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Abstract— Sensor-generated time series hold immense poten-
tial across the healthcare domain, yet present challenges in
labelling due to their sequential nature, which requires con-
sideration of context and temporal dependencies. Recognising
the costly nature of data labelling and that domain experts
may have limited technical expertise in model optimisation, we
introduce an approach to automate machine learning model
training for medical time series, enhancing analysis efficiency.

Our proposal first operates at the data input level via
adaptive data acquisition, facilitating the selection of highly-
informative samples for labelling. Further, it works at the
model level, through dynamic model refinement to optimise
the model on-the-fly by progressively exploring the possible
hyperparameter options and choosing the best combination at
each acquisition step, and through an automatic learning phase
to maximise the usage of any unlabelled samples. This results in
a robust learning strategy that continuously refines the model
with expanding data and human expertise. Demonstrated on
EEG, ECG, and IMU health signal classification, our method
outperforms baselines and the current state-of-the-art, while
reducing reliance on human input for model tuning. SALTS
enhances the applicability of machine learning to healthcare
time series, maximising the information gained through each
human annotation step in an automated way.

Keywords— Semi-Supervised Learning, Active Learning, Dy-
namic Data Acquisition, Hyperparameter Optimisation

I. INTRODUCTION

ML models are increasingly popular in healthcare, where
they support personalised monitoring, diagnostics, and per-
formance tracking. However, medical experts face significant
challenges due to the need for large amounts of labelled
data. Sensors data are frequently unlabelled [1] and thus
require effort to prepare. This often acts as a bottleneck to
the adoption of ML in biosignal applications, as the ML
workflow from data annotation to model design and training
is not sufficiently abstracted and automated. Labelling raw
medical data and integrating them into the ML pipeline is a
laborious process that needs close supervision by experts [2].

Prior work has explored human-in-the-loop strategies for
making the most of a human annotation budget through
Active Learning (AL) [1], [3]. However, such approaches of-
ten assume a fixed hyperparameter (HP) selection occurring
before the data labelling, or a tuning step that remains static
throughout the acquisition process: both result in suboptimal
performance due to their inability to adapt hyperparameters
during the acquisition. Additionally, an approach that aims
to utilise information from unlabelled data, semi-supervised
learning, often does not fully leverage domain expertise,
overlooking the knowledge that medical experts can intro-
duce [4]. Active semi-supervised learning [5] offers a step
towards addressing this, though the need for manually tuning
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model hyperparameters at each data acquisition introduces
complexity in addition to the laborious data labelling [2].

Healthcare time series, unlike other data modalities where
labelling can be relatively straightforward, often pose a
challenge in annotation, as this requires considerable medical
expertise from labellers [6]. Their sequential nature also
complicates the labelling [7], leading to bottlenecks in model
development. This makes it essential to automate the ML
pipeline, focusing on efficiently labelling high-value data
while leveraging the inherent structure of unlabelled data.

We introduce SALTS, an end-to-end training solution for
healthcare time series that makes the most of a user’s anno-
tation budget. We first adopt an adaptable data acquisition
strategy to interactively prompt users to selectively label
new data [6]. At the same time, we delegate hyperparameter
tuning [8] to a dedicated refinement step, to automate the
key task of choosing the most informative hyperparameters
of the learning process. Subsequently, we use an automated
training phase inspired by semi-supervised learning [4] to
enhance predictions by taking into account the latent mani-
fold on which the data lie through generating pseudo-labels
for unlabelled samples, allowing the model to self-finalise.
SALTS offers greater automation compared to baselines, and
only requires initial dataset labelling from users.

Our main contributions are summarised as follows:
• We bring hyperparameter refinement concepts to an AL-

inspired adaptive data acquisition process, by automati-
cally tuning model hyperparameters iteratively with the
data labelling. This requires much less human input
pertaining to the model design in an AL setting.

• Our technique makes the most of a pre-set annotation
budget, by having progressively more highly-tuned ver-
sions of the model being queried for informative data.
This reduces the burden on data labellers, while max-
imising the value extracted from each labelled instance.

• We use unlabelled data through semi-supervised learn-
ing after training on as many labelled data as possible,
enhancing performance with no additional labelling.

• We demonstrate SALTS in both binary and multi-class
time series classification, using electroencephalography
(EEG), electrocardiogram (ECG), and inertial measure-
ment unit (IMU) signals. Compared to alternatives, it
brings improvements up to 9% in accuracy in EEG data,
up to 6% in ECG data, and up to 22% in IMU data.

