
A Micro-Economic Approach to Conflict Resolution
in Mobile Computing

Licia Capra, Wolfgang Emmerich and Cecilia Mascolo
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK

{L.Capra|W.Emmerich|C.Mascolo}@cs.ucl.ac.uk

ABSTRACT
Mobile devices, such as mobile phones and personal digital as-
sistants, have gained wide-spread popularity. These devices will
increasingly be networked, thus enabling the construction of dis-
tributed mobile applications. These have to adapt to changes in
context, such as variations in network bandwidth, exhaustion of
battery power or reachability of services on other devices. We
show how the construction of adaptive and context-aware mobile
applications can be supported using a reflective middleware. The
middleware provides software engineers with primitives to describe
how context changes are handled using policies. These policies
may conflict. In this paper, we classify the different types of con-
flicts that may arise in mobile computing. We argue that conflicts
cannot be resolved statically at the time applications are designed,
but, rather, need to be resolved at execution time. We demonstrate a
method by which these policy conflicts can be treated. This method
uses a micro-economic approach that relies on a particular type of
sealed-bid auction.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—Lan-
guages; D.3.1 [Programming Languages]: Formal Definitions
and Theory—Semantics, syntax; C.2.4 [Computer - Communica-
tion Networks]: Distributed Systems—Distributed applications,
network operating systems

General Terms
Design, economics, languages

Keywords
Conflict resolution, game theory, context-awareness, mobile com-
puting, middleware, reflection

1. INTRODUCTION
Mobile computing devices, such as palmtop computers, mobile

phones, personal digital assistants (PDA) and digital cameras have
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gained wide-spread popularity. These devices will increasingly be
networked and software development kits are available that can be
used by third parties to develop distributed mobile applications.

Even though devices and networking capabilities are becoming
increasingly powerful, the design of mobile applications will con-
tinue to be constrained by physical limitations. Mobile devices will
continue to be battery driven and users will be reluctant to carry
heavy-weight devices. Wide-area networking capabilities will con-
tinue to be based on communication with base stations, with fluc-
tuations in bandwidth depending on physical location. In order to
provide acceptable quality of service to their users, applications
have to be context-aware and be able to adapt to context changes,
such as variations in network bandwidth, exhaustion of battery
power or reachability of services on other devices. Context aware-
ness implies new requirements for the middleware that is deployed
in such a mobile setting.

The aim of middleware in general is to resolve heterogeneity and
distribution in order to simplify the construction of distributed sys-
tems [8]. These problems also need to be overcome in mobile com-
puting. There are many different computing devices and applica-
tion designers aim to build applications that are portable and in-
teroperable across device types. The resolution of distribution and
the provision of high-level interaction primitives are also important
in a mobile setting [20]. While middleware for fixed distributed
systems is largely based on the notion of transparency (i.e., distri-
bution is hidden from both users and software engineers), it is less
appropriate in a dynamic and constrained setting, such as mobile
computing. It is largely agreed that different forms of middleware
are needed for this scenario [17].

In [4], we have presented a mobile middleware model that sup-
ports context-aware interactions among distributed system compo-
nents, based on the principles of reflection and meta-data. The
middleware provides application designers with ‘application pro-
files’ that describe how the middleware realises interactions in cer-
tain contexts. Because of the highly dynamic nature of context
in mobile setting, unforeseen context configurations may be en-
tered; moreover, user’s goals may vary and require different be-
haviours at different times. By changing, through reflection, the
meta-information contained in the profiles, application designers
can dynamically adapt the middleware behaviour, so as to deliver
different quality of service in different context, and according to
different application needs. While doing so, however, designers can
create profiles that contain ambiguities, contradictions and other
logical inconsistencies. We refer to these inconsistencies as
conflicts.

The novel contribution of this paper is the design and formali-
sation of a microeconomic approach for conflict resolution that re-



lies on a particular type of sealed-bid auctions. In particular, our
game theory-based approach treats applications as strategic players
that have been programmed by different entities to pursue different
goals. In order to achieve coordination under these circumstances,
a mutually accepted auction protocol is established that allows ap-
plications to come to an agreement. According to this protocol,
the mobile computing middleware plays the role of an auction-
eer, collecting bids from applications and carrying on interactions
(i.e., solving conflicts) adhering to the principle that maximises so-
cial welfare, rather than individual utility. Although we present
our conflict resolution approach in the setting of (a simplified ver-
sion of) our reflective middleware, the problem we are addressing
is general and applies to the design of applications that execute in
highly dynamic settings, where adaptation, auto-configuration or
self-healing become mandatory to achieve reasonable quality-of-
service.

The remainder of the paper is structured as follows. In Section 2,
we indicate the origins of this research and discuss our position
compared to related work. In Section 3 we describe the core char-
acteristics of our reflective mobile middleware and in Section 4 we
provide a classification of the types of conflict that may arise in
a mobile setting. Section 5 formalises the microeconomic mecha-
nism we propose to solve these conflicts and Section 6 provides a
comprehensive example that clarifies how our approach effectively
works. Section 7 describes and evaluates our current implementa-
tion, and, finally, Section 8 concludes the paper and identifies some
future work.

