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Abstract. Sensor networks are typically purpose-built, designed to sup-
port a single running application. As the demand for applications that
can harness the capabilities of a sensor-rich environment increases, and
the availability of sensing infrastructure put in place to monitor various
quantities soars, there are clear benefits in a model where infrastructure
can be shared amongst multiple applications. This model however intro-
duces many challenges, mainly related to the management of the commu-
nication of the same application running on different network nodes, and
the isolation of applications within the network. In this work we present
SenShare, a platform that attempts to address the technical challenges
in transforming sensor networks into open access infrastructures capa-
ble of supporting multiple co-running applications. SenShare provides a
clear decoupling between the infrastructure and the running application,
building on the concept of overlay networks. Each application operates
in an isolated environment consisting of an in-node hardware abstraction
layer, and a dedicated overlay sensor network. We further report on the
deployment of SenShare within our building, which presently supports
the operation of multiple sensing applications, including office occupancy
monitoring and environmental monitoring.

1 Introduction

An increasing number of sensor networks are being deployed to collect informa-
tion on a wide range of applications. Relying on data from sensor networks is
becoming crucial both to monitor situations such as environmental changes or
business processes, but also as a means of developing context-aware ubiquitous
computing applications.

It has been argued [12] that while mature networking and duty cycling pro-
tocols for sensor networks exist, approaches to sensor network sharing and man-
agement are still immature. Typical sensor networks are designed and deployed
to serve a single application. Indeed, the common approach in the design of sen-
sor networks is to deploy networks that are fit-for-purpose with the primary aim
of supporting a single application that belongs to a single authority (usually the
owner of the infrastructure) [15]. While this is a sensible approach for short-
term and small-scale deployments, in sensor network deployments that consist
of thousands of nodes with a life span of multiple years, inducing high costs of



deployment and maintenance, the single-application approach can lead to ineffi-
cient use of resources and low cost-benefit results. Moreover, the requirement for
dedicated sensing infrastructure to support new applications belonging to differ-
ent organisations can lead to unnecessary replication of sensing infrastructure.
As an example, sensors in public buildings have been used in a wide range of
applications, from monitoring environmental conditions in each room [7] to sup-
porting advanced context-aware applications [14]. In many of these applications
the actual sensing modalities that are used are similar or even identical. In such
environments, the ‘single-application’ approach employed by existing sensor net-
works can become counter productive. Either additional sensing infrastructure
needs to be deployed to support new applications, or multiple sensing applica-
tions need to be fused into a single binary that is deployed over the network.
The latter approach can be extremely complex if the end-users or authorities
responsible for these applications are different.

In this work we explore a potential change of paradigm regarding the design
and deployment of sensing infrastructure. Our objective is to investigate the
feasibility of deploying sensing infrastructures with the primary role of allowing
the sharing amongst multiple applications. The development of sensor networks
designed for sharing can open new opportunities for efficient resource utilisation
and adaptation to changing requirements [11]. New operational models can be
envisaged, where an installed sensing infrastructure acts as a pool of sensing re-
sources that can be harnessed by newly developed applications. In such models
the cost-benefit analysis for a sensing infrastructure that is to be deployed, can
involve new business opportunities that may include leasing the infrastructure
to third parties on demand, without disrupting the operation of sensing applica-
tions already running on the network. Furthermore, we can envisage the design
of sensing applications that can potentially be deployed to different networks
on demand as the needs of the application owner change. We identify the do-
main of smart-buildings as a possible environment where shared sensing could
show significant benefits. Presently, the deployment of sensing infrastructures
in buildings is treated as a tool for monitoring the environmental impact of a
building’s life cycle and the economic impact of its maintenance [10]. However,
the same sensing modalities can also be harnessed for the design of future ubiq-
uitous computing applications, or for inferring information that have not been
envisaged during the building’s construction.