II. RELATED WORK

Active Learning. Advances in AL literature enable al-
gorithms to achieve higher levels of accuracy given a con-
strained annotation budget, by iteratively selecting the data



points that need to be labelled [6]. Prior work has examined
human-in-the-loop strategies in medical signal classification
for ECG and EEG recordings [9] and human activity recog-
nition (HAR) [3], showcasing its efficacy in reducing an-
notation costs. However, the state-of-the-art cannot integrate
human input in the labelling without pre-configured model
hyperparameters, nor can it leverage unlabelled data.

Semi-Supervised Learning. Towards further incorporat-
ing information from unlabelled time series, the area of
semi-supervised learning [4] is of interest. This can leverage
the underlying manifold of unlabelled samples to improve
model performance and generalisation. It, thus, makes the
most of manually-labelled data, rendering it a cost-effective
and scalable approach for model training on unlabelled
data. Prior work has highlighted the pivotal role of semi-
supervised learning in human activity recognition (HAR)
tasks [10], but while this effectively articulates the concept,
it may not capture the expertise of medical professionals.
This is something that only active semi-supervised learning
has achieved to date [11], which combines the power of
AL and semi-supervised learning for better results. Both
concepts are designed to work in the presence of unlabelled
data [12], yet overlook the challenge of hyperparameter
tuning. Consequently, users face the cumbersome task of
selecting the best model hyperparameters by just picking a
set a-priori, which adds complexity to the already-intricate
process of data labelling. This underscores the necessity of
not only exploring the hyperparameter space systematically,
but also incorporating both human and model insights.

Hyperparameter Optimisation. This is a key aspect of
AutoML [13] and can automatically select the best parame-
ters for a given model in a principled manner, tailoring them
to varying tasks [8]. The use of AutoML has been explored
for time series [14] and for healthcare use cases [15], yet
the hyperparameter tuning of the AL process remains under-
explored, especially as AL introduces further complexity to
a domain expert like a practitioner that may have little ML
knowledge. Automating ML stages otherwise needing human
intervention, like hyperparameter tuning, is imperative.

AutoDAL. Prior literature looking at boosting AL with
hyperparameter tuning is similarly limited. The most relevant
study is AutoDAL [16], which is targeted at a distributed
computing setup, and involves partitioning data across ma-
chines, building independent models, and independently
querying for labels based on partial views of the data, thus
departing from the generality of the AL task. It also uses a
costly regularisation that is based on a radial basis function
kernel, whose hyperparameters are iteratively tuned using a
combination of a genetic algorithm [17] and a generating
set search [18]. Instead, our approach is based on Bayesian
optimisation [19] and is able to tune a wider range of
hyperparameters, including the discrete sets of activation
functions and optimisers [20]. Moreover, calculating the
kernel similarity matrix in AutoDAL is of O(n2) space
and time complexity, where n is the dataset size. This
is not scalable, and means that for the ECG dataset (see
Section IV), AutoDAL would need over 70GB of GPU

Fig. 1. Overview of SALTS. A portion of the most uncertain data is labelled
at the adaptive data acquisition phase, while the model’s hyperparameters are
continuously refined. Then, a fully automated phase takes over, where the
model pseudo-labels remaining samples, and incorporates them for training.

memory to run on a single worker machine. This shows
the degree to which AutoDAL is tied to a multi-worker
approach, which limits its generality. Its authors do not
offer an implementation of AutoDAL, but we use the largest
dataset that they use to perform a direct comparison on ECG
sensor signal classification. In this comparison, our method
outperforms AutoDAL, achieving a notable improvement in
accuracy with the same amount of labelled samples.

Weak Supervision. Other work using unlabelled data
and human annotations, has looked at weak supervision
to automatically generate training samples from medical
data [21]. Work leveraging noisy heuristics and distant
supervision [22] has also combined labelling functions and
probabilistic label aggregation, which iteratively refines the
labelling functions. However, designing effective labelling
functions and handling the probabilistic nature of the labels
can be challenging [23]. Additionally, the reliance on weakly
supervised labels may introduce substantial noise [23], which
can be detrimental in health data. The effort to develop
labelling functions for biosignals often outweighs the savings
in manual labelling, making the approach less effective.

III. THE SALTS FRAMEWORK

In this section we discuss our proposed methodology. This
features an adaptive training phase operating on an initial
small part of the available data by requesting the relevant
labels by the user, and an automated part that operates
subsequently on unlabelled data with no further user input.