2. RELATED WORK
The problem of resolving conflicts is a general one and different

research strands have investigated it over the years.
The operating systems community has studied the issue of con-

flicts in a distributed environment, where conflicts manifest as pro-
cesses competing for shared resources. Microeconomic techniques,
and auctions in particular, have been explored; in [15], a market-
like bidding mechanism is described which assigns tasks to proces-
sors that have given the lowest estimated completion time; similar
techniques have been used to manage network traffic [21] and allo-
cation of storage space [10]. We assess that game theory [1] tools
can be successfully used to resolve conflicts that arise in the mobile
setting too; however, rather than dealing with resource conflicts, we
are interested into quality-of-service conflicts in service provision.

Despite the extensive research that has been carried out within
the mobile middleware community, the issue of conflicts has at-
tracted little attention. On one hand, many systems do not sup-
port dynamic adaptation of middleware behaviour, and thus they
avoid the problem of conflicts a priori. On the other hand, sys-
tems which exploit reflection to improve flexibility and allow dy-
namic reconfigurability of the middleware [14, 2] generally target
a stationary distributed environment, where context changes (and,
consequently, adaptation of middleware behaviour) are much less
frequent than in a mobile setting, so that the problem of conflicts is
less pressing.

The software engineering community has investigated the is-
sue of conflicts too. Software development environments [9, 7]
have devised mechanisms for specifying consistency constraints
between artifacts. They are able to detect static violations of these
constraints and resolve them automatically (e.g., by propagating
changes to dependent documents). Inconsistencies are often found
in requirements documents, indicating conflicts between the dif-
ferent stakeholders involved. Requirements management methods
and tools therefore include inconsistency detection and resolution
mechanisms. The KAOS method [6] uses a goal-oriented approach

to decompose requirements and formalises them using a tempo-
ral logic. Conflicts are detected by reasoning about the temporal
logic formulae and conflict resolution strategies [22] can be applied
so that requirement conflicts are not come down to design. Other
requirements engineering approaches [13] leave inconsistencies in
specifications and use an appropriate logic to continue reasoning,
even in the presence of an inconsistency. These approaches, how-
ever, are of limited use in a mobile setting where the nature of con-
flicts is such that they cannot be detected statically at the time an
application is designed but, instead, they can only be detected and
resolved at run-time. Also, they must be resolved, otherwise appli-
cations cannot execute.

Our work is more closely related to approaches that monitor re-
quirements and assumptions during the execution of systems.
Fickas and Feather’s approach towards requirements monitoring
[11] uses a Formal Language for Expressing Assumptions (FLEA).
FLEA is supported by a CLISP-based run-time environment, which
can alert requirement violations to the user. For mobile systems,
however, this is insufficient and a more proactive approach to re-
solving conflicts is required. Robinson and Pawlowski [19] have
developed a so-called “requirements dialog meta-model”, which
supports not only the definition and monitoring of goals, but also
the re-establishment of a dialog goal in case of a goal failure. Goal
monitoring is performed actively, so that violations are detected im-
mediately; however, this requires a consumption of resources that
hand-held devices cannot bear.

In the Distributed Artificial Intelligence (DAI) community, game
theory [1] has been extensively applied to treat negotiation issues.
Negotiation mechanisms have been used both to assign tasks to
agents, to allocate resources, and to decide which problem solv-
ing tasks to undertake (e.g., [25] [24]). These scenarios typically
involve a group of agents operating in a shared environment. Each
agent has its own private goal; a negotiation process is put in place
that, through a sequence of offers and counter-offers, explores the
chance for agents of achieving their (possibly conflicting) goals, at
the lowest cost. Despite similarities with our scenario, there are a
number of assumptions that differentiate our work from previous
results obtained in the DAI community. In particular, in DAI the
quality of the result is valued much more than the cost to achieve
it; as a consequence, negotiation mechanisms are usually iterative
processes which proceed until an (optimal) agreement is found. In
a mobile setting, instead, resource constraints call for simple con-
flict resolution mechanisms that do not waste the (scarce) resources
applications need to achieve their goals. Moreover, the nature of
goals is fundamentally different. In DAI, a goal can be seen as
a task composed of atomic operations that the negotiation mecha-
nism is able to assign to different agents; in our setting, goals are
rather indivisible units that suggest the middleware the quality of
service levels that applications are willing to achieve.