In this paper, we present SenShare, a system that enables sensor network
sharing among different applications. Our approach is based on the design of a
platform that allows the creation of multiple virtual sensor networks on top of
a physical infrastructure. Our objective is to allow applications to operate in a
virtual environment isolated from other applications running on the sensor net-
work. This is achieved by offering a hardware abstraction layer on each sensor
node which allows multiple co-located applications to use the node’s hardware
resources. An application can span across the whole infrastructure or a selected
sub-set of the physical network. The platform supports the formation of an over-
lay sensor network for each application, with a dynamically constructed virtual



topology that can be treated by the application as their actual topology. The
SenShare platform provides a clear separation between the sensor network infras-
tructure and the individual applications allowing ownership and management of
the infrastructure and applications by different authorities. We further report
on the deployment of our system in the building of our institution. A number of
sensing applications were deployed including applications for monitoring office
occupancy and room environmental conditions.

2 The SenShare Platform

The challenge: In the design of SenShare we assume the presence of two user
roles: (i) the infrastructure owner, and (ii) the application developers. The infras-
tructure owner is considered to have full control over the physical infrastructure.
The application developers are assumed to have an understanding of the geogra-
phy of the target environment and the sensing modalities offered by the network.
The main challenge in shared sensing is to allow newly developed applications
to be deployed over the infrastructure without disrupting the operation of pre-
viously installed applications. Considering the case of a smart building, one of
the main reasons for the deployment of sensing technologies is to monitor the
environmental conditions in the building and adjust the HVAC (Heating Ven-
tilation Air Cooling) system accordingly. The dynamic deployment of a newly
developed application that uses humidity sensors to estimate room occupancy,
should operate without disrupting the pre-existing environmental monitoring
sensing application. In design terms, addressing the challenge requires the sup-
port of multiple applications to operate on the same network (even co-existing
on the same node), by offering protection / isolation of sensing applications both
in terms of the runtime environment inside the sensor node, and the network
traffic over the sensing infrastructure.

Application Isolation: The development of sensor network applications is
typically designed under the assumption that the particular application is the
owner of the physical network. This is reflected on the design of development
environments like TinyOS, where the resulting application is a single binary
controlling all hardware components of the sensor node. One of the design ob-
jectives of SenShare is to support TinyOS applications within a shared sensing
infrastructure. The method for achieving this involves: (i) adapting the gener-
ated binary during compile time to break the tight coupling with the physical
hardware, and (ii) sharing access to the hardware through a cross-application
hardware abstraction layer residing on each sensor node (Figure 1). The co-
execution of multiple applications on each sensor node relies on the presence of
embedded operating systems that allow the dynamic loading and execution of
applications during runtime. Operating systems that offer such functionality in-
clude Contiki OS for lower-end sensor nodes (e.g. TelosB, MicaZ) and embedded
Linux for higher end nodes (e.g. Imote2, Gumstix).
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Fig. 1. SenShare Node Architecture

Compile time - TinyOS: TinyOS applications are designed to operate as
single-threaded applications, with static memory management, operating di-
rectly on the hardware of the target sensor node. Furthermore, TinyOS offers a
component-based development environment where applications can re-use com-
ponents offering access to low-level functionality. In order to offer cross-platform
compatibility, TinyOS defines three different layers of hardware abstraction. The
TinyOS Hardware Abstraction Layer (HAL) defines a set of interfaces that en-
able the development of hardware independent applications. At compile time
the appropriate low-level components are assembled to form a binary that can
run on a specific platform. SenShare extends the existing TinyOS core to provide
the same hardware independent functionality as other hardware platforms. How-
ever, instead of incorporating access to the physical hardware devices within the
target TinyOS binary, SenShare diverts any processing for hardware requests to
a runtime hardware abstraction layer that reside inside the sensor node and is
shared with all running applications.

Communication between the running application and the SenShare runtime
is OS specific. In embedded Linux, communication can be performed through
named pipes, while in Contiki through run-time dynamic linking [2]. TinyOS
supports split-phase access to hardware components, where a system call returns
immediately and the completion of the operation is signalled through hardware
interrupts translated into TinyOS events. Support for split-phase access is offered
through an asynchronous IPC interface between the TinyOS application and the
runtime layer. For a sensor access HAL component for example, a read request
is sent to the runtime through the read() system call. The HAL component
registers a callback function that is signalled from the runtime when the read is
complete. The signal is then translated into a TinyOS event, thus imitating the
effect of a hardware interrupt.

