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Abstract. Epidemics-inspired techniques have received huge attention
in recent years from the distributed systems and networking communi-
ties. These algorithms and protocols rely on probabilistic message repli-
cation and redundancy to ensure reliable communication. Moreover, they
have been successfully exploited to support group communication in dis-
tributed systems, broadcasting, multicasting and information dissemina-
tion in fixed and mobile networks. However, in most of the existing work,
the probability of infection is determined heuristically, without relying on
any analytical model. This often leads to unnecessarily high transmission
overheads.
In this paper we show that models of epidemic spreading in complex
networks can be applied to the problem of tuning and controlling the
dissemination of information in wireless ad hoc networks composed of
devices carried by individuals, i.e., human-based networks. The novelty of
our idea resides in the evaluation and exploitation of the structure of the
underlying human network for the automatic tuning of the dissemination
process in order to improve the protocol performance. We evaluate the
results using synthetic mobility models and real human contacts traces.
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1 Introduction

Mobile human networks (i.e., ad hoc networks composed by devices carried by
individuals) can be frequently and temporarily disconnected. Traditional routing



protocol, including the basic flooding, fail to offer any sort of reliability when this
happens. Epidemic-style protocols instead, being store and forward approaches
and inherently delay tolerant [11], allow for communication in dynamic and mo-
bile networks, also in presence of temporary disconnections or network partitions.
A desired feature of the protocols is the ability to control the information spread-
ing. For example, in emergency scenarios, when the network infrastructure has
failed, it may be sufficient to send the messages only to a percentage of the rescue
team members (e.g., 50% of the doctors). In other situations, there might be a
need to reach all the deployed emergency personnel with the minimum overhead
to avoid to collapse the network. Up to our knowledge, no solutions exploiting
the minimal necessary and sufficient number of replicated messages, given the
emergent network structure to guarantee a desired level of reliability exist.

The analogy between information dissemination in mobile systems and epi-
demics transmission in social systems is apparent. Information spreading can be
modelled with a simple model for disease spreading, the so-called SIR (Susceptible-
Infected-Recovered) model [2]: a host is initially Susceptible to new information,
then it becomes Infected when he actually receives it, and finally it can stop
the store-and-forward dissemination process becoming Recovered and, therefore,
immune to further infections. Epidemics-inspired techniques have received huge
attention in recent years from the distributed systems community [9]. These al-
gorithms and protocols rely on probabilistic message replication and redundancy
to ensure reliable communication. Epidemic techniques were firstly exploited to
guarantee consistency in distributed databases [8]. More recently, these algo-
rithms have been applied to support group communication in distributed sys-
tems. In particular, several protocols have been proposed for broadcasting, mul-
ticasting and information dissemination [10] in fixed networks.

A few attempts have been made to apply epidemic based techniques for
information dissemination in mobile ad hoc networks [17, 7, 3]. However, existing
epidemic algorithms do not permit to control the spreading of the information
depending on the desired reliability and the network structure. This is partly
due to the fact that these approaches are fundamentally based on empirical
experiments and not on analytical models: the input parameters that control
the dissemination process are selected by using experimental results and are not
based on any mathematical model. This implies that the message replication
process cannot be tuned with accuracy in a dynamic way: for instance, it is not
possible to set the parameters of the dissemination process in order to reach
only a certain desired percentage of the hosts in a prefixed amount of time.
Moreover, these approaches do not exploit the information on the underlying
network topology [1, 4, 5]. The use of epidemic spreading models based on the
structure of the underlying network allows us to devise accurate mechanisms for
controlling the message replication process. In other words, the number of the
replicas in the network and their persistence can be tuned to achieve a desired
delivery ratio.

In [15] we have presented initial results based on the so-called SIS (Susceptible-
Infected-Susceptible), a model of disease spreading not considering the recovered
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state. In this paper, we propose a refined version of the algorithm based on a SIR
model. The use of SIR, in coordination with the ability to decide to constrain
the epidemy to a percentage of hosts, allows us to lower the message overhead
considerably with respect to both our previous work and other approaches, as
shown in our results section. We present an extended evaluation based on syn-
thetic models and real traces of connectivity of the Dartmouth College [14] and
National University of Singapore [16] campuses.

This paper is structured as follows. In Section 2 we describe the implementa-
tion of the middleware interface supporting the epidemic dissemination process.
Section 3 presents briefly the models of epidemic spreading in complex networks
that are at the basis of our dissemination algorithm. The implementation issues
are discussed in Section 4. The proposed dissemination algorithm is evaluated
analytically and by means of simulations in Section 5. Section 6 concludes the
paper.