Also relevant to our work is the research on quality of service
provision in a mobile computing environment [5]. QoS require-
ments are defined by all applications and a negotiation mechanism
is put in place to reach an agreement between all parties; as a result
of context changes, a dynamic renegotiation of the contract may be
necessary. The approaches we have analysed usually target a spe-
cific domain (e.g., multimedia applications over broadband cellular
networks), mainly focusing on bandwidth allocation [3]. Moreover,
applications have a rather limited way of influencing the policies
that are chosen to meet QoS requirements. Our middleware aims
at being general and uses reflection to give applications the power
to influence the way adaptation is achieved. This may lead to dis-
agreements among applications to reach the quality-of-service level
they wish.



In this paper, we show how middleware can use microeconomic
techniques effectively in order to solve conflicts that arise in the
mobile setting, where new issues (e.g., dynamic adaptation to con-
text changes) and constraints (e.g., resource-scarce devices and low-
quality network connection) have to be considered.

3. THE REFLECTIVE MODEL
The reflective middleware model we have developed (see [4] for

a full discussion) assumes a single user for each mobile device,
though there may be many applications running simultaneously on
that device, hence, on the same middleware instance. This assump-
tion is reasonable for PDAs, mobile phones and digital cameras.
Applications need to be aware of their execution context, in order
to adapt to frequent and unannounced changes in the environment.
By context, we mean everything that can influence the behaviour of
an application, from resources internal to the device, such as mem-
ory, battery power, screen size and processing power, to resources
outside the physical device, such as bandwidth, network connec-
tion, location and other hosts within reach. The middleware is in
charge of maintaining a valid representation of the execution con-
text, by directly interacting with the underlying network operating
system.

Applications may require some services to be delivered in dif-
ferent ways (using different policies) when requested in different
context. For example, an image processing application may wish
to display pictures in black and white when battery power is low,
using full-size, full-colour pictures when battery power permits. In
our model, the middleware provides applications with a general
mechanism that enables dynamic customisation of service delivery.
The customisation takes place by means of what we call application
profiles; Figure 1 shows their abstract syntax. Each application pro-
file defines associations between the services that the middleware
customises, the policies that can be applied to deliver the services,
and the context configurations that must hold in order for a policy
to be applied. In the example above, an association is defined be-
tween the service ‘Display Picture’, the ‘Black&White’ policy, and
a context where the resource ‘Battery Power’ is low, and another
one between the same service ‘Display Picture’, the ‘FullColor’
policy, and a context where ‘Battery Power’ is high. Profiles are
passed down to the middleware; each time a service is invoked, the
middleware consults the profile of the application that requests it to

serviceList ::= service serviceList | ε

service ::= sname policyList

policyList ::= policy policyList | policy

policy ::= pname contextList

contextList ::= context contextList | context

context ::= resourceList

resourceList ::= resource resourceList | ε

resource ::= rname oname valueList

valueList ::= value valueList | ε

Figure 1: Application profile’s abstract syntax. sname ∈ S,
pname ∈ P, rname ∈ R, being S, P, R ⊂ Σ∗, respectively, the
sets of all valid service/policy/resource names over our alphabet
Σ. value ∈ V, being V the set of all possible values of resources
in R (e.g., IP addresses for hosts in reach, etc.); oname ∈ O,
being O the set of all valid operator names that can be applied
to values of monitorable resources (e.g., equals, lessThan).

determine which policy can be applied in the current context. Our
model assumes that, at each time, the behaviour of the middleware
with respect to a particular service is determined by one and only
one policy, that is, a service cannot be delivered using a combina-
tion of different policies. If different policies need to be combined,
a new name must be assigned to the combined policy, and this name
must be used in the profile. For example, the display of an image
can be done using a ‘B&W-Low’ policy, that is a combination of
‘Black&White’ and ‘LowResolution’.

As both the needs of the user and the context change quite fre-
quently (e.g., due to movement of the device to a different location),
we cannot expect application designers to foresee all possible con-
figurations. Here is where reflection comes into play. A reflective
API is available that gives applications dynamic access to their own
profile, so that changes in this information immediately translate
into changes in the middleware behaviour.

4. DEALING WITH CONFLICTS
The model presented above allows applications to control the

behaviour of the middleware based on current context. This is
achieved by means of application profiles that can be dynamically
changed through reflection. Although a middleware based on this
model supports the development of context-aware applications, it
also opens the door to conflicts. In our model, a conflict exists
when different policies can be used in the same context to deliver a
service, so that the middleware does not know which one to apply
(recall that we made the assumption that a service can be deliv-
ered using only one policy at a time). Reflection gives applications
the ‘intelligence’ that transparency takes away from them in tra-
ditional middleware systems. Applications, however, may not be
smart enough to cope with the new power, and may produce pro-
files that lead to conflicts. In particular, when setting up application
profiles, the following two kinds of conflict may be generated.

