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ABSTRACT
The testing of the performance of opportunistic communication
protocols and applications is usually done through simulation as
i) deployments are expensive and should be left to the final stage
of the development process, and ii) the number of varying parame-
ters in these systems is so high that it would be very hard to conduct
thorough testing of all the functionality within a single deployment.
Therefore, protocols and applications are often plugged into mo-
bility simulators to test their performance; however, until recently,
most of the testing has been conducted with random mobility mod-
els which do not mirror reality. Furthermore, despite disconnec-
tions playing a very prominent role in the performance of any op-
portunistic mobile system, most models do not really account for it.
A different approach to testing is the use of real traces of movement
collected in specific domains as test cases. These cases, however,
do not allow for flexible performance testing, as they are specific
for a given scenario with fixed connectivity properties.

In this paper we propose the Connectivity Trace Generator (CTG),
a tool for the automatic generation of connectivity traces, which
takes as input real mobility traces and is able to output a set of
traces with similar connectivity properties, which can be used as
test cases. This allows developers to investigate the impact of the
variation of connectivity patterns, number of hosts, and other pa-
rameters on the protocol or application under investigation.

We use a real case study (the Dartmouth campus connectivity
traces) to show how CTG allows protocol developers to play with
some connectivity and density parameters so to best conduct per-
formance testing of different aspects of protocols and applications.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and forward net-
work, Wireless communication; C.4 [Performance of Systems]:
Modeling techniques
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1. INTRODUCTION
Opportunistic mobile systems [6] are decentralized distributed

systems which account for the ability of the hosts to be discon-
nected from each others for some periods of time. Hosts act as
carriers for the information, which is relayed from a source to a
destination through a number of forwarding and carrying steps, fol-
lowing the connectivity patterns of the hosts. Applications of op-
portunistic mobile systems are growing in number and range from
more social network related ones (e.g., news/content distribution
among people travelling on public transport, or between vehicles)
to more domain specific ones such as wildlife monitoring, remote
villages connectivity, military scenes and rescue operations. De-
centralization can be motivated by many factors including lack of
total coverage (in remote or extensive areas) or by the ability to
offer a free service by avoiding a centralized infrastructure. The
testing of these systems is usually performed through simulations,
given the considerable number of entities involved, moving in pos-
sibly large geographical areas.

Despite their soaring number, the performance of opportunistic,
and, in general, mobile systems is still tested with very rudimen-
tary techniques with little attention to mobility aspects. In partic-
ular, the core protocols at the basis of the communication among
the hosts are often tested using non realistic models, including ran-
dom mobility models, such as the very popular Random Way Point
model [9]. However, the performance analysis of protocols using
random mobility models may provide inaccurate information and
give wrong insights into the real applicability of protocols and ap-
plications. For this reason, recent years have seen the prolifera-
tion of mobility traces collected in realistic mobile applications in-
cluding students patterns in campuses [7], people attending confer-
ences [8] and cities and streets circulation [15]. Repositories have
also been created to collect all these measurements (e.g., CRAW-
DAD Project [10] at Dartmouth College), which can be used as test
data. However, no matter how many traces can be collected, this
will always look like a small amount, in many cases insufficient,
with respect to the variation needed for a thorough performance
testing of these systems (for example with respect of the number of
nodes/density).

A number of pioneering works [1, 2, 7, 19] have studied traces
in order to gain insight about the real mobility patterns. A key
study in this area is the work on connectivity patterns presented by
Chaintreau et alii in [5] which illustrates the fundamental insight
that contacts duration and inter-contacts time between individuals



are distributed according to power-law distributions1 and that these
patterns may be used to develop more efficient opportunistic proto-
cols.

In this paper we present a novel Connectivity Trace Generator
(CTG) tool for testing opportunistic mobile systems. The tool is
based on a model of connectivity presented in the workshop pa-
per [4]. We validate our tool through a case study using the Dart-
mouth traces [11] as input to CTG, generating multiple traces but
for different number of hosts and demonstrating that they have sim-
ilar connectivity patterns (see Section 4). Our work differs from
previous approaches in that probability distributions describing the
patterns of colocation of mobile users are exploited for the first time
as direct inputs of a tool. The distribution of the average number
of people that an individual meets during a certain period of time
(e.g., a day) is also an input of the tool. All these distributions can
be extracted by measurement of connectivity on real traces.