In order to offer support for TinyOS, we implemented a new target platform
within the TinyOS toolchain (v.2.1.0). The SenShare TinyOS platform imple-
ments abstractions for common TinyOS components. Specifically, it includes
components for sensor access, LEDs, timers, (read-only access to) RTC, IEEE
802.15.4 interface, and UART (USB) access. TinyOS applications that are com-
piled for the SenShare platform incorporate these virtual hardware controllers



that are responsible for passing hardware access requests to the SenShare run-
time.

Runtime: The in-node environment consists of a permanent in-node compo-
nent, the Node Runtime, that is owned and managed by the infrastructure owner,
and the dynamically loaded TinyOS applications that can run inside the sensor
node. The runtime operates as a separate process and builds, within each sen-
sor node, an abstraction layer that controls access to the hardware resources of
the node. This access is performed transparently through the use of the virtual
hardware components that are linked to every TinyOS application compiled for
the SenShare platform.

The sensor I/O provides an abstraction of the sensing components of the
node. Access to hardware components is performed asynchronously. Requests
to access a sensor are delivered from applications and when the sensor reading
is complete an event is raised to trigger the corresponding application. The
challenges we tried to address in the sensor I/O were to limit the overhead
caused by the introduction of an additional layer of abstraction, and to care for
possible race conditions caused by multiple applications requiring high sampling
frequency for the same sensor. We address these challenges by introducing a
bursting queue for handling multiple sense requests: When a request for reading
is submitted by an application, if the corresponding queue is empty, the request
is served immediately. Upon completion of the low-level access to the sensor, if
more requests have been submitted and queued, they are all served immediately
with the newly received reading. The impact of this technique can be estimated
if we consider the maximum average frequency rate the runtime can deliver.
If ts is the time required to take a reading from a sensor. For n applications
competing for the same sensor, the maximum average frequency rate that can
be achieved is f = 1

nts
. With the bursting queue the sensor can satisfy together

all sensing request that are submitted while a sensor read is performed. Let tp
be the processing time for returning a sensor value to a pending application.
It can be shown that the maximum average frequency that can be achieved
is f = 1

ts+ntp
. Considering that ts > tp the bursting queue can achieve better

performance than blocking sensing when n > ts
ts−tp

applications run on the node.

The network I/O component is providing an abstraction over the network
interfaces of the sensor node. The network I/O provides an asynchronous API for
sending and receiving messages, while restricting low-level access to the commu-
nication device (e.g. applications cannot change the radio channel of the inter-
face). Low-level communication attributes, such as the communication channel,
or the duty cycling policy are considered part of the infrastructure configu-
ration. The network I/O component maintains a single priority queue for all
transmission requests submitted by running applications. If the sensor network
is configured to employ a radio duty cycling policy, messages are queued until
the next communication window. When the queue fills up, packets are dropped
according to application priorities and limits over the traffic that can be gen-
erated by each application. By decoupling the duty cycling policy from the ap-



plication, the platform enables the infrastructure owner to specify bounds over
the radio traffic, and energy consumption committed for communication tasks,
for each sensor node. In addition to the interface abstraction, the network I/O
component is responsible for implementing a virtual overlay topology for each
application running on the infrastructure. The details of the overlay mechanism
are presented in Section 4.

The SenShare runtime has been implemented and evaluated on the Imote2
sensor nodes (Marvel PXA27x ARM processor 400MHz, 32MB FLASH, 32MB
SDRAM). The target hardware was selected for its advanced features (more
memory, faster CPU) allowing us the experiment more extensively with the
co-presence of multiple applications on each node. Each SenShare sensor node
runs embedded Linux (v.2.6.29) as its native operating system. A sandbox en-
vironment for each application was implemented by creating a “chroot jail”, as
supported by the chroot() system call in Linux. The sandbox environment re-
stricts access to all physical devices on the node, thus ensuring that applications
are only allowed to access the hardware through the SenShare runtime. The Sen-
Share runtime is installed in all sensor nodes running as a user–space process.
Running applications communicate with the runtime through named pipes.