Intra-profile conflict: a conflict exists inside the profile of an ap-
plication running on a particular device. This class identifies con-
flicts that are local to a middleware instance. Let us assume that
we are running the image processing application described in Sec-
tion 3. The application may instruct the middleware to display an
image in black and white when the battery power on the device is
low, and to load and display only fragments of the picture when
memory is low. What happens when, suddenly, both battery and
memory fall below the values specified in the profile? The middle-
ware checks which policy should be applied and determines that
more than one policy suits the current context. As we made the
assumption that each service is delivered using one and only one
policy at a time, the middleware is stuck, unable to choose which
of the context-suitable policies to apply. This is an example of
intra-profile conflict.

Inter-profile conflict: a conflict exists between the profiles of ap-
plications running on different devices. This class identifies con-
flicts that are distributed among various middleware instances. As
a particular example of inter-profile conflict, we consider the case
in which a conflict arises between applications running on two dif-
ferent devices. This scenario is typical of a mobile setting, where
interactions take place between peers. Let us assume that we are
running an instance of a calendaring application on our PDA; when
meeting a colleague who is running the same application on his/her
PDA, we want to synchronise our diary entries. However, the appli-
cation profiles on the two hosts may conflict in the following way.
While one of the two application instances may wish to synchronise
data with its peer bidirectionally, regardless of the current execution



context, the other one may prefer to communicate its updates to the
peer, without getting the peer updates back, when memory avail-
ability is scarce. If the two hosts meet when the memory available
on the second device is less than the amount specified in the pro-
file, they will not agree on which protocol to use to synchronise
their data. We call this situation an inter-profile conflict. A par-
ticular case of inter-profile conflict happens when applications run
on the same device (i.e., on the same middleware instance); we re-
fer to this situation as an N-on-1 (i.e., N applications on 1 device)
conflict.

None of these conflicts can be detected and resolved statically,
that is, at the time the profile is written by the application and
passed down to the middleware. A possible static approach would
require us to check whether there is any intersection between the
different contexts of the policies associated with each service. Due
to the complex nature of context (the number of monitored re-
sources may be large), a static conflict analysis would produce an
explosion in the number of contexts that must be checked, and
would require a consumption of resources (especially in terms of
battery, memory and processing power) that portable devices can-
not bear. As for inter-profile conflicts, the situation is even worse;
mobile devices connect opportunistically and sporadically. We can-
not foresee which devices are going to be encountered and, even so,
we cannot assume that all of them will be connected and in reach at
the time a profile is modified; that is, the middleware cannot check
whether the new configuration is conflict-free.

As a consequence, a dynamic solution is needed: conflicts may
exist inside or among profiles, but both applications and middle-
ware can live with these conflicts until a service which incorpo-
rates a conflict is invoked. When this happens, the middleware
has to resolve the conflict using an appropriate mechanism. This
mechanism must be simple, that is, only a low computation and
communication overhead should be imposed, as hand-held devices
have limited resources that cannot be wasted by our conflict resolu-
tion mechanism. Moreover, it must be customisable, that is, it must
be possible for the applications to influence the conflict resolution
mechanism, and determine which policy is applied and which oth-
ers are discarded.

In the following section, we formally describe a conflict resolu-
tion mechanism that meets these requirements.

5. MICROECONOMIC MECHANISM
When applications that participate in the delivery of a service

do not agree on which policy must be applied, a conflict resolu-
tion scheme is necessary to resolve the dispute. The conflict res-
olution mechanism we propose is based on microeconomic tech-
niques. The motivating idea is that a mobile distributed system
can be seen as an economy, where a set of consumers must make
a collective choice over a set of alternative goods. Goods rep-
resent the various policies that can be used to deliver a service
(not the resources needed to apply a policy); for example, policies
‘Black&White’, ‘FullColor’ and ‘LowResolution’ are the goods as-
sociated to service ‘DisplayPicture’. Consumers are applications
seeking to achieve their own goals, that is, to have the middleware
delivering a service using the policy that achieves the best quality
of service, according to application-specific preferences.

Simple schemes include, for example, priority assignment or per
capita distribution. However, those do not suit situations where par-
ticipation in exchange of goods is voluntary on the part of all parties
(i.e., the applications), so that action requires a consensus and mu-
tual perception of benefit. A better scheme would use an auction
protocol. Auctions allow parties to make decisions independently,

on the basis of private state, revealing only offers and acceptance
of the offers made by others. Applications may vary greatly in their
preferences and decision processes. An auction permits greater de-
grees of heterogeneity than simpler schemes.

The question we have to answer next is which auction protocol
to use. This is known in microeconomic theory as a mechanism
design problem [16]. A protocol, or mechanism, consists of a set
of rules that govern interactions, and by which agents (i.e., our ap-
plications) will come to an agreement. It constraints the deals that
can be made, as well as the offers that are allowed. We contend that
the auction protocol we have designed can be successfully applied
in a mobile setting, where the requirements listed in Section 4 must
be satisfied.

In the remainder of this section, we describe the details of the
auctioning mechanism we propose to resolve conflicts in a mobile
environment, and discuss why this mechanism achieves the require-
ments listed before.

