to the PCG signal. We first analysed the
variation in frequency content by plotting the amplitude of
the IEM and PCG signals across frequency bands, as shown
in Figure 4(a) and Figure 4(b), respectively. Due to the
occlusion effect, the IEM heart signal captured inside the
ear canal has much stronger lower frequency components
than the PCG. We see that for the IEM signal, all frequency
content above 30 Hz is weak, whereas for the PCG signal,
there is strong frequency content up to 250 Hz.

3) Time offset between PCG and IEM signals: After
aligning the PCG and IEM signals using the synchronisation
activity, we observed that the peaks in the IEM signal
corresponding to the S1 and S2 sounds exhibited a time offset
relative to the PCG peaks, as shown in Figure 3(c). These
locations are identified as the onset of the first high-energy
part of the IEM signal after the PCG S1 or S2 onset. We
further explored the durations of these offsets to identify
whether their source was experimental or due to human

physiology. Across all test cases, the average delay for the
right channel was 97.1±31.2ms, compared to 92.3±23.7ms
for the left channel (using format mean±stdev). Figure 4(c)
suggests that the delays are different for each participant,
while still being in the range 50-150 ms. We expect that
the delay depends on a multitude of factors, including the
participants’ cardiac output at the time of recording.

This consistency in channel delay implies that the left
ear experiences the signal before the right. This paired with
the variability in delay length implies that the source is
not experimental, but rather due to the changing physiology
and body composition of the participants. The speed of
sound in blood is 1570 m/s [28], [29] and is even faster
in bone, meaning that it takes 0.6 ms for heart sounds to
travel one meter of blood vessels. As the delays observed are
much greater than this value, we hypothesise that rather than
detecting sounds from the heart valves themselves, the IEMs
are detecting pulse pressure waves due to blood pumping
through the vessels. This is supported by Gårdbæk et al.’s
work [30]. Recent work found that the in-ear cardiac signal
appears to be composed of both a bone-conducted and pulse
wave components [25]. Our analysis indicates that the pulse
wave component is dominant in a set-up with high ear canal
occlusion.

Our characterisation of the IEM heart signal has shown
that it has a significantly different frequency spectrum and
timing characteristics to the PCG signal. As such, PCG-
based segmentation approaches cannot directly be applied
to the IEM signal. Therefore, we develop new approaches
to segmenting the IEM signal, as detailed in the coming
sections.

B. S1 Synchronisation

To remove the time offset between PCG and IEM signals
for model training, we further synchronised the IEM and
PCG S1 phases. To achieve this, we identified the peak in
the PCG signal corresponding to the start of an S1 phase. The
corresponding delayed peaks in the IEM channels were then
detected and shifted to align with the PCG peak. Figure 3(d)
shows the results of synchronising the S1 peaks, indicating
the perfect alignment of the IEM and PCG signals once the
offsets have been removed.

C. Segmentation

1) Feature vector generation: We first divide the IEM
signals into windows of 1.28 seconds, with an overlap of
1.12 seconds between consecutive windows. This process
generates feature vectors consisting of 64 data points, as
explained below, with an 8-point stride, to be used as model
input.

We generate a feature vector for each window of input,
following the approaches of Springer et al. [19] and Renna
et al.’s work [14]. Specifically, we extract a four-dimensional
feature vector from each channel of IEM signals, comprising
the following components:

• Homomorphic envelope: Obtained by exponentiating
the low-pass-filtered natural logarithm of the IEM signal



Fig. 3: PCG and IEM signals with segmentation regions
annotated. S1 (Red), Systole (Blue), S2 (Green) and Di-
astole (Purple). (a) PCG signal. (b) Normalised, time-
synchronised IEM Left and Right Channels. (c) Normalised,
time-synchronised IEM Left and Right channels with PCG.
(d) Normalised, S1-synchronised IEM Left and Right Chan-
nels with PCG.

to extract its envelope [31]. We use a low-pass filter
with a 25 Hz cutoff, which effectively preserves critical
low-frequency heart signals in the IEM recordings.

• Hilbert envelope: Computed as the absolute value of the
Hilbert transform, which preserves only the positive-
frequency components of a signal by extracting its
analytic signal [32], [33].

• Wavelet envelope: Extracted using a level-5 Daubechies
wavelet, selected based on prior work [8], [34].

• Power Spectral Density (PSD) envelope: Computed via
the short-time Fourier transform (STFT) after applying
a Hamming window [19].

Both signal channels were then concatenated into a single
feature vector, which served as the model input.