2 Primitives for Controlled Epidemic Dissemination

Our goal is to provide a set of primitives that allows developers to tune infor-
mation dissemination in human networks according to their specific application
requirements. Our aim is to ensure the spreading of information from a source
A to a certain percentage Ψ of the mobile hosts of the system in a given interval
time defined by a timeout t∗.

We introduce a primitive for probabilistic anycast communication as follows:

epcast(message,percentageOfHosts,time)

where message is the message that has to be sent to a certain percentage of hosts
equal to the value defined in percentageOfHosts in a bounded time interval
equal to time.

By using these basic primitives, more complex programming interfaces and
communication infrastructures can be designed, such as publish/subscribe sys-
tems or service discovery protocols.

The infectivity of the epidemics (i.e., the probability of being infected by a
host that is in the same radio range, like in human diseases spreading) can be
used to control the anycast probabilistic communication mechanism. Given a
percentage of hosts that has to be infected equal to Ψ , we are able to accurately
calculate the value of the infectivity in order to obtain an infection rate equal
to a proportion of the total number of the hosts in the network.

As we will discuss in the next section, these primitives rely on a probabilis-
tic algorithm based on the transmission of a minimal, and, at the same time,
sufficient, number of messages. Existing epidemic-style protocols usually achieve
100% delivery, but they waste resources by sending a large number of messages
on the network, whereas our approach succeeds to send only the amount of
messages necessary to inform the desired percentage of hosts in the given time.
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3 Dissemination Techniques based on Epidemic Models

In this section we introduce the mathematical models at the basis of the design
of the communication API presented in Section 2. In order to model the message
replication mechanisms, we exploit mathematical models that have been devised
to describe the dynamics of infections in human populations [2]. The study of
mathematical models of biological phenomena has been pioneered by Kermack
and McKendrick in the first half of the last century. Very recently, researchers
in the area of complex networks theory have focused their attention on the
problem of modeling epidemics spreading in networks characterised by well-
defined structures [4, 5].

According to the classic Kermack and McKendrick model, an individual can
be in three states: infected, (i.e., an individual is infected with the disease) suscep-

tible (i.e., an individual is prone to be infected) and removed (i.e., an individual
is immune, as it recovered from the disease). This kind of model is usually re-
ferred to as the Susceptible-Infective-Removed (SIR) model [2]. Removing the
possibility of permanently recovering from the disease a different version of the
model is obtained, according to which individuals can exist in only two possible
states, infected and susceptible. In the literature, this model is usually referred
to as Susceptible-Infective-Susceptible (SIS) model [2].

The SIR model can guarantee the same delivery of the SIS model with a
substantially lower number of messages as shown by the generic epidemic process
depicted in Figures 1 and 2. This is due to the fact that the model introduces the
possibility of having hosts that are recovered, i.e., hosts that will not participate
in spreading the infection after having receiving a message M and deleted it
from the buffer. In other words, in the SIR model the number of broadcasting
nodes decreases after a given peak of infected nodes; instead in the SIS model,
the number of broadcasting nodes at the end of the infection is (approximately)
equal to the number of nodes to be infected (i.e., desired percentage of nodes in
the +epcast primitive).

In the remainder of this paper we will substitute the term individual, used
by epidemiologists, with the term host. A host is considered infected if it holds
the message and susceptible if it does not. If the message is deleted from the
host, the host becomes recovered and cannot be infected by the same message
anymore. The information is spreaded among all infectives and recovered, while
susceptibles are still unaware of that: it is now clear that the dissemination
results depend on both infectives and recovered hosts, since these are the actual
recipients of the messages that have been sent. It is useful to define a host as
reached if it is either an infective or a recovered, since in both cases it has already
received the message. Moreover it is worth noting that only infectives contribute
to message replication and spreading, while recovered hosts do not.

The main assumptions of our model are the following:

– all susceptibles in the population are equally at risk of infection from any
infected host (this hypothesis is usually defined by epidemiologists as homo-

geneous mixing);
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Fig. 1. Infection spreading compara-
tion for SIS (top) and SIR (bottom)
model with equal conditions (γ = 0.05,
desired infection of 100%)
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Fig. 2. Number of replicas per host per
message for the SIS and the SIR model

– all infectives in the population have equal chances to recover;

– the infectivity of a single host, per message, is constant1;

– the initial number of the nodes in the network is known a priori by each
host2;

– every host collaborates to the delivery process and no malicious nodes are
present;

– each node has a buffer of the same size;

– the number of hosts is considered constant during the spreading of the in-
fection3;

Under the assumptions above, the system dynamics, in the case of a scenario
composed of N active hosts, can be approximately4 described by the following

1 Note that the infectivity per single message (i.e., a disease) is constant, but not per
single host. In other words, a host usually stores messages characterised by different
infectivities in its buffer.