A. System Overview
Dynamic User Input Phase. SALTS begins with an

adaptive data acquisition, based on the pervasive assumption
in AL literature that there is an initial core set that is already
labelled [24], [6]. Once a limited number of samples has
been labelled by the user, a preliminary HP selection phase
refines the model configuration. The AL loop then smartly
selects samples for labelling through uncertainty sampling,
employing hyperparameters from the last optimisation pass.
This aims to reduce the required human effort by delegating
parts of the process to the automated algorithm. This process
continues until the maximum annotation budget is expended,
while also running a set of search space exploration trials
in between the label acquisition iterations, ensuring that the
hyperparameters of the model are continuously tuned.



Data: Unlabelled data DU , initial hyperparameters H
Output: Labelled data DL, trained model ML

Dtemp ← small initial part of DU

Dtemp ← request user to label Dtemp

DL ← DL ∪Dtemp

H ← average values in range of each hyperparameter
ML ← model.train(DL)
while hyperparameter trials < initial trials limit do

H ← use ML to explore search space
end
while active learning iteration ≤ labelling threshold do

Dtemp ← most informative small part of DU

Dtemp ← request user to label Dtemp

DL ← DL ∪Dtemp

ML ← model.train(DL)
while hyperparameter trials < per-loop limit do

H ← use ML to explore search space
end

end
while semi-supervised iteration ≤ threshold do

Dtemp ← use ML to infer labels for samples in DU

and pick those with a high confidence
Dtemp ← automatically pseudo-label Dtemp

DL ← DL ∪Dtemp

ML ← model.train(DL)
end

Algorithm 1: Proposed SALTS Approach.

Automated Training Phase. This commences without an
explicit initialisation, utilising the data samples that have
previously been labelled in the dynamic input phase. Pseudo-
labelling is introduced to perform an inference pass on the
unlabelled samples and to automatically assign labels to
high-confidence predictions on those unlabelled samples [4].
The model is then trained on both the pseudo-labelled and
the previously-labelled data, facilitating the integration of
valuable information from unlabelled samples that an AL
solution alone would not be able to capture. This strikes a
balance between user involvement and automated processes.
B. Adaptive Data Labelling and Hyperparameter Tuning

To start the training, our system begins by selecting a
small portion of the training data at random and queries the
oracle for providing the labels for those samples, inspired by
the common step that applies when using AL [24], [6]. The
oracle refers to the human-in-the-loop doing the labelling [6],
which in our case is performed by an automatic system for
testing purposes as we have access to both the labelled and
the unlabelled versions of the datasets for our case studies.

Data Labelling. Following the initial labelling, the learner
in each iteration uses uncertainty sampling [25], enabling
progressively more informed decisions on which samples to
query the user for labelling next. The uncertainty of each
classification using this method is defined by 1− P (x̂ | x),
where x is the instance to be predicted and x̂ is the most
likely prediction. While we employ uncertainty sampling in
this study, the AL acquisition method that can be used by
SALTS is flexible and could be adapted to other selection
strategies. Similarly, any suitable model can be integrated
within our SALTS framework. Once the user annotates a
batch of samples, this batch is added to the labelled data
pool, and the process repeats in subsequent iterations. A
generic AL approach would continue this cycle [6]; however,

our framework augments the process by tuning the model
hyperparameters, allowing the model to be fine-tuned.

Hyperparameter Space Exploration. To tune the hyper-
parameters, we employ Bayesian optimisation [19], which
systematically explores the hyperparameter space by lever-
aging information from prior trials to guide subsequent
ones [20]. Unlike alternatives like random search that focus
on multiple local optima, Bayesian optimisation aims to
identify optimal hyperparameters more reliably by focusing
on promising regions of the search space, often resulting in
improved model performance consistency [19]. This provides
a structured alternative to less guided search strategies.

The hyperparameters we tune in our solution are strategi-
cally diverse. Specifically, the tuner automatically picks the
best Conv1D activation function amongst options including
eLU [26], ReLU [27], Leaky-ReLU [28] (which facilitates
a small gradient for more advanced learning), SeLU (Scaled
eLU) [29], and GeLU (Gaussian eLU) [30]. The tuning then
extends to the pool size of the MaxPool1D layer, tailoring
the network’s ability to extract meaningful features. It also
tunes the activation function of the dense layer amongst
ReLU [27], Sigmoid [31], and TanH, offering flexibility
in shaping the network’s response to different data char-
acteristics. The optimisation process also selects the most
suitable optimiser from a spectrum including Adam [32],
AdaDelta [33], AdaGrad [34], AdaMax [32], and RmsProp.

