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Abstract—Few shot learning (FSL) improves the generalization
of neural network classifiers to unseen classes and tasks using
small annotated samples of data. Recently, there have been
attempts to apply few shot learning in the audio domain for
various applications. However, the focus has been mainly on
accuracy. Here, we take a holistic view and investigate various
system aspects such as latency, storage and memory requirements
of few shot learning methods in addition to improving the
accuracy with very deep learning models for the tasks of audio
classification. To this end, we not only compare the performance
of different few shot learning methods but also, for the first time,
design an end-to-end framework for smartphones and wearables
which can run such methods completely on-device. Our results
indicate the need to collect large datasets with more classes as we
show much higher gains can be obtained with very deep learning
models on big datasets. Surprisingly, metric-based methods such
as ProtoTypical Networks can be realized practically on-device
and quantization helps further (50%) in reducing the resource
requirements, while having no impact on accuracy for the audio
classification tasks.

Index Terms—Few Shot Learning, Acoustic Event Classifica-
tion, Keyword Spotting, On-Device Learning, Performance

I. INTRODUCTION

Few shot learning is rapidly emerging as a powerful tech-
nique to create more generalizable AI agents which can adapt
to new and unseen tasks using a limited set of annotated
data. This resembles the human ability to learn novel concepts
from few examples. Typically, these methods are composed
of an embedding model that maps the input domain into a
feature space and a base learner that maps the feature space
to task variables. The objective is to learn an embedding
model such that the base learner generalizes well across tasks.
Gradient-based methods [1], [2] use gradient descent to adapt
the embedding model parameters (e.g., all layers of a deep
network) given training examples. Metric based methods [3],
[4] learn a distance-based prediction rule over the embeddings.

Few shot learning has achieved good results in the fields
of computer vision [1], [3], [5]–[8] and natural language
processing [9], [10]. At the same time, the number of audio
based applications ranging from understanding the environ-
ment through sounds in daily applications, such as surveil-
lance, smart cities, and industry [11], [12] to conversational
agents and smart speaking assistants [13] has soared. The
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potential of using few shot learning in audio have been inves-
tigated in some studies [14]–[17]. Chou et al. [14] proposed
attention mechanisms which can be combined with metric
based few shot learning methods for detecting acoustic events.
The closest work to ours by Pons et. al. [17] compared transfer
learning approaches with Prototypical Networks for acoustic
event classification (AEC) and audio scene classification tasks.
They tried from one to 100 samples and found both the
approaches to obtain comparable performance.

Despite the aforementioned efforts, there still remain a few
significant limitations in existing work which merits further
research. Firstly, these works analyze the performance on
datasets with small number of classes e.g., UrbanSounds [12]
and TUT [11]. Also, they focus only on accuracy measures
and forego other measures: latency and memory requirements
of the few shot learning methods. To this end, our work
systematically studies the applicability of few shot learning
regimes on two popular audio sensing tasks in the context of
accuracy, latency, storage and memory requirements: acoustic
event classification (AEC) and keyword spotting (KWS) with
a focus on on-device learning. We used ESC [18] for AEC
and Google Speech Command [19] dataset for KWS. We
also developed a framework for Android which can perform
metric based few shot learning methods (adaptation phase)
completely on-device by solving memory issues. This marks
an important step in enabling on-device learning with few
shots and personalization of deep learning models for audio
classification tasks further ensuring data privacy.

Our results reveal that metric-based methods are more gen-
eralizable and scalable than gradient based methods for audio
classification tasks (similar to [20]). Also, the generalizability
degrades with increasing number of classes. But, in stark
contrast to the previous works, we show that more complex
deep learning models using metric-based learning methods
can achieve significant gains (up to 9%) in accuracy on
bigger datasets. Finally, we were able to execute ProtoTypical
Network on two platforms: a smartphone and a smartwatch
indicating that few shot learning can be practically realized
on-device for the first time. The adaptation latency to unseen
classes with 5-shots is small: 5.5–20 seconds on the smart-
phone. While the latency ranges between 34.5–190 seconds
on a smartwatch.



II. METHODOLOGY

Methods: Our end goal is to obtain a model that can be
trained using few shot learning algorithms to perform rea-
sonably accurate classification of new audio sounds (acoustic
events and hot keywords) provided a few labeled examples
(1–5). A few shot learning setup comprises of three phases:
meta training, meta validation, and meta testing and each phase
have their own dataset (set) and disjoint classes. Meta training
consists of multiple training epochs. In each epoch, a training
episode is formed by randomly selecting N classes from the
training set. Then, for each selected class, K and Q number of
disjointed samples are selected to build a support and query set
respectively. The training objective is to minimize prediction
loss of the samples in Q conditioned on K. Essentially, K are
the shots (labeled samples). While Q are the samples for which
label is to be predicted. Therefore, in each training episode, the
model is learning to solve N-way K-shot classification task.
Each task contains N * (K+Q) samples. Each episode can have
many classification tasks (meta batch size).