By using the proposed model and the CTG tool we show how re-
searchers are able to conduct performance testing and gain a better
understanding of opportunistic communication protocols and ap-
plications. Effectively, this is done by generating synthetic connec-
tivity traces through the variation of a number of parameters, while
maintaining the same distributions observed in the input traces.
Synthetic traces can then be used as test cases for performance
testing of some existing opportunistic protocols. Notice that with
a fixed set of traces, as the one used in input, this analysis would
not be possible; our approach allows the detection of protocol be-
haviours which could not be discovered by the use of real traces
only.

We present an example of this process using the Dartmouth traces
and by testing the performances of the pure epidemic protocol pro-
posed by Vahdat and Becker [20], the CAR protocol [13] and of a
random choice based protocol (see Section 6).

To summarise, the contributions of this work are the following:

• we design and implement the Connectivity Trace Generator
(CTG) tool which, from real traces, generates synthetic real-
istic traces;

• as a case study, we start from real traces and we verify that
the synthetic traces generated from these using CTG have the
same patterns of connectivity;

• we demonstrate how the synthetic traces can be used as test
cases in conducting performance testing of some existing op-
portunistic protocols.

2. THE APPROACH AT A GLANCE
The key steps of our approach are depicted in Figure 1.

• Derivation of Connectivity Distributions from Real Traces.
The input of CTG is a set of real traces. These are processed
by a trace analyser to generate the parameters required by
the tool. Additionally, a range of variations for the parame-
ters is provided in input. As a concrete case study, we used
the log session traces of the campus WLAN of Dartmouth
College [11], to obtain empirical distributions for residence

1Power-law distributions are characterised by the following form:

P (x) = x−k

with k ≥ 0.
A power-law distribution is also called scale-free since it remains
unchanged to within a multiplicative factor under a re-scaling of
the independent variable x [16].
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Figure 1: Connectivity Trace Generator.

time, colocation and degree distribution of the nodes. The
traces were collected by researchers at Dartmouth College
from April 2001 to June 2004. The network is composed of
450 access points over an area of about 200 acres. The total
number of users logged in these traces is 13889. These traces
can be employed in conjunction with the model presented in
Section 3. This model aims at representing the properties of
the colocation of two users as a function of the probability
for a user of being in a specific place for a given time. We
will refer to this duration as residence time in the reminder
of this paper.

The analysis of the traces is presented in Section 5 and is
performed using a number of scripts of CTG.

• Trace Generator. Based on the connectivity model, the trace
generator component of CTG allows for the generation of
synthetic traces. The input parameters of this component are
the relevant parameters of the connectivity model, namely:
number of nodes, the contacts duration (i.e., the time interval
in which two devices are in radio range) and inter-contact
time (i.e., the time interval between two contacts), and node
degree (i.e., number of neighbours) distributions.

The process of generation is based on the selection of the
desired number of hosts and on the construction of a connec-
tivity graph of all the potential contacts of each host. In other
words, we map each host to a node of the graph and we link a
pair of nodes with an edge if the two hosts have a potential of
becoming in contact. The connectivity graph is then used to
unfold a number of connection links between users for each
time instant. In other words, we use the connectivity graph



as a basis for a time-varying graph of instant connectivity
for each instant t. In these time-varying graphs (one for each
time instant), each link is either active if the two hosts are
colocated, or is not present if the two are not.

This process is completely automated and implemented by
the trace generator component that produces traces contain-
ing the events of connections and disconnections for each
pair of nodes of the simulation scenario and the time of each
event. These traces can be used as test cases for the testing
of opportunistic mobile systems (see Section 6). A detailed
description of the implementation is presented in Section 4.

• Performance testing of Opportunistic Protocols. In or-
der to show how the synthetic traces can be used as test
cases for the performance testing of opportunistic commu-
nication protocols, we considered the following protocols:
Flooding, Epidemic routing [20], CAR [13] and a Random-
choice based carrier selection protocol. Our evaluation con-
centrates on message delivery, overhead, and delay as met-
rics by varying the contacts patterns. We implemented the
protocols using the OMNeT++ discrete-event simulator [21]
The results of this evaluation are discussed in Section 6.

3. THE CONNECTIVITY MODEL
In this section we review a connectivity model to be used in con-

junction with our tool. A more detailed description can be found
in [4]. At the core of the model is the methodology for computing
the probability distribution of colocation (i.e., connectivity) times
between two users, starting from a minimal data set (see below).
The definition of the model is based on some simplifying assump-
tions:

• users’ behaviours are independent; this means that we as-
sume the behaviour of a user does not depend on other users’
behaviours.