C. Automated Training on Unlabelled Data
Following the adaptive training phase, our solution stops

querying for more labels. At this point, it has learned enough
information such that it can confidently classify unlabelled
samples. Thus, to train on as many remaining samples as
possible, our system proceeds with self-training, a widely-
used type of semi-supervised learning [4]. This step has no
initialisation phase, since a key part of the dataset has already
been annotated. Using pseudo-labelling, SALTS picks high-
confidence predictions and auto-assigns to them the relevant
classification labels. For this, we follow the common case
of letting the pseudo-labelling run for up to 20 iterations for
convergence [35], [36], or until no more high-confidence pre-
dictions are available (whichever comes first). This lets the
algorithm to train on the pseudo-labelled samples and then
utilise its knowledge to pseudo-classify further samples [4].

D. Focal Loss for Addressing Data Imbalance
We use a focal loss function [37] to address class imbal-

ance in the data, as it is designed to emphasise the harder,
misclassified samples at each epoch, potentially also mitigat-
ing bias by skewed class distributions [38]. We implement
focal loss using the relevant PyPI TensorFlow package [39]
to better use the unlabelled data. Focal loss operates by
adding a modulating factor (1 − pt)

γ to a cross-entropy
loss, in order to dynamically scale it and focus on hard
samples [38]. When it uses γ = 0, then it behaves in the
same way as a cross-entropy loss. To automate the process of
selecting γ, in SALTS we set the HP tuner to automatically
optimise this value and ensure that the scaling factor can
rapidly let the model focus on informative samples.



IV. CASE STUDIES

In this section, we present the datasets used in our eval-
uation. Each dataset is diverse within the health domain,
and classification is performed on a sample-by-sample basis,
treating each sample independently. The raw time series
signals were utilised as provided, thus incorporating prepro-
cessing steps applied by the original dataset creators, but
without any further denoising or feature engineering steps.

EEG Signal Classification. For our first application, we
test our proposed method on electroencephalography (EEG)
health data. We use the Epileptic Seizure Recognition (ESR)
dataset of the UCI ML Repository [40], which is a dataset of
EEG recordings modelled as time series. It features 11 500
labelled samples, with each one of them containing 178
attributes. The labels attached to each sample identify if
the subject suffered from epileptic seizure or not, further
classifying the cases in which the subjects did not suffer
in four classes depending on whether they had their eyes
open or closed during the data collection process for instance.
As the boundaries among the four non-epileptic classes are
insignificant, this dataset is used for binary classification,
classifying the epileptic seizure class against the rest [40].

ECG Signal Classification. For our second application,
we use an electrocardiogram (ECG) heartbeat categorisation
dataset [41], [42] from the PhysioNet MIT-BIH Arrhyth-
mia database [43]. This contains 109 446 samples and is
characterised by a sampling frequency of 125Hz, with each
signal segmented into 188 points. Its biosignals encompass
diverse cardiac events, classified into the classes of normal,
supraventricular, ventricular, fusion, and unknown beats.

IMU Signal Classification. For our third application,
we evaluate on Inertial Measurement Unit (IMU) health
data for human activity recognition. Specifically, we use the
accelerometer time series of the Motion Sense dataset [44],
which were captured using the accelerometer sensors of a
smartphone. This dataset consists of recordings collected
from 24 participants who represented diverse demographics,
and who were asked to perform 6 activities across 15 trials.
While the measurements are associated with specific classes
based on the activities performed, it is important to note that
they do not involve traditional human annotation. Instead,
each participant is assigned a class label based on their
activity during the data collection. Despite this distinction,
we include this dataset to simulate the AL process on a
further scenario. The samples have a sampling rate of 50Hz,
and we use them for multi-class classification to distinguish
activities between six classes: walking, walking downstairs,
walking upstairs, jogging, sitting, and standing.

V. EXPERIMENTAL SETUP

We now discuss our experimental setup, baselines, and the
results in each case. For our evaluation, we run three repeated
trials for each experiment and report their average values.