3 Infrastructure Management

The in-node runtime environment, in addition to controlling access to hardware
resources, is also responsible for maintaining a network management layer to
control and maintain the overall sensor network (e.g., start/stop applications,
monitor resources). SenShare uses a collection tree routing protocol (CTP) [4]
to both collect messages from the network and deliver control messages to the
nodes. For the requirements of SenShare we implemented a modified version of
CTP that allows the delivery of messages both up and down the tree. In addition
to the CTP protocol, global clock synchronization is provided by the use of the
TPSN [7] protocol.

Selective Control & Deployment The application control service allows
the owner of the network infrastructure to micro-manage the operation of all
applications running on the infrastructure. Each application deployed over the
SenShare infrastructure is assigned a unique identifier. This unique identifier
is combined with an SQL-like target selection to direct commands to specific
nodes over the network. The application control service can support the following
commands:

– startApp(appId, selection): Start a previously deployed application on
selected nodes.

– stopApp(appId, selection): Stop a running application on selected nodes.
– disableDevice(appId, device, selection): Restrict access to a hard-

ware device (sensor or network interface) for an application on selected nodes.



– enableDevice(appId, device, selection): Allow access to a hardware
device (sensor or network interface) for an application on selected nodes.

The deployment of new applications is performed in two phases: i) selection
phase: using SQL-like commands target nodes are selected according to location,
sensing modalities and available resources, ii) dissemination phase: the binary of
the application is delivered to the target nodes, using a modified version of Deluge
[5]. After the installation of a new application the SenShare platform forms a
virtual overlay topology that can be perceived by the application as a dedicated
physical sensor network, isolated from any other traffic. As applications can be
installed on nodes further apart, such overlay topology needs to bridge distant
application instances into a connected virtual topology.

4 Overlay Sensor Networks

Traffic Isolation One of the requirements of the overlay network is to isolate
the network traffic of an application from any underlying mechanisms used to
maintain the overlay or any traffic from other applications. In order to achieve
such isolation the SenShare runtime extends each application packet with an
application routing header. The application routing header is 6 bytes long and
has the following format: {app id, seq no, origin, destination}
where app id is the unique application id, seq no is a sequence number that
along with the other fields of the header is used to discard duplicates, origin
and destination are the addresses of sender and receiver respectively.

Each application transmits a network message formatted according to the
IEEE 802.15.4 standard. The runtime attaches the application routing header
storing the original source and destination address specified by the application.
On receipt of a packet the information on the header is used to reconstruct the
packets source and destination address to its original values. This way pack-
ets that have been delivered over multi-hop virtual links are perceived by the
application as being sent by a single-hop neighbor.

Overlay Topology During the deployment of an application on the SenShare
infrastructure, application instances can be installed on any subset of nodes in
the network. Some application instances can land on nodes that are physical
neighbors, and therefore can communicate with single hop messages. Multiple
such nodes that are in proximity to each other can form clusters where applica-
tion instances are part of a connected topology of single hop neighbors.

However, in the general case an application deployment can result in a num-
ber of clusters that are isolated from each other. The purpose of the overlay
formation is to link these isolated clusters by establishing virtual links between
them allowing each application to form a single connected network. To estab-
lish these links intermediate SenShare nodes that do not run an instance of the
application need to act as relays between these disconnected partitions.

The overlay formation problem can be defined as follows:
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Fig. 2. Overlay formation: (a) Overlay topology on top of the existing collection tree.
(b) Routing on forwarding nodes

– For each application identify the nodes that are on the edges of a connected
node cluster.

– For nodes that are on the edges of clusters discover optimum paths that
connect them to other clusters

– Ensure that all clusters are connected together and can access the network’s
sink.