• users’ behaviours are uniform: all users have the same be-
haviour.

As shown in [4], these assumptions are sufficient to capture the
real connectivity patterns. A refined model could take into account
users’ degree of correlation in order to model non-uniform or non-
independent users’ behaviour.

We denote with X and Y two random variables for the duration
of the sessions of two generic users a and b, respectively. The prob-
ability that a user a will remain in a given location for a time t (i.e.,
the residence time) is given, under our assumptions, by a proba-
bility density function pX(t); all users’ behaviour is described by
the same distribution pX(t). pX(t) is interpreted as the probability
that the residence time will last t seconds.

In addition to the distribution pX(t), we assume that a probabil-
ity density function pR(t) is available, representing the probability
that the temporal distance between the beginning of two sessions
of two colocated users is t (see Figure 2: t represents the “delay”
of one session with respect to another).

Our aim is to compute a probability density function pC(t), rep-
resenting the probability that the colocation (i.e., contact) between
any two users a and b lasts t. Without loss of generality, we assume
that a’s session starts before b’s session (the other case is symmet-
rical). If a and b are colocated (i.e., in contact), then only two cases
can occur (see Figure 2):

1) b starts with a delay R and terminates after a (i.e., the two
sessions overlap),

2)
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Figure 2: Connectivity cases.

2) b starts with a delay R and terminates before a (i.e., b’s ses-
sion is contained in a’s session).

The probability of occurrence of case 1) is given by the probabil-
ity that Y is more than X −R, which we write as p(Y > X −R).
Analogously, the probability of occurrence of case 2) is given by
the probability that Y is less than X−R, written as p(Y ≤ X−R).
Overall, case 1) and 2) contribute to pC(t) as follows:

pC(t) = p(Y > X −R)pX−R(t) + p(Y ≤ X −R)pY (t) (1)

where pX−R(t) represents the probability that X − R lasts t. As
mentioned above, under our assumptions users are characterised by
the same behaviour, therefore, for all t, we have pX(t) = pY (t),
and X and R are two independent random variables; thus, we can
write

pX−R(t) =

+∞Z
0

pX(t + r)pR(r)dr (2)

Intuitively, Equation (2) states that X − R lasts t if X lasts t + r
and R lasts r, integrated over all possible delays r from 0 to +∞.

We evaluate now the term p(Y > X − R) = p(X − R < Y ).
Notice that this is a number and represents the weight of pX−R in
Equation (1). For a fixed y, we have

p(X −R < y) =

yZ
0

pX−R(k)dk (3)

and therefore

p(X −R < Y ) =

+∞Z
0

0@ yZ
0

pX−R(k)dk

1A dy (4)

Taking into account Equations (1) and (2), we can rewrite pC(t) in
terms of the known functions pX(t) and pR(t), as follows:

pC(t) = χ

+∞Z
0

pX(t + r)pR(r)dr + (1− χ)pX(t) (5)

where χ = p(X −R < Y ) is defined by Equation (4).
To summarise: Equation (5) allows the computation of the prob-

ability distribution for the colocation (i.e., contact) duration of users



in a place as a function of their residence time in that location and
the arrival delay. It has been shown in [4] that the value computed
using this equation for pc corresponds to the measured one.

In CTG, Equation (5) can be used if the distribution of colocation
is not available from the scenario under investigation.

4. CONNECTIVITY TRACE GENERATOR
In this section we present the Connectivity Trace Generator tool

(CTG), which is able to produce traces characterised by given con-
nectivity properties. The tool is founded on the model presented
in Section 3 and it takes the distributions of residence time, inter-
contact time, and degree distribution as input parameters.

The traces generated by our CTG tool abstract away from spa-
tial movements and concentrate on connectivity and inter-contact
times, which are key to the testing of opportunistic protocols.

We now illustrate the steps of the algorithms implemented by the
Connectivity Trace Generator. The basic idea is to allow the gen-
eration of traces of arbitrary time length. A case study is presented
in Section 5 using the Dartmouth traces.

4.1 Generating the Potential Contacts Graph
The first step in CTG is the generation of the Potential Contacts

Graph. The inputs of the tool are the number of nodes (N ) on
which the traces of connectivity need to be generated, the distri-
bution of the contact times (pC(t)) distribution (ppc(t)), the time
duration of the traces, and the distribution of the time elapsed be-
tween two colocations of the same pair of users. This is called the
inter-contact time and its distribution is denoted by pIC(t). For the
sake of this section we assume that these input parameters are cho-
sen by an expert tester. In the next section we will show how these
can be derived from the existing traces.