A. Baselines
To test the efficacy of SALTS we establish some critical

baselines: an active learning baseline, a semi-supervised

learning baseline, an AutoML baseline, and a hyperparam-
eter tuning baseline. AL strategically selects informative
instances for user annotation, expanding the labelled set
in an intelligent manner, while semi-supervised learning
leverages both user-labelled and unlabelled data to enhance
model performance. On the other hand, both AutoML and
hyperparameter tuning ensure that the model’s configuration
is tuned, but they require labelled data to operate. Across all
baselines and our system, we run two sets of experiments:
one where we label 10% of the samples, and one where we
label 20%. These values have been chosen to showcase the
alternatives’ behaviour at different labelled data percentage
allowances, while relevant work like AutoDAL [16] uses the
same maximum labelling percentage of 20%. By employing
these baselines and providing them all with the same percent-
age of user-labelled samples, we aim to assess our method’s
contribution with the same consistent input.

1) Active Learning Baseline: This baseline uses a stan-
dard AL paradigm, and is built using the modAL frame-
work [45]. For its query strategy, we have chosen an
uncertainty-based sampling method [25] that is the same as
the one used in SALTS, towards a fair comparison. For the
AL implementation, we have set the learner to initially ask
the user to annotate an arbitrarily-chosen 1% of the samples
in each dataset (seed 111), and then to query them for more
labels in a loop until it is fitted to a maximum of 10% or 20%
of the dataset (in different experiments). At each iteration, the
learner chooses 1% of the samples, corresponding to the most
uncertain each time, and the maximum percentage is set so
that user does not annotate more samples with AL than with
the other baselines. The shortcomings of this baseline are that
the user needs to manually set the model hyperparameters
to fine-tune them for each task, and that the model is only
fitted to as many samples as the user chooses to label (i.e.,
10% or 20% in our case). For these AL experiments, we use
the same model hyperparameters as in the semi-supervised
learning baseline (Section V-A.2) for a fair comparison.

2) Semi-Supervised Learning Baseline: For this baseline,
the model is initially given the maximum allowed number
of user-supplied labels (either 10% or 20%), and then uses
self-training, which is a widely-used type of semi-supervised
learning [4], [36] that iteratively assigns pseudo-labels to un-
labelled samples. The system proceeds with pseudo-labelling
the samples whose classification can be inferred with a con-
fidence of > 0.9, choosing this high threshold to ensure that
the system only pseudo-labels true positive and true negative
samples. Despite leveraging both labelled and unlabelled
data, the part of the data which the user is asked to initially
label is arbitrarily chosen, so it is rarely the most diverse
one. Additionally, users still need to manually set the model
hyperparameters. To more strictly put SALTS to the test, we
have chosen these hyperparameters carefully for the baseline,
unlike how a non-ML expert would choose them in the real
world. Specifically, the TensorFlow Keras model used in
this semi-supervised baseline starts with a 1D convolutional
layer, followed by batch normalisation and max pooling to
extract hierarchical features and reduce dimensionality. A



convolutional layer is then applied, again followed by max
pooling. The subsequent layer is an LSTM layer with 16
units, to capture long-range dependencies. Following this, a
dense layer with a ReLU activation is included and the final
output layer uses a softmax activation for classification. The
model is trained using the Adam optimiser [32] and a focal
loss function (see Section III-D), as this combination is the
most suitable for integer-encoded labels.

3) AutoML Baseline: This baseline uses the Auto-
SKLearn framework [46], an open-source and widely-used
AutoML solution built on top of scikit-learn. We choose a
randomly-picked (seed 111) 10% or 20% of the data that
are manually labelled before feeding them to the system,
and then rely on Auto-SKLearn for model development
and training. This uses efficient Bayesian optimisation and
automatically takes into consideration the performance of
previous models on similar types of data for better results.
It first initialises its Bayesian optimiser using meta-learning,
and then evaluates a set of candidate models on the train-
ing dataset. Subsequently, it creates ensembles from these
models and attempts to identify the optimal one.

4) Hyperparameter Tuning Baseline: In this baseline, we
use a randomly-picked (seed 111) 10% or 20% of the data
for manual labelling by the user, and then invoke Keras
Tuner [47] to fit them to a neural network while optimising
its hyperparameters. The model starts with a 1D convolu-
tional layer with a dynamically-chosen activation function
(eLU, ReLU, Leaky-ReLU, SeLU, or GeLU), and then uses
a MaxPool1D layer, where the optimal pool size is automat-
ically determined to enhance feature extraction capabilities.
Another 1D convolutional layer follows this, maintaining
flexibility in activation functions. Batch normalisation and
max-pooling layers are incorporated for regularisation and
downsampling with a dynamically-chosen pool size, and
then another convolutional layer with similar configurations
follows. The model ends with a dense layer being added
and with its activation function (ReLU, Sigmoid, or TanH)
subject to tuning. The optimisation then selects the most ap-
propriate optimiser (Adam, AdaDelta, AdaGrad, AdaMax, or
RmsProp) and the most appropriate value for the modulating
factor γ of the focal loss function (see Section III-D). This
baseline falls behind on the data input level as the labelled
instances are arbitrarily chosen, and –similarly to AL– the
model is not fitted to more samples than the user labels.