After each training epoch, meta validation phase is executed
on the meta validation set. This is done for hyper-parameter
tuning and model selection. The model selection criteria can be
based on validation losses (minimum) or accuracy (maximum).
The validation process remains similar to meta training. By
training on a large collection of episodes, each consisting of a
different set of N classes, and validation on unseen classes, the
model learns how to learn from limited labeled data and obtain
a generalizable discriminative ability. Once a few-shot model
is trained and validated, it is applied to classify unseen sound
events and hot keywords (Q) at meta testing phase, given a
few labeled examples (K) of the target sounds. We assess
four few shot learning methods: Prototypical Networks [3],
MetaOptNet [4], MAML [1], and ANIL [2]. The first two are
metric-based learning, while the last two are gradient based
learning approaches.

Different few shot learning methods differ in how they
make predictions conditioned on support set. ProtoTypical
Networks [3] and MetaOptNet [4] depends on distance-based
rules to learn and classify. Provided a support set of N ×
K labeled samples, a metric based method tries to learn
embedding (where points cluster around a single prototype
representation) for each class provided their support set. The
learning is done by performing a nonlinear mapping of the
input into an embedding space utilizing a deep neural network
to get the embeddings. The mean of embeddings of a class
support set is considered its (class) prototype. At the prediction
time, distance is measured between the query embedding and
the class mean (prototype) derived from support embeddings
to perform the classification. The distance can be measured
using a fixed or learned metric function. In ProtoTypical
Networks squared Euclidean distance is used. We choose
ProtoTypical Networks as it is the most popular metric learning
method. Similar to ProtoTypical Networks, MetaOptNet learns
a classifier in embedding (feature) space. But, instead of
nearest neighbour it utilizes a linear SVM classifier to get the

embeddings. Although computationally more expensive than
ProtoTypical Networks, MetaOptNet currently obtain (state of
the art) performances on image classification.

Model Agnostic Meta Learning (MAML) [1] is an initial-
ization based few shot learning method, where initial model
parameters (base model) are adapted using a few updates
of gradient descent (adaptation steps) with the help of a
support set. This is done by calculating the loss i.e. gradient
computation between support and query sets. Note that when
the query set samples are predicted by the adapted model
in the meta-training phase, the loss of the query set is used
to update the base model, and not the adapted model. This
process is also named as outer loop update. Whereas, the
process of adaptation is called inner loop update. The learning
rates for both inner and outer loop updates can be tuned. It
is the base model (generated from outer loop process) which
is generalizable and is used at meta testing phase. MAML
require the computation of second order gradients which are
computationally expensive. So, we used first-order approxi-
mations of MAML to fasten the process. Almost No Inner
Loop (ANIL) [2] is a significant simplification of MAML. It
removes the inner loop updates for all but the head (final layer)
of a neural network during meta training and meta testing
phase as opposed to MAML and performs similar to MAML
on standard few-shot classification image datasets. The success
and recency of ANIL while providing computational benefits
over MAML compelled us to use it.

Datasets: For the acoustic event classification task, we
chose ESC-50 dataset [18] as it has 50 classes which allows
us to perform n way classification at different levels. This
dataset has 2000 audio samples with 40 samples per class
which are categorized in different categories: animals, natural
soundscapes and water sounds, human and non-speech sounds,
interior/domestic sounds, and exterior/urban noises. Each sam-
ple is 5-second-long sampled at 44.1 kHz and mono channel.
To create the data required for our neural network models,
we followed standard practices [17] and created an input of
size 128 * 216, where 128 represents the log-mel spectrogram
and 216 represents the number of frames (STFT parameters:
window size=hop size=1024).

For the KWS task we chose Speech Commands dataset [19].
It contains 105,829 samples of 35 hot key words (classes).
Each sample is sampled at 16 kHz with mono channel. We
discarded samples more than one second in duration to end
up using 95,394 samples. Similar to ESC-50, we created an
input of size 128 * 126, where 128 represents the log-mel
spectrogram and 126 represents the number of frames (STFT
parameters: window size=512, hop size=128).

Experimental Setup: For ESC-50, data from 32, 6 and 12
classes form the meta training, meta validation, and meta test
set respectively. Note that the classes are non-overlapping for
the three sets. For KWS, the meta training, meta validation,
and meta test set composed of 20, 6, and 9 classes respectively.
We use a 4-layered convolutional neural network (CNN). Each
layer is composed of 3 * 3 convolution, ReLU, Batch Norm
and 3 * 3 max-pooling layers. We also tried a ResNet-12 model



as specified by Lee et al. [4].
We experimented with 1-shot and 5-shot setting [1], [4].