Each of the N hosts is mapped to a vertex of the potential contact
graph. An edge between two vertexes exists if a potential contact
is possible during the total desired simulation time. This means
that, in the case of our example, an edge between two vertexes A
and B exists if and only if the individuals have a chance of being
colocated at least once during the period of the traces duration.

We have implemented a procedure to generate a graph given its
number of vertexes and their degree distribution, within a certain
approximation. Intuitively, the procedure non-deterministically tries
to build a graph with the desired properties, and iteratively refines
the solution up to the desired approximation level, varying from
2.5% to 4% in our examples.

4.2 Generating the Instant Snapshot Contact
Graphs

Once the potential contact graph is generated, the actual connec-
tivity traces can be produced as a sequence of instant snapshot con-
tact graphs, one for each instant of time. A connectivity graph for
time t represents the network of connected vertexes at time t. The
instant snapshot contact graphs are generated as follows: the first
connectivity graph is generated from the potential contact graph as-
suming that each potential edge is non active (i.e., no vertexes are
connected and the edge is in an “off” state). Then, the distribu-
tion of inter-contact times pIC(t) is used to assign a duration to the
“off” time of each edge. When this time has elapsed, the distribu-
tion of connectivity time pC(t) is used to assign a duration to the
“on” time of each edge. Thus, for each edge there is a sequence of
durations off/on, distributed following pIC(t) and pC(t).

A sequence of instant snapshot contact graphs is obtained by
looking at each edge. Finally, the instant snapshot contact graphs
are appropriately parsed to generate connectivity traces. We have
implemented a parser for the Omnet++ [21] event simulator, but

Figure 3: Distribution of residence time in Academic Building
22, log-log scale (all users over 4 years).

parsers for other kind of simulator, such as NS2, can easily be im-
plemented.

The generated connectivity traces represent the test cases. The
CTG tool performs all the generation steps automatically based on
the input of the distributions ppc(t), pC(t), and pIC(t).

5. EXTRACTING THE INPUT
PARAMETERS FROM REAL TRACES

In this section we show how to extract input parameters for our
tool from real traces such as the ones collected in the CRAWDAD
repository [10]. Real traces can be collected as part of a first de-
ployment of the mobile system or through other kinds of investiga-
tions, and despite giving a general perspective over the context in
which the system is to run, they are often quite limited in scope.
CTG allows to use this initial and approximate input to generate
further test cases.

To show how this can be done, we have used traces from [11] to
derive pX(t), pIC(t), pR(t) and pC(t). Section 5.2 describes how
the maximum number of contacts of the original traces are scaled
by the tool to produce test cases with different sizes, and Section 5.3
compares the traces generated by CTG with the real traces.

5.1 Case study: parameters from the
Dartmouth traces

We consider a selection of traces from [11], from 01/04/2001 un-
til 30/06/2004. These traces record connections and disconnections
of users at a number of access points in the Dartmouth campus; in
particular, the data available include MAC addresses, locations of
access, and timestamps. In the traces analysed we found 13889
different users and 178 different locations.

As an example, Figure 3 reports the cumulative distribution of
residence times for all users in Academic Building 22 in a log-log
scale. For any given duration t, the value on the y axis gives the
probability that the session of a user lasts t or more seconds.

As previously observed in a number of works (see for instance [5]),
the distribution of the residence time at a given access point follows
a power law in a range of values2, denoted by [tmin, tmax] in our
paper (points between the vertical bars x = tmin and x = tmax

in Figure 3). In the traces analysed we found tmin = 60sec and
tmax = 13397sec. Figure 3 also reports the interpolated curve to
2Notice that if a probability density function is a power law of the
form f(x) = x−α, then its cumulative distribution is a power law
with coefficient −(α− 1).



Figure 4: Distribution of residence time in Residence Building
20, log-log scale (all users over 4 years).

Figure 5: Distribution of colocation time in Academic Building
22, log-log scale (all users over 4 years).

obtain the coefficient for the cumulative distribution of pX(t) (de-
noted by PX(t)), from which the actual coefficient kX of pX(t)
can be computed (see the the straight line in Figure 3). Another ex-
ample location is provided in Figure 4, where the same behaviour
is observed.