2) Segmentation model: To segment the IEM signal, we
proposed a CNN-based model, which follows a deep CNN
architecture [14] designed to process per-channel feature
vectors from audio data. As shown in Fig. 5, the model
consists of multiple convolutional layers with ReLU activa-
tion, downsampling through max pooling, upsampling layers,
and skip connections. The input consists of concatenated
feature vectors from the left and right IEM channels, and the
output is a sequence of segmentation labels corresponding to
different heart phases.

As discussed in Renna et al. [14], this deep CNN archi-
tecture effectively segments the IEM signal by leveraging a
large receptive field. Neighbouring data points significantly
influence the probability of the current point belonging to
one of the four heart phase states. This allows the model
to accurately capture the temporal evolution of the signal
and corresponding heart sounds. By doubling the size of the
input feature vector, i.e., incorporating both left and right
channels simultaneously, the model gains additional robust-
ness, enabling it to consider both channels when determining
heart sound labels.

Following Renna et al. [14], the predicted states undergo
a sequential temporal check that corrects invalid sequences.
Since a healthy heart always follows the pattern: S1 →
systole → S2 → diastole → S1..., the check removes heart
phase sequences that do not follow this pattern.

In addition, training was designed to encourage the model
to learn distinct features from each channel. The process
involved:

1) Train the CNN on the feature vector containing the left
and right features.

2) Replace all left channel features with zeros and repeat
training.

3) Replace all right channel features with zeros and repeat
training.

This training method forced the model to develop separate
feature maps for each channel, capturing unique charac-
teristics independently. This method therefore ensures that
high segmentation performance can be obtained even in the
presence of poor-quality signals in one channel.

IV. EVALUATION

A. Training and testing

The PCG heart sound labels produced by the Springer
HSMM [19] were used to train and test all models tasked
with segmenting IEM audio. The Springer HSMM was used
due to its accuracies of 95.6% segmenting PCG audio [19].
The primary validation method was Leave One Subject Out
cross validation (LOSO) over the 11 participants. In each
case the model was trained on 10 recordings, with the final
used for testing, then performance was averaged across all
11 trials.

B. Evaluation metrics

In typical heart sound segmentation, PCG sounds are seg-
mented using ECG as a reference to evaluate performance. A
specialist or ECG segmentation algorithm is used to identify
the ground truth labels. However, evaluating heart sound
labels produced by a PCG against those produced by an ECG
is a non-trivial task. This is due to the fact that ECG peaks, in
the electrical domain, do not match PCG peaks, recorded in
the sound domain (Figure 1). Therefore, evaluation of labels
is typically done by creating a “tolerance”, with which the
labelled sound must fall within relative to the ECG label.
Springer et al. labelled an S1 sound as a true positive if it
lay within 100ms of the ECG’s R-peak [19].



Fig. 4: Characterisation of the in-ear cardiac signal (a) Frequency spectrum of PCG signals and (b) IEM signals. (c) Delay
in milliseconds between the IEM signals and the corresponding PCG signals per participant.
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Fig. 5: Segmentation model architecture. The model’s input consists of per-channel feature vectors, and the output is the
segmentation labels.

TABLE III: Accuracy and F1 scores of our model compared to the Renna CNN [14] and the Springer HSMM [19] (Average
± 1 standard deviation). The best results are shown in bold.

Model Trained On Tested On Ac P+ Se F1 (S1) F1 (S2) F1
Springer PCG IEM Left 0.7± 0.07 0.58± 0.09 0.57± 0.09 0.76± 0.06 0.62± 0.09 0.58± 0.09
Springer IEM IEM Left 0.53± 0.1 0.41± 0.12 0.4± 0.11 0.62± 0.1 0.54± 0.05 0.41± 0.11
Renna IEM IEM Left 0.79± 0.2 0.75± 0.2 0.75± 0.2 0.84± 0.16 0.77± 0.15 0.74± 0.21

Our Model IEM IEM Left 0.81± 0.17 0.79± 0.14 0.78± 0.18 0.87± 0.1 0.8± 0.15 0.77± 0.19
Our Model IEM IEM Right 0.76± 0.21 0.72± 0.21 0.71± 0.22 0.84± 0.15 0.73± 0.15 0.7± 0.23
Our Model IEM IEM Both 0.83±0.19 0.82±0.14 0.8±0.18 0.88±0.12 0.81±0.14 0.79±0.21

Se denotes sensitivity (aka recall), P+ is positive predictivity (aka precision), Ac is accuracy, F1(S1) is F1 score for S1 sounds, F1(S2) is F1 score
for S2 sounds, F1 is F1 score for all heart sound stages.