To test the scalability of the few shot learning methods, we
set the number of train and test ways to be 2, 4, and 6. We
also tried cases where number of train ways can be higher
than test ways such as 4 (train) and 2 (test). The query set is
composed of 15 samples for testing and 5 for training per way.
We randomly sample 5000 training tasks, 1000 validation tasks
and 600 test tasks for ESC-50. Due to the large size of KWS
dataset, we sampled 10000, 2000 and 600 tasks for training,
validation and testing respectively. Different learning rates of
0.01, 0.001 and 0.0001 were used for base learning. Meta
learning rate was kept the same as base learning rate. Note that
the settings for validation setup are kept same as the test setup.
We used default values for specific hyperparameters related to
MetaOptNet such as max iterations for SVM (3), dropout rate
for residual layers (0.1), and dropblock size (5) as mentioned
in the original paper [4]. For MAML, we varied the number
of adaptation steps as 1, 3, and 5. For ProtoTypical Networks
and MetaOptNet embedding sizes of 1600 and 16000 were
inspected.

Meta training was performed for 40 epochs with 100 steps
per epoch. At each step a meta batch size of 8 (i.e., 8 tasks)
were used to do training. At the end of each epoch, validation
was done by calculating validation loss for 100 randomly
chosen tasks from the validation tasks set. If the validation loss
does not decrease for 10 subsequent epochs, then the training
is terminated (early stopping). The neural network model is
saved otherwise. For evaluation, we measure accuracy on 600
test tasks with the best performing model selected from the
validation phase. Each experiment was repeated three times.

III. RESULTS

A. Generalization and Scalability

Accuracy of the four few shot learning methods (best results
obtained with five shots) is shown in Figure 1. The classi-
fication ability of all the methods decreases with increasing
number of ways: n as more new classes have to be classified.
The accuracy varied between 91% and 73% and 90% and 78%
for ESC and KWS dataset, respectively. These performances
are reasonable as the number of samples required to learn the
new classes were only five and shows that few shot learning is
effective at learning new classes for audio classification tasks.
Our results also show that n should not be fixed (at five),
as done in previous work to assess the scalability of few shot
learning methods with increasing number of classes during the
testing phase.

Simple metric based few shot learning methods consistently
achieved higher accuracy than more complex gradient based
methods and scale better with increasing n. Gradient based
methods such as MAML and ANIL performed poorly with
higher n. This is due to the numerical stability issue that
prevents these two methods from converging [8]. This also
resulted in a very high variance between the runs for these
two methods. We observed almost negligible variance with
metric based few shot learning methods.

B. Impact of Architecture

In this section, we explore if deeper neural network ar-
chitecture can help increase the accuracy. As metric-based
methods perform better than gradient based approaches we
only analyze ProtoTypical Network and MetaOptNet in this
section. The results are shown in Table I for KWS. In all the
cases, the accuracy improved (3.5% to 9%) and, importantly,
this improvement gets higher with the number of ways n.
This result is in contrast to all the previous works [14], [17]
which found that deeper neural networks have no advantage
over shallower nets for audio classification tasks in the context
of few shot learning. This is mainly because previous works
experimented with smaller datasets such as ESC and TUT [11].
While in our case, KWS has nearly 100,000 data points.

TABLE I: Average Accuracy of metric-based few shot learning
methods with changing neural network architectures on KWS
dataset. CNN-4 represents a CNN network with four layers.
ResNet-12 represents a Residual Network with 12 layers.

Architecture / FSL Method Two Four Six
CNN-4 / ProtoTypical Network 89.5 82.3 77.9

CNN-4 / MetaOptNet 89.3 80.5 75.62
ResNet-12 / ProtoTypical Network 92.73 88.1 85.4

ResNet-12 / MetaOptNet 94.8 89.1 83.75

C. Costs

Previous studies have focused solely on the accuracy of the
few shot learning methods. Departing from this, we tried to
measure other costs associated with these methods such as
storage and computational latency. In terms of storage, we
find that few shot learning methods are independent of the
model size (neural network parameters such as weights and
biases). The storage required to store CNN4 and ResNet-12
based models is 486 KB and 50.2 MB, respectively. This is
a small requirement given that modern devices have a large
storage. The size of the models is calculated using Pytorch.

To assess the algorithmic complexity of each method, we
measure their latency during testing phase on a GPU based
machine: NVIDIA Quadro RTX 8000. Note that 600 tasks
were evaluated. Latency is measured by the time it takes to
load, execute and get the classification results from the deep
learning model for audio classification task. MAML is the
most expensive method. The latency varied between 18–120
and 12–84 seconds for ESC and KWS dataset, respectively.
The latency increases with more adaptation steps: (1–5) and
the number of ways, n. The smaller latency for KWS is
attributed to the smaller input size compared to ESC. ANIL’s
execution time varied between 18–46 and 12–24 seconds for
the two datasets. However, unlike MAML the adaptation steps
did not impact the latency due to the ”Almost No Inner Loop”
nature of ANIL which reduces the computation.