For the calculation of pIC(t), the inter-contact time probability,
we proceeded similarly to pX(t) and, as expected [5], we found a
power law distribution with coefficient kIC in the range [tmin, tmax].
Analogously, we evaluated the distribution pR(t) and we found a
power law distribution with coefficient kR. The interpolated coef-
ficients kX , kIC , and kR for two locations and their average value
for the whole campus, over four years, are reported in Table 1. Due
to space limitations, we do not include graphs and coefficients for
all locations; these are available from the authors upon request.

We then computed the actual distribution of colocation time for
two generic users. The distribution pC(t) of the duration of colo-
cation obtained form the traces follows a power law. As above, we
interpolate the distribution to obtain the coefficient of the power
law. Two example locations are reported in Figures 5 and 6.

The coefficients for the two locations and the average coefficient
over all locations are reported in Table 2.

Since the results presented above are averaged over four years,
we repeated the process of computing pC(t) but for a time win-
dow of 8 hours only (from 9am to 5pm), averaged over a period of
one month in the middle of an academic term (from 19/04/2004 to
19/04/2004). We performed these measures to rule out the possi-

Figure 6: Distribution of colocation time in Residential Build-
ing 20, log-log scale (all users over 4 years).

Location −kX −kIC −kR

Academic Building 22 -1.448 -1.745 -1.062
Residential Building 20 -1.303 -1.909 -1.047
All campus (averaged) -1.281 -1.553 -1.064

Table 1: Value of the coefficients kX , kIC , and kR at two loca-
tions and average values for the whole campus.

Location −kC

Academic Building 22 -1.551
Residential Building 20 -1.356
All campus (averaged) -1.327

Table 2: Value of the coefficients for colocation at two random
location and average values for the whole campus, over four
years.

Location −kC −kIC

Academic Building 18 -1.430 -1.420
Residential Building 20 -1.209 -1.207
All campus (averaged) -1.268 -1.280

Table 3: Value of the coefficients for colocation at two random
location and average values for the whole campus, 9am - 5pm
from 19/04/2004 to 19/05/2004.

bility that, at a smaller time scale, the behaviour of the distribution
of colocation could be different.

Additionally, we interpolated the distribution of inter-contact time
for the same time windows, and, again, we obtained a power law.
The interpolated values for colocation and inter-contact coefficients
are reported in Table 3.

5.2 Degree distribution
Let us assume we want to generate traces for 8 hours and for 200

hosts mirroring the behaviour of Dartmouth traces in the period 19
April to 19 May 2004, a period without holidays, considering only
the hours 9am to 5pm.

In the real traces for the period considered, we found 1892 users
and a maximum number of potential contacts for an individual
equal to 42 (i.e., the individual with the maximum number of po-
tential contacts had 42 contacts). The distribution of the number



Figure 7: Comparison between synthetic trace and real power-
law distribution using Dartmouth coefficient: contact time.

of contacts is the distribution of the degrees of the vertexes in the
Potential Contact Graph. In order to calculate this in an appropriate
manner, we have interpolated the distribution of the degrees for the
traces, and obtained a power law in the range up to 42 individuals.
We denote this distribution by ppc(n) = n−kpc : ppc(n) gives the
probability that a node has degree n. The measured value for kpc is
-1.484. In order to be able to generate traces with similar patterns,
which may be used in the evaluation of opportunistic protocols,
we need to obtain a distribution for the 200 users, instead of 1892.
This is done through geometric similarity over the frequency graph
of the degrees of vertexes (see Appendix). Intuitively, the maxi-
mum number of contacts scales up or down proportionally to the
square root of the ratio of the total number of vertexes in the graph.
Thus, the maximum number of contacts for a single user when 200
users are present is computed to be 13, and we take the same coef-
ficient for the power law distribution. This enable us to generate a
sequence of random degrees following the desired distribution.

5.3 Validation of Synthetic Traces vs Real
Traces

We now show that the generated traces have the same charac-
teristics as the ones in input, by comparing contact distribution,
inter-contact time distribution, and node degree distribution.

Figure 7 shows how the cumulation function for the colocation
values of the generated traces (lighter marks) mirrors the contact
time distribution of the original traces in input (darker line).

Figures 8 and 9 compare the generated values (lighter marks)
with the original input values for inter-contact time and degree dis-
tribution.

While the graphs shown here have been generated for the sake
of comparison with the original traces, we remark that CTG can be
used to generate different traces with a lower number of users or
with different contact patterns. These traces are used in the next
section to test various opportunistic protocols.