2 The initial number of hosts can be usually estimated in occasion of sport events,
rallies, etc. for example by evaluating the seating capacity of the venues or the size
of the area when the event takes place. Statistical data are also usually available for
many application scenarios, such as number of passengers that uses a station or an
airport in a certain time of the day, etc. Alternatively, this number can be estimated
using distributed algorithms for the calculation of the approximated network size
such as [13].

3 This is a realistic assumption, since users usually require that the information will
be disseminated in a limited time.

4 This is rigorously justifiable in a network only for complete graphs in large population
limit. However, the model provides a good approximation also in scenarios composed
of a limited number of hosts.
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system of non-linear differential equations [2]:

(1)



















dS(t)
dt

= −βS(t)I(t)
dI(t)

dt
= βS(t)I(t) − γI(t)

dR(t)
dt

= γI(t)
S(t) + I(t) + R(t) = N

where S(t), I(t), R(t) are respectively the number of susceptible, infectives and
removed hosts at time t, β is the average number of contacts with susceptible
hosts that leads to a new infected host per unit of time per infective, and γ
is the average rate of removal of infectives per unit of time per infectives in
the population. The equations of the system state that the decaying rate of
susceptibles and the growth rate of infectives are affected only by the infectivity
β, the number of susceptibles S(t) and the number of infectives I(t); the decaying
rate of infectives and the relative growth of recovered is proportional to the
removal rate γ and the number of infectives I(t). The last equation states that
actually only two equation are needed to completely define the problem, since the
sum of the three classes is constant. We furthermore set the initial conditions:
S(0) = S0 = N − 1, I(0) = I0 = 1, and R(0) = R0 = 0, with the condition
I0 = 1 representing the first copy of the message that is inserted in its buffer by
the sender.

A numerical solution of the system (1) can be easily obtained by standard
ODE solver routines. This allows to compute the number of infectives and recov-
ered at instant t as a function of the infectivity β and of the removal rate γ. The
value of γ is usually fixed by the local properties of the hosts 5. Instead, the value
of β, that is the fundamental parameter of the message replication algorithm,
can be tuned in order to have, after a specific length of time t∗, a number of
reached hosts (i.e., hosts that have received the message) equal to I(t∗) + R(t∗)
or, in other words, a fraction of reached hosts equal to (I(t∗) + R(t∗))/N .

In order to effectively exploit the model just described, the actual connectiv-
ity of each host should be kept into account. We will assume a mobile system
with a homogeneous network structure, described by a connectivity distribution
P (k), strongly peaked at an average value 〈k〉. This is a realistic assumption in
cases characterized by a high density of hosts, and where the movement is well
described as an uncorrelated random process, such as in large outdoor spaces
(i.e., squares, stations, airports or around sport venues) [12, 15]. In this case,
the degree k of each node can be approximated quite precisely with the average
degree 〈k〉. In order to include the effect of the connectivity on the spreading,

5 If overflow phenomena do not occur (i.e., in the case of sufficiently large buffers),
the model can be simplified with γ = 0 and, therefore, no host will never become
recovered.
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the system (1) can be rewritten by substituting β with λ
〈k〉

N
[4]:

(2)



























dS(t)
dt

= −λ
〈k〉

N
S(t)I(t)

dI(t)
dt

= λ
〈k〉

N
S(t)I(t) − γI(t)

dR(t)
dt

= γI(t)
S(t) + I(t) + R(t) = N

where λ represents the probability of infecting a neighbouring host during a unit

of time, and 〈k〉
N

gives the probability of being in contact with a certain host. In

other words, in this model, by substituting β with λ 〈k〉
N

, we have separated, in a
sense, the event of being connected to a certain host and the infective process [4].

In conclusion, the main idea is to calculate the value of λ as a function of
I(t∗)+R(t∗) and 〈k〉. It is also interesting to note that in homogeneous networks,
every host knows its value of k and, consequently, it has a good estimate of 〈k〉.
We will exploit this property to tune the spreading of message replicas in the
system.