ProtoTypical Networks (PN) is the fastest method as it
took only 10–30, 8–22 and 50–130 seconds for ESC, KWS–
CNN4 and KWS–ResNet respectively with increasing number
of ways. While MetaOptNet was 2–5x slower than PN for
ESC and KWS on CNN4 architecture. At increased embedding
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Fig. 1: Average Accuracy for different few shot learning algorithms with varying n ways (2, 4, and 6) for the two datasets
on CNN-4.
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Fig. 2: Performance of ProtoTypical Network on 16-bit quantized network. FP and HP is Full and Half Precision, respectively.

size of 16000 the latency of MetaOptNet was 20–50% slower
than PN for KWS on ResNet architecture. The slower nature
of MetaOptNet is due to the use of linear SVM. Overall,
ProtoTypical Networks is the least expensive method followed
by ANIL, MetaOptNet and MAML and is hence evaluated in
the next section for its feasibility for on-device learning.

D. On-device Learning

Motivated by the fact that there is a fuelling demand to adapt
and learn on-device deep learning [21], [22], we explored
if and how few shot learning methods can run locally on
the device. To this end, we created a mobile application in
Java using PyTorch Mobile. TorchScript is used to interface
between Java and the deep learning code. The app size is
150 MB which mainly consists of PyTorch mobile library.
We measured the latency (load, execute and get classification
results) for the audio classification task in testing phase for
ProtoTypical Networks, due to its high accuracy and efficiency.
This is akin to a scenario where a pretrained model (trained
with a few shot learning method) can be used to identify new

classes in an unseen environment (adaptation phase) fully on
the device and we term it as on-device learning in this paper.

On-device learning was performed on two Android devices:
a smartphone (OnePlus 7 Pro) having 12 GB of RAM with
octa core processors and a smartwatch (TicWatch Pro 3)
having 1 GB of RAM and a Wear 4100 processor. We faced
challenges with the watch: we could not run ProtoTypical
Networks due to small RAM if we try to load and execute
forward pass on the neural network model with all the training
samples (shots) simultaneously. To solve this challenge, we
executed a forward pass on each sample (shots and queries)
sequentially and stored the learned embeddings in the memory.
Finally, the distance between the query and the shots was used
to do the classification.

Table II shows the feasibility of running ProtoTypical Net-
works on device with six ways (extreme case). The latency
ranges between 5.5–20 seconds with CPU utilization of 30–
50% and a reasonable memory usage on the smartphones.
We observed similar memory usage and CPU utilization but
3x smaller latency with two ways. The latency and resource
consumption are higher on smartwatch with latency varying



TABLE II: On-device learning Performance for ProtoTypical Networks for 6 ways, 5 shots and 1 task.

Device Dataset/Architecture Latency (sec) Peak Memory (MB) CPU Utilization
ESC /CNN-4 8.5 90 30%

Smartphone KWS / CNN-4 5.5 67 30%
KWS / ResNet-12 20 160 50%

ESC / CNN-4 60 70 40–70%
Smartwatch KWS / CNN-4 34.5 52 30–70%

KWS / ResNet-12 190 130 40–90%

between 34–190 seconds. However, two distinct patterns are
observed. Unlike, on the smartphone where the CPU utiliza-
tion was constant throughout the process, it keeps fluctuating
on the smartwatch. The lower utilization is attributed to the
occurrences when garbage collection is triggered to release
the objects, which could pause the app for some time. This
also results in lower peak memory usage. However, the total
memory usage remains high due to higher latency.

Impact of Quantization: We quantified the impact of
quantization on the performance of audio classification tasks
with ProtoTypical Networks. Figure 2 shows that 16-bit quanti-
zation has negligible impact on the accuracy for both ESC and
KWS datasets. We also observed a 50% decrease in the model
sizes and 40–60% improvement in the latency during testing
phase. We are the first to evaluate the impact of quantization
on audio classification tasks for few shot learning.

IV. CONCLUSION AND DISCUSSION

Few shot learning provides an excellent way to learn unseen
classes using a few samples and its applicability in audio
domain have been explored. However, there still remain a
few limitations in existing work which merits further work.
To this end we investigate the few shot learning methods for
two audio classification tasks: acoustic event and keyword.
Through a large number of experiments, we show that these
methods can adapt to new classes well and simple metric-
based methods are more efficient and scalable than complex
gradient based methods. We also showed that complex neural
network architecture should be explored in the audio domain
when doing few shot learning. However, this can be only
achieved with much bigger datasets having a large number
of classes. We also overcome challenges to enable few shot
learning on-device for unseen classes in the adaptation phase
which will ensure complete privacy of the users data.
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