6. PROTOCOL PERFORMANCE TESTING
When the synthetic traces are obtained using CTG, they can be

used for testing mobile systems. With respect to the use of real
traces for testing, the synthetic traces allow more variability: the
number of nodes, connection degree of the nodes, simulation time
as well as contact and inter-contact distribution can be varied to
conduct performance testing of the system. In this section, we
present the performance of opportunistic protocols evaluated using

Figure 8: Comparison between synthetic trace and real power-
law distribution using Dartmouth coefficient: inter-contact
time.

Figure 9: Comparison between synthetic trace and real power-
law distribution using Dartmouth coefficient: degree distribu-
tion.

our synthetic traces as test cases. We implemented four routing pro-
tocols using the OMNeT++ discrete-event simulator [21], namely
flooding plus three opportunistic ones: epidemic routing [20], the
Context-aware Adaptive Routing (CAR) protocol [13] and a pro-
tocol based on the random selection of the message carriers for
asynchronous delivery based on store-and-forward. We show how
the synthetic traces generated allow flexible performance testing.

6.1 Performance Evaluation using CGT
We use three performance indicators (delivery ratio, average de-

lay, overhead) for the evaluation of the protocols and we vary the
distribution of the inter-contacts time, of contacts duration and struc-
ture of the potential contacts network to demonstrate the perfor-
mance testing which could be conducted.
Choice of the Parameters As described in Section 4.1, we have
generated a set of traces for 200 nodes and eight hour of simula-
tion time, which mirror the behaviour of traces of 1892 users in
the period 9 April to 19 May 2004 in a eight hour time window,
from 9am to 5pm. We studied the protocol performance by vary-
ing one parameter at a time in the synthetic traces. During the
simulation we sent 1000 messages in 8 simulated hours. The mes-
sages are sent from randomly chosen senders to randomly selected



recipients. We use a buffer size equal to 1000 (i.e., infinite) for
the store-and-forward protocols. The figures of this section show a
95% confidence interval obtained using multiple runs.

The following is a brief description the key characteristics of the
four protocols.
Flooding The study of the performance of the flooding protocol
provides an upper bound of the delivery ratio that is possible to
obtain using synchronous protocols, i.e., protocols that are based
on the existence of a path between the sender and the receiver of a
message when the message is sent. It does not exploit store-and-
forward mechanisms.
Epidemic protocol Similarly, the upper bound in terms of delivery
ratio for store and forward approaches can be obtained by using
the epidemic routing protocol. In particular, for our experiments,
we used the pure epidemic routing protocol proposed by Vahdat
and Becker in [20]. According to this protocol, when two hosts
become neighbours (i.e., they are connected), they determine which
messages each possesses that the other does not, using summary
vectors that index the list of messages stored at each node; they
then exchange and store them in their buffer. This mechanism leads
to an eventual delivery of messages, if a transitive path between the
sender and the recipient exists over the considered period of time.
Context-aware Adaptive Routing (CAR) The Context-aware
Adaptive Routing (CAR) is a unicast opportunistic protocol based
on the intelligent selection of message carriers enabling a store-
and-forward delivery to the recipients. The key ideas of the pro-
tocol are the following. Each host calculates its delivery probabil-
ities. This process is based on the prediction of the behaviour of
the nodes in terms of patterns of colocation and relative mobility
based on Kalman filter based time series forecasting. The calcu-
lated delivery probabilities are periodically sent to the other hosts
in the connected cloud as part of the update of routing informa-
tion using a modified version of the DSDV protocol [9]. Each host
maintains a logical forwarding table of tuples describing the next
logical hop, and its associated delivery probability, for all known
destinations. Each host uses local prediction of delivery probabili-
ties between updates of information. If the message carrier, while
moving, meets a host with a higher delivery probability, the mes-
sage is transferred to the host with the higher delivery probability.
The details of the design of this protocol can be found in [13]. In
our simulation, every node is (re-)evaluating the probability of the
nodes in the cloud every 60 seconds.
Random Choice of Message Carriers Finally, we also consider
a randomised version of CAR, where the message carriers are se-
lected randomly among all the neighbours currently reachable in
the connected cloud by means of DSDV. The algorithm is imple-
mented as follows. Every 60 seconds, the node selects a random
entry in the routing table (also considering the entry about the node
itself). Then the message is sent to the selected node where it is
stored (or is maintained in the buffer of the host) for a subsequent
retransmission.