4 Implementation

Every time the middleware primitive defined in Section 2 is invoked, the mid-
dleware calculates the value of the infectivity λ that is necessary and sufficient
to spread the information to the desired fraction of hosts in the specified time
interval (specified in the field percentageOfHosts of the epcast primitive), by
evaluating the current average degree of connectivity and the current removal
rate of messages from the buffer. The message identifiers, the value of the calcu-
lated infectivity, the timestamp containing the value specified in time expressing
its temporal validity are inserted in the corresponding headers of the message in
the infectivity field. Then, the message is inserted in the local buffer.

The epidemic spreading protocol is executed periodically with a period equal
to τ . With respect to the calculation of the message infectivity, we assume τ as
time unit in the formulae presented in Section 3. In other words, assuming, for
example, τ = 10, a timestamp equal to one minute corresponds to six time units.
The value of τ can be set by the application developer during the deployment of
the platform. Clearly, the choice of the values of τ influences the accuracy of the
model, since it relies on a probabilistic process. For this reason, given a minimum
value of timestamp equal to tMIN , developers should ensure τ << tMIN . The
number of rounds will be equal to t∗/τ . For the Law of the Large Numbers, we
obtain a better accuracy of the estimation of the evolution of the epidemics as
the number of rounds (i.e., from a probabilistic point of view, the number of
trials) increases.

Every τ seconds each infected host broadcasts the message and its neighbours
receive the message. If the message is not already present in their buffer they
store it with a probability λ: moreover, they will not store it if the message has
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been already present in buffer in the past, although it is not present at current
time. This behaviour maps quite well the SIR epidemics model, since a node
receives a new message, actively spreads it for some time and then it deletes the
message from the buffer (i.e. to make room for new messages), never accepting
it again. Therefore, a node has to store the identifiers of all messages received
in a defined time window, which is a reasonable given the limited occupation of
the vector of the message identifiers.

5 Evaluation

5.1 Analytical Evaluation

An interesting quantitative parameter is the total number of messages needed to
disseminate messages to a certain percentage of hosts. A message is broadcasted
by an infective host in every round: as soon as the host deletes the message it
does not accept the same message again.

Considering an infection process repeated for a number of times equal to r
number of rounds, indicating with tr the time length of the rth round, the total
number of replicas per single type of message can be estimated as follows:

(3) Number Of Replicas =

∫ t=tr

t=0

I(t)dt

From a graphical point of view, the number of copies is equal to the area
under the curves in Figure 1 and 2. A comparison between SIR- and SIS-based
protocols shows that while for both cases the formula 3 helds, in the former case
the total number of replicas sent is much lower. This is the result of the recovering
process, which enables hosts to stop message spreading when the epidemics is
already growing but, at the same time, still assures that the final result will be
guaranteed.

5.2 Experimental Evaluation

Description of the Simulation In order to test the performance of these
techniques, we defined a square simulation area with a side of 1 km and a trans-
mission range equal to 200 m. The simulation was set to run several replicates for
each mobile scenario in order to obtain a statistically meaningful set of results
(with a maximum 5% error). All simulations are written in Python using Net-
workX 6, a package for the creation, manipulation, and study of the structure,
dynamics, and functions of complex networks. We analysed scenarios charac-
terised by different number of hosts (more precisely 64, 128, 256, 512). These
input parameters model typical deployment settings of mobile ad hoc networked
systems. We do not model explicitly the failures in the system, since we assume
that during the infection process, the number of hosts remains constant.

6 http://networkx.lanl.gov
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The movements of the hosts are generated using a Random Way-Point mo-
bility model [6]; every host moves at a speed that is randomly generated by
using a uniform distribution. The range of the possible speeds is [1, 6]m/s. We
selected this mobility model, since as discussed in [12], its emergent topology has
a Poisson degree distribution. Therefore, in this scenario, the properties of the
network can be studied with a good approximation by assuming a homogeneous
network model. The accuracy of the approximation increases as the density of
population increases, since, considering the finite and limited simulated time, we
obtain a scenario characterised by a time series of degree of connectivity values
with lower variance. Moreover, the so-called border effects, due to the host that
moves at the boundaries of the simulated scenarios, have less influence as the
density of population increases.

Each node uses a buffer of 5 messages, managed as a FIFO queue, and 20
different messages are sent in the initial round by random chosen nodes.
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Type Desired fraction Delivered fraction Messages sent

epcast 0.50 0.43 17132
epcast 0.75 0.68 24738
epcast 1.00 0.90 32475

epcast(heterogeneous) 1.00 0.90 57342
Epidemic (β = 0.25) 1.00 0.64 95969
Epidemic (β = 0.50) 1.00 0.87 121873
Epidemic (β = 1.00) 1.00 0.92 155446

Table 1. Comparation of performances on the real dataset of Dartmouth College traces

Analysis of Simulation Results In this subsection we will analyse the results
of our simulations, discussing the performance of the proposed techniques. We
will study the variations of some performance indicators, such as the delivery
ratio and the number of messages sent as functions of the density of hosts (i.e.,
the number of the hosts in the simulation area).