The last requirement is imposed in order to ensure that all running applications
can connect to the sink and deliver data to back-end applications.

One of the key features of the overlay management protocol is the reliance
on the routing mechanism that is already employed by the network to support
the infrastructure management. To avoid additional overhead, we exploit the
routing tree in order to discover new paths that can connect disjoint applica-
tion clusters. This approach resulted in a light-weight protocol for discovering
the most efficient links on top of the existing tree topology that can bring all
application clusters together.

Overlay Formation The overlay formation protocol utilizes the underlying
CTP topology to discover routes for virtual connections between clusters. A
brief description of the protocol is:

– Identify cluster edges Cluster edges are nodes connected to tree branches
where their next hop neighbor does not run the application. For example, in
Figure 2(a) nodes 1, 4, 8, 9 and 13 are cluster edges.

– Discover distance to closest cluster After the installation of a new application
each node measures their distance to the closest cluster edge lower down the
routing tree. In the example, node 3 has a 1 hop distance to the closest
cluster while node 4 has 0.

– Connect edges to closest cluster Packets from cluster edges are routed to
the closest cluster edge with smaller tree depth than their own. In this way,
lower clusters are connected to clusters higher on the tree until they are all
connected to the sink (see Figure 2(a)).



Implementation Each node on the network maintains two tables:

– app distance: Holds the distance to the closest node running a specific
application lower down the tree. The table size is O(a), where a is the number
of running applications.

– neighbor distance: Holds the distances of the next-hop neighbors (children
and parent) over the tree. The table size is O(a ∗ c), where a is the number
of running applications and c is the number of children.

When an application starts on a given node it sets its local app distance to
0 and informs its neighbors. When a node receives such a message from a child
it updates its local distance with the minimum value, and stores the neighbor’s
distances on neighbor distance. If there is a change on its local distance the
node will propagate that information to its neighbors. In the example on Fig-
ure 2(a) node 8 reports a distance of 0, node 5 updates its distance to 1 and
notifies 3. Node 3 will not update its distance as it has a closer cluster reported
from 4 and would not propagate any changes over the tree. Distance updates
are performed when applications are installed and when a node changes parent
(due to failure or congestion).

Using these two tables each node is responsible for routing messages between
the closest clusters. The routing policy employed on each node is:
message_received_from_node(A)

if (local_distance == 0) // We run the application

accept_message

else if (distance(A) > (local_distance - 1)

send_to_closest_neighbor

else // A is the closest neighbor

send_to_all_links(x) with distance(x) > distance(A)

send_to_parent

The purpose of the routing policy is, for each application instance, to establish
communication with a set of neighbors (virtual or real) that are running the
same application. For nodes that are within an application cluster, neighbors are
their one-hop physical neighbors. In these cases the protocol does not require to
perform any additional routing. The routing policy is responsible for forwarding
messages between cluster edges in order to establish virtual neighbors. This
forwarding is performed by nodes that do not run the application. Figure 2(b)
shows an example of this routing mechanism. Node X is connected with clusters
of distance a, b and p with a < b and a < p. Messages arriving from the B cluster
are delivered to A as this is the closest cluster. Messages from A are sent to all
clusters with longer distances and to the node’s parent. In this way cluster B is
connected to A, and A is connected to both B and P.

5 Evaluation

In this section we present our results about i) the application isolation penalty,
ii) the network overlays. Furthermore, we present our observation and results
from our own deployment.



Runtime performance penalty. We evaluate the overhead of the SenShare
runtime by comparing the performance of applications operating as native sens-
ing applications without the use of the SenShare platform, against the perfor-
mance with the platform. We particularly looked at the impact in terms of
sampling rates, CPU and memory load. We evaluated the runtime’s overhead
by running two types of applications in our system: i) an application that tries
to sample a sensor (temperature) as frequent as possible and ii) an application
that samples a number of sensors at a rate of 10Hz. For each one of these appli-
cations we implemented two versions: a native version that directly accesses the
hardware using native OS system calls, and the virtualized one that accesses the
sensors using the SenShare API.