6.2 Performance testing results
Impact of Inter-contacts Time Distribution We studied the im-
pact of inter-contacts time distribution by varying the exponent of
the power law. The performance in terms of delivery ratio, average
overhead and number of messages are shown in Figure 10, 11, 12,
respectively. The power law coefficient of the synthetic traces fol-
lowing the Dartmouth traces patterns is−1.28; we generated traces
varying the coefficient in the range [−1.75,−0.75].

gA vertical line corresponding to the value of the coefficient
for these traces is drawn in every graph presented in this section.
Notice that by using only the set of Dartmouth measurements we
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Figure 10: Impact of inter-contacts time distribution: delivery
ratio vs inter-contacts time exponent.
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Figure 11: Impact of inter-contacts time distribution: average
delay vs inter-contacts time exponent.

would have only a point in this graph instead of a curve. The curve
allows to see trends in the protocol behaviour which would go un-
detected otherwise.

A higher coefficient leads to a larger number of long disconnec-
tions in average. The results with the specific values extracted by
the traces using the Dartmouth coefficient can be found in Table 4.
As expected, the delivery ratio of flooding decreases as the coeffi-
cient increases, since, when the flooding takes place, every nodes
has a lower number of neighbours (i.e., the probability that two
nodes are colocated is lower).

Instead, the performance of the epidemic protocol in terms of
delivery ratio is not affected by the variation of the distribution of
the inter-contacts durations: the chance of infecting the neighbours
is more or less constant in this range of variation. In fact, since
the maximum inter-contact time that we are considering is 4 hours
(corresponding to a tmax of 14,000sec), two pairs of nodes have a
chance of getting in reach at least two times during the simulated
period (8 hours); at the same time, it is important to note that this
does not guarantee that the message dissemination will reach all
the (transitively) connected network. In any case, from the analysis
of the results, the probability that a path exists between a randomly
selected pair of nodes is considerably less than 1. Considering the
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Figure 12: Impact of inter-contacts time distribution: number
of messages vs inter-contacts time exponent.
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Figure 13: Impact of colocation distribution: delivery ratio vs
colocation exponent.

performance of the epidemic protocol, its value can be estimated to
be close to 0.6 (in average). We also observe that the performance
of CAR deteriorates as k increases. This is due to the fact that the
accuracy of the prediction algorithm decreases as the disconnection
intervals increase. The random choice protocol suffers of a lower
chance of being in reach of the recipients as the inter-contacts time
increases. Naturally, as shown in Figure 11, the average delivery
delay increases, with increasing inter-contact time, for all the pro-
tocols.
Impact of the Colocation Distribution Similarly, in order to study
the impact of colocation distribution, we varied the coefficient of
this distribution. The performance in terms of delivery ratio, aver-
age overhead and number of messages are showed in Figure 13, 14,
15, respectively. The power law coefficient extracted from the set
of the Dartmouth trace taken into consideration was−1.268; in this
case, too, we varied the coefficient in the range [−1.75,−0.75]. A
higher coefficient leads to a larger number of long colocation pe-
riods between pair of nodes. In a sense, the results are symmetric
to the ones obtained varying the inter-contacts time. We only ob-
serve that, once again, the results of the epidemic protocol are not
affected by the variation of this distribution.
Impact of the Structure of the Potential Contacts Network The
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Figure 14: Impact of colocation distribution: average delay vs
colocation exponent.
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Figure 15: Impact of colocation time distribution: number of
messages vs colocation exponent.

network structure of the Dartmouth traces is characterised by a co-
efficient equal to -1.485, and the generated traces have a maximum
number of potential contacts equal to 13. We studied the impact
of the number of neighbours, by varying the maximum number of
edges of the potential contacts graph ncmax . The impact of the
variation of the maximum number of neighbours of the potential
contacts graphs is shown in Figures 16, 17 and 18 in terms of deliv-
ery ratio, average delay and overhead. As the maximum number of
contacts in the power-law distribution increases, the performance of
the protocols of flooding, CAR and random choice improve, since
the number of potential contacts is larger. CAR benefits from a
wider choice of potential carriers and a greater number of transfer
opportunities. The performance of the epidemic protocol also im-
proves as the maximum number of contacts increases, leading to a
better network connectivity (from a transitive point of view, over
time).