5.1 The Protocol
The rules of our auction are very simple: given a setting with N

agents that must make a collective choice from a set of P possible
alternatives, each agent submits a single sealed bid for each element
in P . The auctioneer collects the bids and selects the alternative in
P that maximises social welfare, that is, the alternative with the
highest sum of bids received. Each agent then pays the auctioneer
an amount of money that is proportional to the bid they placed on
the winning alternative.

In our scenario, the role of the auctioneer is played by the mid-
dleware, which we assume is a trusted entity whose code and be-
haviour cannot be interfered with. Applications are the agents, and
the good they are competing for is the application of the policy they
value most, among a set of alternatives that correspond to the poli-
cies that can be applied in a particular context to deliver a service.
As previously said, the aim of the middleware is not to select the
policy that received the highest bid (i.e., the one that maximises the
selling price), but rather the policy that satisfies the largest num-
ber of applications involved in the conflict. This is due to the fact
that we are considering scenarios where applications are participat-
ing in the delivery of the same service, rather than competing for
it (i.e., the service will be delivered to all of them, not only to one
or some of them). In these collaborative, or at least compromise,
scenarios, a solution that satisfies on average all the applications is
preferred to one that maximises the revenue of a single one.

Our auction has been inspired by traditional sealed bid auctions
(e.g., first-price and second-price sealed bid auction [23]). Unlike
ascending bid auctions, such as the standard English auction [18],
where the auctioneer continuously raises the price of the good un-
til only one bidder is willing to meet the price called, sealed bid
auctions consist of a one-step bid that cuts down the computation
and communication costs when the auction is distributed over space
and time, as in our mobile setting. This meets our requirement of
simplicity. We will show in Section 5.2 how customisation is met
by our auctioning mechanism.

In the following, we provide the details of how our auctioning
mechanism works in a mobile distributed setting. To avoid confu-
sion between an application (which may exist on different devices)
and an application instance (which runs on a particular device), we
will identify an application instance and the device it is executing
on as a ‘peer’1. Peers are partners in the communication process.
We call PEERS the set of all possible peers. Under these assump-
tions, the auctioning process can be formalised as follows.

1We do not refer here to the characteristics of peers in P2P networks.



Initialisation
As part of an initialisation process, for every peer peeri, i ∈ [1, N ],
a utility function ui : P → �

+ that represents the user’s goals
(e.g., minimisation of consumption of resources, maximisation of
quality of service, etc.) can be determined. Peers use their utility
functions to find out how much to value the use of a policy pj ∈ P
during an auction, that is, ui(pj) = ui,j . Each peer is also as-
signed a quota qi by its middleware. The quota qi represents the
maximum amount of money that peeri can bid during a bidding
process, that is, the bid placed by peer peeri on policy pj is a num-
ber bi,j = min{ui,j , qi}.

Service Request
Whenever an application asks the middleware to execute a service,
a command like the one illustrated below is issued:

command ::= sname peerList

peerList ::= peer peerList | peer

being sname ∈ S the name of the requested service, and peerList
the set of peers involved in the service execution.

Assuming that service sname requires the cooperation of n ≤
N peers, each peer (or, better, the middleware instance operating
on the device of the peer) computes Pi as the set of policies that
the above running application instance Ai has associated to service
sname in its profile, and that can be applied in the current context
(i.e., according to current resource availability). More formally, Pi

can be defined as follow:

Pi = F [|serv(sname, peeri)|]Env(peeri)

being F the semantic function defined in Figure 2; serv : S ×
PEER → service a function that, given a service name and a
peer, returns the corresponding service specification, and Env :
PEER → E a function that computes the current execution envi-
ronment of a peer.

Computation of the Solution Set
Middleware instances then cooperate to compute the solution set
P ∗, that is, the set of policies that all peers involved in the execution
of the service have agreed upon:

P ∗ = I[|sname|]{peer1...peern}

being I the semantic function described in Figure 3.
If the cardinality of P ∗ is zero, that is, the solution set is empty,

a conflict exists that cannot be solved, as peers do not agree on
a common policy to be applied; the conflict resolution process is
terminated with a failure and peers are notified. If the cardinality is
exactly 1, there is an agreement on the policy to apply (i.e., there
is no conflict). Finally, if the cardinality is greater than 1, there is a
conflict that can be resolved using one of the policies in P∗. In this
case, the auctioning process proceeds as below, to decide which of
these policies should be applied.

Computation of Bets
For every peer peeri participating in the communication process,
and for every agreed policy pj ∈ P ∗, j ∈ [1, m], a bet bi,j is com-
puted, based on the peer’s utility function ui and quota qi. Unlike
‘human’ auctions, we make the assumption that all peers partici-
pating in a bidding process bid a price, that is, they cannot refuse to
bid. Middleware instances of bidding peers exchange the bids they
have received, ending up with a merged set of tuples B∗ specifying

how much each peer valued the use of each agreed policy:

B∗ = B[|{p1, . . . , pm}|]{peer1 ,...,peern}

being B the semantic function shown in Figure 4.