Figure 3 and 4 show the delivery ratio (i.e., the desired percentage of hosts
in the epcast primitive) in terms of population density, for the case of a desired
percentage of hosts equal to 100 and 50, respectively, with t∗ = 10min. The
performance in terms of delivery ratio are close to the desired ones. Also in
this case, the better approximation of the assumption of homogeneous network,
obtained when the density of population increases, leads to better results (i.e.,
a more accurate estimation) for the case of 512 nodes.

The number of replicas per host per message are plotted in Figure 5 and 6.
These diagrams illustrate the scalability of our approach, since the number of
replicas is slightly decreasing when more nodes are added.

Evaluation with Dartmouth traces In order to evalute our approach on
real data we run simulations using a source of data describing how real users
move between different locations, i.e. wireless access points. A large amount of
traces for Darmouth College’s 802.11b campus network is available through the
CRAWDAD project [14].

We selected all the contacts between 9 am and 6 pm in a chosen work day,
discarding contacts with duration less than 60 seconds. Two users are connected
only if they are associated with the same access point during a time slot: epi-
demics spreading is therefore performed among users co-located with access
points. Our resulting data set had 2201 unique MACs and 11572 contacts with
all access points. We assume that each MAC address corresponds to a unique
user. The other simulation parameters are the same of the previous analysis. In
Table 1 we show the performances of our approach: the percentage of host ac-
tually reached is slight less than the desired fraction of population and this can
be explained by observing that these contacts are not always connected during
all the simulation time and may be easily absent from the underlying network.
In other words, the underpinning hypothesis of the epidemic spreading model
that we are using are only approximately satisfied. We run a simulation with a
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standard epidemic approach where infectivity is not tuned using the SIR model
but it is set to 0.25, 0.50 and 1.00 respectively. It is interesting to note that the
number of messages is in all three cases higher; only the case with infectivity
equal to 1.00, the standard epidemic protocol is able to reach all the hosts. This
is also demonstrate how it is difficult to choose the right value of the infectivity
in a purely heuristic way to reach all the hosts of the system.

We run also some simulations using a dataset from the National University
of Singapore[16], which contains contact pattern of 22341 students inferred from
the information on class schedules and class rosters for the Spring semester of
2006. Two students are connected if they attend the same class during a time
slot. However, in this dataset a large fraction of students is not included in the
instantaneous underlying network, since they are not attending any class. The
result is that in this case the epidemics fails to start using our model based on
the assumption of homogeneous mixing. Additional virtual point of aggregation
can be included in the simulations, grouping a percentage of the students that
are not attending lectures during a particular timeslot: this modification ensures
homogeneous mixing, providing good results for our algorithm. However, this is
only a conjecture given the nature of the traces.

Heterogeneous Networks The results and the solutions discussed in this
paper rely on the assumption of homogeneous networks, that are emerging from
the random movements of the nodes. We now show that the proposed approach
can be extended to the general case of heterogeneous networks. These structures
are emerging in presence of small clusters of people or communities.

For heterogeneous networks the approximation k ≈ 〈k〉 is not valid. However,
the same probabilistic communication primitives introduced in Section 2 could
be used, with a different semantics. This relies on the following observations:
given k fluctuating in the range [kMIN , kMAX ], we observe that for a value of the
infectivity corresponding to k = kMIN , the obtained spreading of the infection
I(t∗, kMIN ) will always be greater than the one obtained with another k. In other
words, if kMIN is selected in the calculation of the value of the infectivity, the
value of Reliability can be considered approximately as a guaranteed lower
bound of the reliability level.

The value of kMIN can be dynamically retrieved and set by the middleware
by monitoring the connectivity of the hosts composing the mobile system. We
plan to investigate these adaptive mechanisms further in the future.

6 Concluding Remarks

In this paper we have shown how models of epidemic spreading in complex
networks can be applied effectively to the problem of disseminating information
to subset of hosts (or to all the hosts) in a wireless network, controlling at
the same time the number of the copies in the system. We have presented an
analytical and experimental evaluation of our approach using a synthetic random
model and real traces, showing the effectiveness of our approach.
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