7. RELATED WORK AND DISCUSSION
There is a growing interest in approaches for testing mobile sys-

tems and applications, see for instance [18]. Most of these ap-
proaches, however, concentrate on testing aspects related to context
awareness (see, for example, [22]). Instead, what is proposed in this
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Figure 16: Impact of the structure of the potential contacts
network (maximum number of neighbours): delivery ratio vs
maximum number of neighbours.
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Figure 17: Impact of the structure of the potential contacts
network (maximum number of neighbours): average delay vs
maximum number of neighbours.

paper relates to how to provide automatic generation of connectiv-
ity test cases in order to test the performance of communication
protocols and applications in opportunistic mobile systems. Our
approach allows flexible performance testing of new protocols and
applications. Indeed, when a system is being prototyped, some log-
ging and measuring data could be collected through a small scale
trial on the usage patterns. The connectivity traces could then be
analysed and, using our methodology, a simulation on a larger scale
could be carried out on the communication protocol under investi-
gation, using larger (i.e., with a higher number of hosts) synthetic
traces.

We see this as a first step towards a more comprehensive solution
for the verification of mobile systems; in this sense, our work lacks
a metric for coverage criteria of the generated test cases. An inves-
tigation along these lines for a similar problem has been presented
in in [17]: we leave the issue of evaluating coverage conditions
open for future work.

In parallel, the mobile systems community has offered its own
solution to testing communication protocol through the generation
of mobility models for simulators: some of these are purely ran-
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Figure 18: Impact of the structure of the potential contacts net-
work (maximum number of neighbours): number of messages
vs maximum number of neighbours.

Flooding Epidemic CAR Random
Delivery 18.76% 62.7% 49.95 % 28.52 %
Delay [s] 2636.20 2636.30 4192.15 954.77
Overhead 3276463 397153 150516 158658

Table 4: Performance of four protocols considering the sce-
nario extracted by the traces of Dartmouth College campus,
9am - 5pm from 19/04/2004 to 19/05/2004.

dom, such as [3, 9], while more recent ones tend to base their
logic on some real concepts, such as social aspects [14] and spe-
cific movement scenarios (e.g., downtown traffic [12]). With re-
spect to the state of the art in mobility model building, for the first
time in this work the results of the analysis of available traces have
been used to derive a connectivity model for simulation studies.
Our approach allows for experiments considering different connec-
tivity patterns that can be derived from real traces, or simply be
provided empirically. This is not possible with the other existing
models, including the recent ones based on probability of transi-
tions, since the contacts patterns distribution are not input param-
eters. Our methodology can also be used to study extreme cases,
such as scenarios with very sparse ad hoc networks, characterised
by very long disconnection intervals.

8. CONCLUSIONS
In this paper we have presented CTG, a tool for the generation of

synthetic connectivity traces which can be used for testing the per-
formance of communication protocols and applications at the heart
of opportunistic mobile systems. The tool can be used in conjunc-
tion with a connectivity model, which builds on probability distri-
butions for residence time of individuals (pX(t)), the distribution
of time intervals between connections (pIC(t)), and a distributions
of delays in overlapping connections (pR(t)). These distributions
can be easily obtained from real traces, and we have presented an
example of this in Section 5, where human mobility traces from the
Dartmouth College have been analysed.

To emphasize the applicability of our generator, we have used the
synthetic traces to test some opportunistic protocols. In particular,
we presented how different connectivity patterns affect the perfor-
mance of the protocols in terms of delivery ratio, total number of



messages, and average delay.
We have in mind a number of future applications for this work,

starting from more tests on the applicability of the methodology to
other types of traces. For instance, using our approach, one could
analyse connectivity patterns and the implied performance of op-
portunistic protocols in different scenarios, such as a train station
with very short connections between individuals, or a library with
typically longer connections.
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APPENDIX
In this appendix we present our methodology for scaling up or
down a given distribution f(x) of the degrees of the vertexes in
a graph by means of an example (for the sake of this appendix,
f(x) could be any distribution limited between a and b).

Let G = (V, E) be a graph with N vertexes, and let the degree
of the vertexes be distributed in accordance with a distribution f(x)
between a minimum degree value of a and a maximum degree b:
as an example, see the bold line in Figure 19 (notice that we are
approximating a discrete distribution over natural numbers with a
continuous distribution). For any number x between a and b, f(x)
is the number of vertexes whose degree is x. Notice that the number
of vertexes N is equal to the area below the curve (denoted by A).

In order to generate a graph with M vertexes with a topological
structure similar to G, we project the frequency f(x) so that the
new area A′ under the frequency is equal to M .

Using simple equivalences, we can evaluate an approximate value
for a′ and b′ as:

a′ ≈
q

A′
A

a b′ ≈
q

A′
A

b

(where A = N and A′ = M ). This results approximates the
distribution with a trapezium. The exact solution would require
the explicit knowledge of f(x) but, for the kind of distributions
considered in this paper, the correction would be minimal.