B. SALTS Algorithm Settings
The model architecture used in SALTS is the same as that

of the hyperparameter tuning baseline of Section V-A.4, and
the percentage of the data labelled per iteration is the same
as in the AL baseline of Section V-A.1 for a fair comparison.
The further settings we apply are described below.

Hyperparameter Optimisation Trials. For the data la-
belling phase of SALTS, we use the modAL framework [45].
Ahead of running it, we needed to determine the optimal
number of hyperparameter optimisation trials per iteration
of the joint data labelling and hyperparameter tuning phase
(see Section III-B). We set these to < 3, informed by a

TABLE I
RESULTS FROM THE EEG CLASSIFICATION EXPERIMENTS.

Accuracy Precision Recall F1 Score

10% Labelling Budget

Active Learning 0.882 ± 0.024 0.813 ± 0.026 0.915 ± 0.015 0.844 ± 0.027

Semi-Supervised 0.965 ± 0.001 0.971 ± 0.003 0.920 ± 0.006 0.943 ± 0.003

AutoML 0.960 ± 0.002 0.953 ± 0.005 0.919 ± 0.011 0.934 ± 0.003

HP Tuning 0.962 ± 0.006 0.963 ± 0.011 0.918 ± 0.019 0.938 ± 0.010

SALTS Proposal 0.978 ± 0.003 0.976 ± 0.007 0.955 ± 0.011 0.965 ± 0.005

20% Labelling Budget

Active Learning 0.893 ± 0.014 0.825 ± 0.015 0.921 ± 0.008 0.856 ± 0.015

Semi-Supervised 0.976 ± 0.001 0.978 ± 0.002 0.945 ± 0.004 0.961 ± 0.002

AutoML 0.965 ± 0.003 0.956 ± 0.001 0.933 ± 0.007 0.944 ± 0.004

HP Tuning 0.969 ± 0.007 0.975 ± 0.003 0.927 ± 0.021 0.948 ± 0.013

SALTS Proposal 0.983 ± 0.003 0.984 ± 0.003 0.962 ± 0.009 0.972 ± 0.006

comparative study using 20% of the ECG dataset’s samples,
where the best results were obtained with these values,
achieving for instance an average accuracy of 0.969 and
an average recall of 0.756. In our analysis, we tested the
performance both with fewer (1) and more trials (4) per
iteration. The experiment with fewer trials resulted in an
accuracy of 0.961 and a recall value of 0.700, while the
experiment with more trials achieved an accuracy of 0.966
and a recall of 0.773, indicating that additional trials beyond
a certain point yield severely diminishing returns, if any, and
just consume more computational resources.

Semi-Supervised Settings. For the automated training
phase of SALTS that is inspired by semi-supervised learning,
the algorithm iteratively pseudo-labels high-confidence sam-
ples with a confidence > 0.9, choosing the same threshold as
the semi-supervised baseline towards a fair comparison. In
our method, the model hyperparameters are tuned between
each data acquisition step, to ensure that the process coop-
erates more effectively with the data labelling loop.

VI. EVALUATION RESULTS

All metrics for our experiments have been calculated on
the test set and the results can be found in Tables I, II,
and III. The study was approved by the ethics committee of
the Department of Computer Science & Technology of the
University of Cambridge (ethics review #2352).

EEG Classification. In EEG data, SALTS outperforms
alternatives in all settings. In test accuracy, it reaches 0.978
when annotating 10% of the EEG samples, outperforming
the semi-supervised (0.965), AutoML (0.960) and hyperpa-
rameter tuning (0.962) baselines, and achieving a nearly 10%
increase in accuracy compared to the AL baseline (0.882).
This trend continues to hold when annotating 20% of the
EEG samples, as SALTS reaches an accuracy of 0.983,
surpassing the semi-supervised (0.976), AutoML (0.965) and
hyperparameter tuning (0.969) baselines, and achieving a 9%
increase in accuracy compared to the AL baseline (0.893).