As expected, the results show an overhead due to the extra layers that medi-
ate between the hardware and the application. Figure 3(a) shows the maximum
sampling rate that an application can achieve through the abstraction layer ver-
sus an application that is running alone on the node. The results show that the
maximum sampling rate is reduced by 28% due to the delays added by the ab-
straction layer. However, when more than one application run simultaneously,
our optimization mechanisms that combine requests from multiple applications
into one hardware access, reduce the impact of the platform and offer compara-
ble performance. These results illustrate one case where in-node coordination of
multiple applications can result in improved overall system performance.

To investigate the performance in less demanding conditions, we experi-
mented with an application that can detect the occupancy of a desk by a desk-
mounted sensor, monitoring desk vibrations at a rate of 10Hz. In Figures 3(b)
and 3(c) we plot the CPU and memory usage of the native and the virtualized
version (the virtualized version includes the overhead of the application and the
SenShare runtime). As expected, we observe that there is an overhead due to the
additional CPU and memory resources consumed by the SenShare runtime, com-
pared to the native applications without the runtime support. However, in both
cases the overhead is linear and therefore grows relatively slowly with respect to
the number of applications deployed: this is the price we pay for the sharing of
the infrastructure and it is mitigated by the ability to use it by different parties
at the same time.

Network Overlay. In order to evaluate the performance of the overlay routing
protocol we set up a testbed of 25 sensor nodes running the SenShare platform
(Figure 4(a)). The nodes where arranged on a grid formation of 5x5. For the
particular testbed setup, the transmission signal strength on the radios was
reduced in order to allow the creation of more realistic topologies. In this setup
each node was able to communicate only with nodes directly next to each other.

For this evaluation we deployed a number of applications on randomly se-
lected nodes over the grid. The experiments were grouped in terms of the size
of the deployment: 5, 10, 20, 25 nodes. Each test application was designed to
produce periodic beacons messages every 500 milliseconds that were broadcast
to all their virtual neighbors. For all the experiments we collected topology in-
formation on the formed overlay networks as well as network traffic statistics.
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Fig. 3. Evaluation results. Runtime performance comparing Native vs. Virtualized ap-
plications: (a) Maximum sampling rate, (b) CPU usage, (c) Memory Usage. Overlay
performance: (d) Percentage of traffic for maintaining the overlay versus total network
traffic, (e) Overlay routing overhead vs overhead of a collection routing, (f) Tree weight
of topology created by the Overlay routing vs. a minimum spanning tree.

Overlay Management Cost: One important metric for the evaluation of
an overlay protocol is the relative cost required to maintaining the topology
against the actual useful traffic generated by the application. A key feature of
the SenShare overlay protocol is the low overhead in traffic that is necessary to
maintain an overlay topology. Figure 3(d) shows the percentage of the overlay
management traffic versus the traffic generated by the applications in the exper-
iments. As seen from the results, the impact of the overlay management traffic is
diminishing over time to less that 0.1 percent. In fact, after the initial exchange
of distance vectors between the nodes participating in an overlay, the overlay
management would only be triggered to exchange messages if a node changes
their parent. During our experiments with overlays of 20 nodes, in some occasions
the CTP triggered a change of parent due to congestion. However, even in these
cases where the network traffic was high enough to trigger a change of parent,
the overlay management traffic was negligible (less that 3 packets on average for
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each parent change). This high performance in terms of network overhead is only
achieved because the overlay management service relies on the CTP protocol to
maintain the underlying infrastructure. However, as such a routing mechanism
is assumed in many real deployments, the low impact overlay protocol is an
attractive option.