In our work, evaluation of the IEM signal was done by
directly comparing it to ground truth labels (on a sample-by-
sample basis) produced by a PCG signal rather than ECG
to obtain more accurate labels. Each predicted sample was
compared to the actual heart sound label which allows us
to separate every sample into the following categories: True
Positive, False Positive, False Negative and True Negative.
After this classification, the following metrics were calcu-
lated:

• Accuracy (Ac): The proportion of true predictions.
• Positive predictivity (P+): Represents how many posi-

tive predictions are true, otherwise known as precision.
• Sensitivity (Se): Represents how well true positives are

identified, otherwise known as recall.
• F1 Score (F1): The harmonic mean of sensitivity and

positive predictivity. F1 score is used in this context
as the systole and diastole have much longer durations
than S1 and S2, which can lead to misleading accuracy
scores. Increasing positive predictivity often leads to
decreasing sensitivity, so the F1 score combines these
two scores to indicate when both of these metrics have
improved. Due to this, we use F1 score as our primary
evaluation metric.

Deriving these metrics for every sample rather than over
relatively large windows allows a much stricter evaluation of
the segmentation method compared to the literature.

C. Segmentation results

We present our overall results in Table III which shows
that our model outperforms the Renna CNN [14] and the



Springer HSMM [19], with segmentation accuracy of 0.84±
0.05 and F1 score of 0.79 ± 0.05. The table also shows F1
specifically for S1 and S2 segmentation, showing that S1
segmentation has better performance than the other regions.
We also provide a visualisation of our results in Figure 6
where we compare the ground truth and predicted labels for a
segment of in-ear audio. This figure demonstrates that states
are rarely missed and predictions are highly accurate, proving
the effectiveness of our system. Additionally, in Figure 8 we
show the variance in F1 score for each participant, this shows
some variance per person with some participants performing
better than others, this could be caused by audio quality
in both PCG and IEM signals as well as individual body
composition.

To evaluate the performance of our model in noisy en-
vironments, we conducted a single-tailed t-test with 95%
confidence interval. We found that segmentation performance
did not decrease at 60 dB and 70 dB of background noise.
This is also illustrated in Figure 7, where performance was
comparable in all test cases, in fact, a small increase in F1
score was seen in the noisy test cases.

Fig. 6: Segmentation results showing the predicted labels
versus the ground truth labels for a segment of in-ear audio.

Fig. 7: Background noise results with F1 score in 60dB,
70dB and silent test cases, with error bars representing two
standard deviations

Fig. 8: F1 Score for each participant

V. DISCUSSION

We have proven, for the first time, the feasibility of
segmenting in-ear cardiac sounds into the four phases of
the cardiac cycle. We achieved high performance with an
accuracy of 84% and an F1 score of 79%. This performance
is especially high when considering our stricter sample-by-
sample evaluation method. This study also considers the
nature of the in-ear cardiac sounds, showing substantial
delays from chest heart sounds indicative of the in-ear sounds
being produced by pulses at the ear from blood movement.

However, our work has several limitations. Firstly, our
dataset only includes data from 11 participants. Future work
should collect data from more participants with a wider
range of ages and demographics to ensure generalisability
of our system. Additionally, our work assesses only cardiac
sounds from healthy participants. In the future, data should
be collected from participants with cardiovascular diseases
to ensure that segmentation can still be accurately done
in the presence of heart murmurs and other heart sound
abnormalities.

Our work takes the first step toward providing portable,
continuous, and out-of-hospital heart sound segmentation ca-
pabilities using in-ear microphones on earphones. Although
work is required to extend our findings to participants with
cardiovascular diseases, this work is a promising initial step
toward future heart disease detection and longitudinal cardiac
health monitoring with telemedicine.

VI. CONCLUSIONS

This work has shown, for the first time, that in-ear cardiac
sounds can be segmented into the four fundamental heart
sound phases with high accuracy. We have outlined a new,
stricter evaluation for heart sound segmentation designed for
IEM signals when evaluating with ground truth PCG labels.
We presented a new deep learning model for segmenting IEM
signals, which achieves accuracies of 84% and a 79% F1
Score. The properties of IEM signals have been presented,
along with a finding that IEM cardiac signals experience
a delay compared to their associated PCG signals. Further
research is needed into the cause of these delays and the
reason for their variation between participants.
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