SALTS outperforms baselines in other widely-used metrics
too, like the recall. With a 10% labelling budget, it reaches
recall values beyond 0.95, while baselines range from 0.915
to 0.920. This indicates that it predicts correctly most of
the relevant results, in contrast to the baselines. This trend



TABLE II
RESULTS FROM THE ECG CLASSIFICATION EXPERIMENTS.

Accuracy Precision Recall F1 Score

10% Labelling Budget

AutoDAL [16] ≈0.93 - - -
Active Learning 0.918 ± 0.009 0.559 ± 0.063 0.515 ± 0.016 0.516 ± 0.029

Semi-Supervised 0.930 ± 0.015 0.726 ± 0.030 0.508 ± 0.039 0.543 ± 0.040

AutoML 0.960 ± 0.002 0.915 ± 0.011 0.723 ± 0.022 0.792 ± 0.018

HP Tuning 0.903 ± 0.027 0.632 ± 0.117 0.473 ± 0.109 0.491 ± 0.078

SALTS Proposal 0.962 ± 0.003 0.885 ± 0.025 0.732 ± 0.020 0.770 ± 0.026

20% Labelling Budget

AutoDAL [16] ≈0.96 - - -
Active Learning 0.916 ± 0.020 0.553 ± 0.068 0.482 ± 0.067 0.495 ± 0.062

Semi-Supervised 0.950 ± 0.004 0.798 ± 0.093 0.586 ± 0.004 0.599 ± 0.018

AutoML 0.966 ± 0.000 0.924 ± 0.001 0.764 ± 0.001 0.827 ± 0.001

HP Tuning 0.903 ± 0.081 0.739 ± 0.057 0.629 ± 0.079 0.628 ± 0.135

SALTS Proposal 0.969 ± 0.001 0.925 ± 0.021 0.756 ± 0.007 0.796 ± 0.009

in the recall continues when experimenting with a 20%
labelling budget too: SALTS reaches the best value of 0.962,
outmatching all baselines. This demonstrates that SALTS
uncovers information for EEG samples that each of the
alternatives would not do alone given the same human effort.

ECG Classification. In ECG classification, SALTS
reaches an accuracy of 0.962 with a 10% user-labelling limit
and an accuracy of 0.969 with a 20% limit. For the 10%
threshold, this shows that SALTS achieves at least a 6%
increase in accuracy compared to the HP tuning baseline,
and a 4% and 3% increase compared to the AL and semi-
supervised baselines, respectively. Similarly, for the 20%
threshold, SALTS achieves a 6% accuracy increase compared
to the HP tuning baseline, a 5% increase compared to the AL
baseline, and a 2% increase compared to the semi-supervised
baseline. Of note, SALTS and the AutoML baseline perform
similarly in accuracy, indicating that model parameters have
the most impact for this data. In terms of the precision,
SALTS outperforms all other methods when provided with
a 20% labelling budget, reaching a value of 0.925.

In comparing SALTS with AutoDAL [16], when labelling
a total of 10% of the ECG samples, we achieve an accuracy
of ≈96%, compared to AutoDAL’s ≈93%. This indicates that
in settings where annotating unlabelled samples and adjust-
ing model parameters is expensive, and medical experts can
only spend fewer hours doing so, SALTS reaches superior
accuracy with a single worker machine. When labelling 20%
of the samples, we achieve an accuracy of ≈97%, compared
to AutoDAL’s ≈96%. Thus, we outperform the state-of-the-
art, without the computational complexity of a distributed
system. This is imperative when compute resources are more
scarce, and more effectively reflects the real-world need of
medical experts wanting to streamline ML model training.

IMU Classification. In HAR with IMU data, SALTS
outperforms alternatives in all cases. It reaches an accuracy
of 0.911 with a 10% data labelling limit, outperforming the
hyperparameter tuning (0.799), AutoML (0.757) and semi-
supervised (0.865) baselines, while reaching a significant
22% improvement with respect to the AL baseline (0.690).
Similarly, for the 20% labelling threshold it reaches an
accuracy of 0.925, thus exceeding the performance of the

TABLE III
RESULTS FROM THE IMU CLASSIFICATION EXPERIMENTS.