Election of the Winner
From the set B∗, middleware instances participating in the conflict
resolution process select the winning policy p̃ as the one with the
highest sum of the bids placed:

p̃ = W[|B∗|]
being W the semantic function defined in Figure 5. As shown,
before policy p̃ is actually applied, each peer pays an amount of
money that is proportional to the ‘added’ benefit obtained by ap-
plying the winning policy over the other peers. To understand how
payment is split, let us consider three peers x, y and z, who bid
respectively bx < by < bz on a winning policy p. Applying p
gives an equal benefit of bx to each peer; moreover, y and z share
an added benefit of by − bx over x, and z enjoys an extra ben-
efit equal to bz − by over both x and y. Our payment scheme
demands that x, y and z pay respectively 0, (by − bx)/2, and
(by − bx)/2 + (bz − by)/1. Note that, if the winning policy is
the one that has been valued most by all peers, then no payment
is demanded, as there was no real conflict to be solved. Note also
that, in case of intra-profile conflicts, the payment is always zero,
as the winning policy is never ‘imposed’ on anyone, that is, there
is no added benefit over anyone. The rationale for this payment
scheme is that applications are not paying for the resources they
use when applying a policy, but, rather, for the (added) quality-of
service level they get from it. We assume that ties are broken by se-
lecting a policy randomly (i.e., a k-way tie is decided by flipping a
‘k-sided coin’, where each policy is chosen with probability 1/k).

If a service sname is requested that requires the cooperation of a
set of peer peerList, then the whole conflict resolution mechanism
can be summarised as follows:

G : command → P

G[|sname peerList|] =

W [| B [| I[|sname|]{peerList} |]{peerList} |]
A service request may then produce one the following two results:

• G[|sname peerList|] = pname: service sname is deliv-
ered using policy pname (either because all peers agreed on
the policy, or because pname was the policy valued most
during a conflict resolution process);

• G[|sname peerList|] = ε: the service request fails as no
policy can be found that is both agreed by all peers and valid
in the current context.

The auctioning mechanism has been described in the general
situation where there are different applications running on differ-
ent hosts (inter-profile conflict). N -on-1 conflicts are detected and
solved in the same way as inter-profile conflicts. However, as the
application instances involved are running on the same host (i.e.,
on the same middleware instance), no communication overhead is
required, and the solution set P∗ can be computed locally. Intra-
profile conflicts can be considered a degeneration of inter-profile
conflicts, where the number n of bidders is 1, and the solution set
coincides with P1 (i.e., the set of policies that can be applied in the
current execution context, according to peer1’s application profile).
The auction proceeds as described above, selecting the policy that
maximises peer1’s utility, without communication costs.



F : service → E → ℘(P)

F [|sname policyList|]e = F [|policyList|]e
F [|policy policyList|]e = F [|policy|]e ∪ F [|policyList|]e

F [|pname contextList|]e = {pname} if valid[|contextList|]e = �
∅ if valid[|contextList|]e = ⊥

valid : contextList → E → bool

valid[|context contextList|]e = valid[|context|]e ∨ valid[|contextList|]e
valid[|context|]e = valid[|resourceList|]e

valid[|resource resourceList|]e = valid[|resource|]e ∧ valid[|resourceList|]e
valid[|rname oname valueList|]e = eval((rname, oname, valueList), e)

valid[|ε|]e = �

Figure 2: Application profile semantics. E = ℘(R × V) represents the set of all possible execution con-
texts (e.g, {(Memory, 8), (Battery,4)}); eval is a boolean function that returns true if the value of resource
rname in the execution context e is among the values obtained by applying the operator oname to valueList (e.g.,
eval((Memory, inBetween, [2, 7]), {(Memory, 6)}) = �, while eval((Memory, lessThan, [5]), {(Memory, 6)}) = ⊥).

I : S → ℘(PEER) → ℘(P)

I[|sname|]{peer peerList} = I[|sname|]{peer} ∩ I[|sname|]{peerList}
I[|sname|]{peer} = F [|serv(sname, peer)|]Env(peer)

Figure 3: Semantics of the computation of the solution set

B : ℘(P) → ℘(PEER) → ℘(P × PEER × �
+)

B[|{p1, . . . , pm}|]{peer peerList} = B[|{p1, . . . , pm}|]{peer} ∪ B[|{p1, . . . , pm}|]{peerList}

B[|{p1, . . . , pm}|]{peer} =
m�

j=1

{(pj , peer, min{qpeer , upeer,j})}

B[|{p}|]{peerList} = {(p, , 0)} No conflict

B[|∅|]{peerList} = ∅ No agreement

Figure 4: Semantics of the computation of bets

W : ℘(P × PEER × �
+) → P

W [|{(pj , peeri, bi,j), ∀i ∈ [1, n], j ∈ [1, m]}|] = p̃ |
p̃ ∈ {π1(pj , peeri, bi,j), ∀i ∈ [1, n], j ∈ [1, m]}