Overlay Traffic Cost: In order to evaluate the total overhead of the overlay
mechanism, we compared the traffic generated by the nodes running the appli-
cations, versus the traffic of routing nodes that were relaying packets between
disjointed overlay clusters. For comparative reasons we compared this overhead
with a simple collection mechanism where each application packet was relayed to
the sink to maintain global connectivity. The results are shown in Figure 3(e).
As expected the overhead for small size deployments, where target nodes can
be further apart, is higher. However, for deployments where nodes form larger
clusters, the overhead drops significantly. In the case of 25 nodes, the overlay
mechanism is effectively inactive as all nodes are part of a connected cluster.
Moreover, the overlay mechanism offers significant gains over a collection mech-
anism that could be used directly over CTP. The gain is achieved as the SenShare
overlay forward traffic only to the closest overlay cluster avoiding unnecessary
tree floodings.

Overlay Topology: In order to evaluate the effectiveness of the overlay pro-
tocol, we calculated the total weight of the produced overlay tree (a link’s weight
is calculated based on the expected number of transmissions) and compared
it with a calculated minimum spanning tree (MST) connecting all application
nodes, as an indication of the optimal topology. As shown in Figure 3(f), the
total weight of the overlay topology varies significantly in our experiments. This
variation is caused by the different topologies of the underlying tree that can
affect the performance of the overlay topology. Compared to the MST, the Sen-
Share protocol does not always produce the optimal overlay topology, although
the overlay performs better as the number of deployed nodes increases. In the
design of any such protocol there is a clear trade-off that needs to be considered
between the high cost of discovering and maintaining the optimal graph and
the resulting gains in performance. SenShare offers a light–weight protocol for
establishing overlay networks with minimal impact in maintaining the overlay
topology.
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6 Deployment

The SenShare platform has been successfully deployed in the office space of our
research institution. The platform has been operating for more than three months
supporting two primary applications, with additional experimental applications
deployed for shorter periods of time and with more applications being scheduled
for the near future. The deployment consists of 35 iMote2 nodes equipped with a
sensor board that supports temperature, humidity, ambient/infrared light, and
acceleration sensing. Each node is connected to permanent power source and
is mounted on every desk in an area of 10 offices (Figure 4(b)). Furthermore,
additional sensors were attached to various appliances, such as coffee machines
in kitchens and communal areas. A number of applications were designed as
typical sensor network applications that would operate on a dedicated network,
and were implemented in TinyOS.

Room Environmental Conditions: This was the first application that
was deployed over the shared infrastructure. The environmental monitoring ap-
plication is responsible for recording temperature and humidity levels for all ten
offices where the SenShare platform was deployed. The application is installed on
one node per room. Figure 5(b) shows a snapshot of the data collected over the
period of two days. Certain rooms such as room 4 exhibits lower temperatures
in average. This can be explained by the fact that these rooms have a larger
window surface and dissipate more heat.

Office Occupancy: The second application that we deployed is responsible
for monitoring people that are currently working in every office that is instru-
mented with sensors. The application utilizes the accelerometer on each node to
monitor the vibrations on the desk. Applying the appropriate local filtering of
events and a hysteresis mechanism to smooth out irregular vibrations, the appli-
cation can accurately record the time that people spent at their desk and send
the appropriate events over the overlay network. Figure 5(a) shows a snapshot
of the collected data for two days of the week (Thursday and Friday). Overall
occupancy can change during the day due to certain global events such as lunch
breaks (around 12.00) or during a popular seminar (Thursday at 16.00).

Appliance Monitoring: Specialised applications were deployed for the sen-
sors attached to appliances such as coffee machines. These applications used var-



ious sensing modalities to detect operation patterns of the device. The collected
events were reported back to the deployment’s root node.

The SenShare deployment is still a dynamic environment where experimental
applications are deployed by different developers without disrupting pre-existing
sensing applications. Indeed the open availability of the infrastructure has trig-
gered a range of new applications that take advantage of the sensing resources.
An example is shown in Figure 5(c) where a web-based application was written
to visualise the collected data (i.e., the users can receive both real-time and his-
torical information about their time at work, find out if there is fresh coffee or
if someone is currently using the kitchen, etc).

Experiences
Since the deployment of SenShare, a number of developers had the opportunity
to experiment with the infrastructure and deploy their sensing applications. The
following paragraphs summarise some of the experiences we had working with a
shared sensing environment.