Accuracy Precision Recall F1 Score

10% Labelling Budget

Active Learning 0.690 ± 0.045 0.507 ± 0.025 0.532 ± 0.041 0.507 ± 0.035

Semi-Supervised 0.865 ± 0.012 0.814 ± 0.018 0.776 ± 0.012 0.771 ± 0.025

AutoML 0.757 ± 0.013 0.673 ± 0.048 0.626 ± 0.014 0.629 ± 0.022

HP Tuning 0.799 ± 0.028 0.685 ± 0.164 0.685 ± 0.068 0.654 ± 0.091

SALTS Proposal 0.911 ± 0.017 0.884 ± 0.030 0.903 ± 0.016 0.884 ± 0.023

20% Labelling Budget

Active Learning 0.722 ± 0.060 0.534 ± 0.110 0.581 ± 0.071 0.552 ± 0.088

Semi-Supervised 0.874 ± 0.016 0.858 ± 0.023 0.854 ± 0.013 0.842 ± 0.018

AutoML 0.821 ± 0.008 0.729 ± 0.032 0.705 ± 0.007 0.699 ± 0.010

HP Tuning 0.857 ± 0.030 0.801 ± 0.043 0.790 ± 0.062 0.790 ± 0.054

SALTS Proposal 0.925 ± 0.015 0.895 ± 0.011 0.912 ± 0.013 0.898 ± 0.015

hyperparameter tuning (0.857), the AutoML (0.821), the
semi-supervised (0.874), and the AL (0.722) baselines.

In terms of the precision, recall and the F1 score, SALTS
consistently reaches top values. Yet, the weaker performance
of the baselines is also apparent in another, less quantitative
area. The AL baseline requires too much effort from the user
to tune its hyperparameters and is often less effective when
not enough labels are supplied by the labellers, while absence
of direct input from medical professionals in semi-supervised
models also raises concerns about their suitability for real-
world applications. The same applies for the AutoML and the
hyperparameter tuning baselines, which cannot function on
unlabelled data. This shows that each alternative approach is
not sufficient alone, and highlights the importance of SALTS.

SALTS Performance. Across the examined case stud-
ies, SALTS performs best with a 20% labelling budget,
dynamically choosing the queried data and hyperparameter
combinations. For instance, in one of the trials for the ECG
experiment with a 20% labelling budget, the system selects
Leaky-ReLU amongst the possible activation functions for
the 1D convolutional layers (see Sections V-A.4 and V-B),
and 3 as the best pool size for the various MaxPool1D layers.
Subsequently, it chooses ReLU as the best activation function
for the penultimate dense layer, and continues with the tuning
of 1.0 as the most effective γ value for the focal loss function,
before finishing with the selection of Adam as the most
appropriate optimiser. This dynamic approach, coupled with
selecting informative samples, boosts SALTS’ performance.
The amount of labelled data required for SALTS to con-
sistently outperform baselines is 10%, and our experiments
indicate that its performance generally plateaus once 30% of
the available samples have been annotated.

SALTS vs. the State-of-the-Art. As per Table II, SALTS
outperforms AutoDAL (discussed in Section II) for the same
amount of total labelled samples in the ECG data, achieving
an increase of ≈3% in accuracy for a labelled data allowance
of 10%, and an increase of ≈1% for an allowance of 20%.
Similarly, it outperforms the state-of-the-art in AutoML too
for most metrics and cases, achieving an increase of ≈2%
in accuracy in the EEG dataset, as well as an increase of
≈15% for a labelled data allowance of 10% and an increase
of ≈10% for an allowance of 20% in the IMU dataset.



SALTS Runtime. Unlike the baselines, which require
manual intervention for tasks such as hyperparameter selec-
tion, SALTS automates these. Thus, comparing their runtime
would overlook the additional human hours that the baselines
require. Nevertheless, it is worth noting that SALTS needs
≈3 hours when operating on 20% of the samples of the ECG
data. This scales approximately linearly with dataset size and
sampling rates, and is based on testing performed on a hosted
Jupyter notebook service that uses an NVIDIA GT 710,
while having access to 12GB of its RAM. For context, the
AL baseline takes ≈0.5 hour, the semi-supervised baseline
≈2.5 hours, the AutoML baseline ≈1 hour, and the HP
tuning ≈2 hours. These come with an uncertainty of ±0.5
hour, and can fluctuate depending on the hardware.

VII. CONCLUSION

SALTS is a novel approach for practical learning on
unlabelled healthcare time series, incorporating both model
and human expertise to minimise user intervention. SALTS
identifies the most informative samples and queries users to
label them on the fly, while simultaneously automating a key
part of model development through hyperparameter tuning. It
proceeds to automatically infer the labels for high-confidence
samples, letting the model be fitted to a significant amount
of additional unlabelled samples with no further user input.
We have demonstrated SALTS in both binary and multi-class
classification of EEG, ECG, and IMU data, showcasing its
applicability to a wide range of healthcare use cases.
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