∧
n�

i=1

π3(p̃, peeri, bi,̃) = max
j∈[1,m]

n�
i=1

π3(pj , peeri, bi,j)

∧ pay(qmw(i), fi, qi), ∀i ∈ [1, n]

where fi =

�������
������

a. 0 if ∀k ∈ [1, n] π3(p̃, peerk, bk,̃) = maxj∈[1,m] π3(pj , peerk, bk,j)

b.
�

l∈{s|s∈[1,n]
∧bs,̃≤bi,̃}

bl,̃−max( {bs,̃|bs,̃<bl,̃, s∈[1,n]}∪{bmin,̃} )

#{bs,̃|bs,̃≥bl,̃, s∈[1,n]}∗#{bs,̃|bs,̃=bl,̃, s∈[1,n]} ,

bmin,̃ = min{bi,̃, i ∈ [1, n]} otherwise

W [|{(p, , 0)}|] = p No conflict

W [|∅|] = ε No agreement

Figure 5: Semantics of the election of the winning policy. πi(a1, a2, . . . , an) = ai is a function that projects a tuple onto the ith

value; #{a1, a2, . . . , an} = n is a function that computes the cardinality of a set; qmw(i) is a function that retrieves the quota of the
middleware on top of which peer peeri is executing; finally, pay(q1, x, q2) = (q1 + x, q2 − x) is a function that both increases the
middleware quota q1, and decreases the peer’s quota q2, of the specified amount.



Once a conflict has been detected and resolved using the auc-
tioning mechanism presented above, no further action is taken. The
conflict cannot be removed as it is not usually local to a profile but
distributed among the profiles of different peers. If the peers in-
volved change, or if the context changes, there may be no conflict
at all. Also, we assume that each auction is carried on in isola-
tion: a peer cannot expect that its behaviour will in any way affect
a future conflict or, similarly, that it will behave in a particular way
based on its interaction history (i.e., we cannot assume that next
time the same conflict arises, the winning policy will be the same
one, as the result depends on current peer quotas, utility functions
and application profiles). Each conflict resolution process stands
therefore alone.

There are some questions that need to be answered about the
process described above; in particular, how is an utility function
defined, and how is the quota managed by middleware? We answer
these questions in the following sections.

5.2 Utility Function
Whenever a conflict is detected, either inside a profile (intra-

profile conflict) or among various profiles (inter-profile conflict),
user’s goals, such as maximisation of the quality of the display for
an image processing application, or directionality of data synchro-
nisation for a calendaring application, must be taken into account.
In other words, users should be allowed to influence the conflict
resolution process operated by the middleware as they are the only
ones who know what their goals are at the moment and how differ-
ent outcomes are valued.

Utility functions serve this purpose. A utility function ui trans-
lates user’s goals with respect to peer peeri into a value ui,j that
represents the price the user is currently willing to pay to have pol-
icy pj applied, that is, to have its goals fulfilled. The following
holds:

ui,j ≥ 0, ∀i ∈ [1, n], j ∈ [1, m].

As in ‘human’ auctions, values cannot be negative; a value ui,j = 0
means that policy pj is not relevant to peer peeri, that is, applying
pj does not give any benefit to peeri (this is a plausible ‘machine’
representation of a ‘human’ “refuse to bid”).

Utility functions change dynamically to reflect changes in the
user’s goals; however, the value they return is computed over static
policy specifications that estimate the consumption of resources
that applying the policy entails, and the benefits it gives in terms of
quality of service. If R ⊂ Σ∗ defines the set of resource names that
the middleware monitors, and Q ⊂ Σ∗ the set of benefits achieved
by applying policies in P, then a policy specification can be de-
scribed as a domain set:

PSPEC = ℘({R ∪ Q} × level)

being level ::= ′1′| . . . |′LMAX′ an estimate of resource con-
sumption/benefit achieved that the policy developers compute be-
fore delivering the policy.

The abstract syntax of a utility function is given in Figure 6,
where cb name ∈ (R ∪ Q) is a name that uniquely identifies a
resource or benefit inside a policy specification, and weight ::=
′1′| . . . |′WMAX′ is a factor that represents the importance the
user gives to a particular resource/benefit (the higher the weight,
the more important the resource/benefit). In this paper, we do not
discuss how weights, that represent user’s needs as faithfully as
possible, can be generated, as we consider this issue a matter of
future research.

Whenever a peer peeri is involved in a bidding process, its utility
function is retrieved and used to find the peer’s evaluation ui,j for

ufunction ::= addendList

addendList ::= addend addendList | addend

addend ::= cb name weight

Figure 6: Utility function abstract syntax

each conflicting policy pj . The semantics of a utility function is
presented in Figure 7. As shown, each value is normalised to vary
in a range [0, 1], so that different bets can be effectively compared,
and money fairly redistributed (see Section 5.3).