Support Tools: The complexity of an environment where multiple stakehold-
ers were simultaneously developing and testing sensing applications underlines
the importance of management and deployment tools. In our experience, op-
erating in this environment, the automated deployment and reprogramming of
the network proved to be essential. Furthermore, the ability to use SenShare’s
routing protocols to both collect debug messages and remotely control individual
applications, were key tools for application testing. Through this experience we
cannot emphasise enough the importance of such mechanisms in the development
of sensing applications, a fact that is often neglected in the literature.

Opportunistic network installation: The fact that SenShare relies on the same
routing mechanism irrespective of the actual application running on each node
proved extremely useful for the progressive deployment of the infrastructure.
During the early stages of the deployment, the infrastructure covered only the
office spaces of the building. When later we attached sensor nodes to appliances
in kitchens and common rooms, the nodes were seamlessly incorporated in the
existing network, although these sensor nodes were typically running different
applications. Over time the SenShare installation is slowly transforming into a
“patchwork” where sensing devices supporting completely different applications
form a common sensor network allowing the routing of all messages between
application instances. The overlay network allows the transparent passing of
messages over network segments that serve different purposes.

7 Related work

In supporting the deployment of hardware independent applications over a sen-
sor network [1], in-node virtualization has been suggested as a possible approach
to abstract from the sensor node hardware. A trend in providing virtualization
for lower-end sensor nodes relies on the design of specialized bytecode inter-
preters that reside inside each sensor node and offer a fine-grained control over
the execution of applications. A prime example of this is Maté [6]. In the design
of SenShare we follow a minimalist approach, relying on the virtualization of



only specific hardware components and avoiding the need for a bytecode inter-
preter. Indeed, SenShare applications are executed as native applications within
the host OS. Furthermore, by not relying on specialized bytecode, existing ap-
plications developed using common tools, such as TinyOS can be re-compiled
to run over SenShare without additional effort. Nevertheless, as the hardware
abstractions offered by SenShare are designed to offer advanced features, such
as infrastructure management and overlay networks, we consider them comple-
mentary to the runtime support provided by existing virtualization frameworks.
The design of the SenShare runtime is well suited to be incorporated to such
frameworks and give them access to these advanced features. An alternative
approach for allowing sharing of sensing infrastructures is by configuring a net-
work to deliver events in response to varying triggering conditions (utilizing an
SQL-like API [8] for example), possibly satisfying the needs of multiple appli-
cations. This is a feasible approach for certain classes of applications where an
SQL-like API is enough to capture the required information. However, a wide
range of applications require the deployment of application specific code on the
sensor nodes that is able to detect specific patterns on the low level sensor values
and generate appropriate events[3,13]. SenShare aims to offer support for such
applications where specific sensing functionality on the sensor node is required.

There have been important efforts in the area of micro-kernels supporting
multiprocessing on low end sensor nodes [9]. We consider the work on SenShare
complementary to these systems. The particular implementation presented in
this work is running on embedded linux, although on smaller sensor nodes mul-
tiprocessing real-time kernels could offer the ability to run multiple tasks.

8 Conclusions

Sensor networks are generally purpose-built and single-owned infrastructures.
As the demand for sensed information both for business and recreational pur-
poses is soaring, we believe that there is a clear need for a new paradigm in the
design of sensing infrastructures. Shared sensing has the potential to allow the
rapid implementation and deployment of applications that can harness the sens-
ing resources that are available in the environment. In this paper we illustrate
the feasibility of building and deploying such infrastructure in a real environ-
ment. SenShare provides shared sensing using an in-node hardware abstraction
layer to allow multiple applications to operate on each sensor node, and an over-
lay management protocol of dynamically formulated overlay topologies for each
running application. Clearly, given the nature of a shared network supporting
applications developed by different users, significant and possibly novel security
measures must be taken to protect a network. In our future work, we intend to
investigate the new classes of threats that can arise in such environments and
expand SenShare with additional security and management mechanisms.
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