As stated before, while policy specifications are fixed, utility
function specifications change over time, as they have to reflect
current user’s needs. This implies that the reflective API of our
middleware (see Section 3) has to allow dynamic modification of
utility function specifications. This allows our conflict resolution
scheme to achieve also the second requirement we aimed to, that
is, customisation.

Note that, to avoid incompatibility among the prices bid during
a conflict resolution process, utility functions are locked at the be-
ginning of an auction, and cannot be modified until the auction
finishes. Thus, applications cannot ‘cheat’ and associate high bids
to the policies they value most, while bidding zero for the others,
to increase the chances to have the policy they value most finally
applied, as this would require applications to change the weights of
their utility functions during the auction.

5.3 Quota Allocation
When describing the rules of our mechanism (see Section 5.1),

we specified that each peer peeri is allowed to bid a value bi,j for
policy pj , given that this value is lower than its current quota qi.
We now explain how this quota is managed.

Whenever an application instance Ai is started, an initial quota
qi = qinit is awarded. Each time Ai participates in a bidding pro-
cess, its current quota is decreased by an amount equal to fi ∈
[0, 1], as defined in Figure 5. Ai’s underlying middleware instance
collects Ai’s payments and stores them in a wallet q(i). We assume
that there is no flow of money from one middleware instance to
another (i.e., each application instance pays its underlying middle-
ware). Moreover, we assume that there is no explicit utility transfer
among applications (e.g., no money can be transfered to a peer to
compensate for a disadvantageous agreement).

Every t time units, each middleware instance redistributes the
money it has collected in its wallets q(i), i ∈ [1, n], to the various
application instances Ai, i ∈ [1, n]. The amount of money each
application instance gets back is in direct relation to the number of
interactions it has been involved during the last t time units, and
in inverse relation to the amount of money it bid. We define an
interaction as a service request which incorporates an inter-profile
conflict (intra-profile conflicts are excluded from the quota recharg-
ing as no flow of money occurs).

In particular, if we indicate with Nt(i) the number of interactions
in which application instance Ai was involved during the last t time
units, then the recharging process is carried out as described below:

qi = qi +

�
q(i) − q(i)

Nt(i)

�

q(i) =
q(i)

Nt(i)

being q(i) the money currently stored by the middleware in the



U : ufunction → PSPEC → �
+

U [|addend addendList|]ps = U [|addend|]ps + U [|addendList|]ps

U [|cb name weight|]ps =
intval(S[|cb name|]ps) ∗ intval(weight)

LMAX ∗ WMAX ∗ RQMAX
,

Figure 7: Semantics of an utility function. S : (R ∪ Q) → PSPEC → level is a function that, given a resource/benefit name
cb name, and a policy specification ps, fetches the level associated to cb name in ps (if the utility function tries to retrieve a value for
a resource/benefit that does not appear in the policy specification, we consider a value of 0). intval is a function that given a literal
in {′1′, . . . ,′ MAX′}, returns the corresponding integer value in [1, MAX]; LMAX ∗ WMAX ∗ RQMAX is the maximum bid an
application can place, being RQMAX the maximum number of resources/benefits of interest to an application.

wallet associated to Ai, and qi equals to Ai’s current quota.
This quota redistribution scheme discourages dictatorial interac-

tions: if an application instance bids very high in a few interac-
tions, ‘imposing’ its preferred policy over the others, then only a
very low amount of money is returned during a recharging process.
The only way to get money back from the middleware is to par-
ticipate in other interactions in a more cooperative fashion (i.e., by
bidding lower and interacting more). For example, let us assume
that at time t0, two applications instances A1 and A2 are started
and awarded the same quota qi = 3, i ∈ {1, 2}. During the follow-
ing t time units, they are involved in a number of interactions that
cost them altogether the same amount of money; however, while
A1 bid aggressively, paying a lot of money in few interactions, A2

was more cooperative, paying low amounts in many interactions.
As a result, our quota redistribution scheme returns money to A2

faster than to A1 (see Figure 8).
The approach to quota redistribution that we have described could

be defined as ‘conservative’: at any time, the money associated
to an application instance Ai are the same, although split differ-
ently between its current quota qi and the corresponding middle-
ware wallet q(i). In other words:

q(i) + qi = qmax

being qmax a fixed amount that is the same for any application. At
time t0 when an application instance Ai is started, different choices
of qinit and q(i) are possible. In particular, any assignment that
complies with the following equations is acceptable:

∀α ∈ [0, 1]

�
qinit = α · qmax

q(i) = (1 − α) · qmax

Setting α = 1 favours newly started application instances, while
setting α = 0 favours applications that have been executing for
a long while. The differences among these possibilities disappear
while time passes. It is beyond the scope of this paper to demon-

Time / Action q1 q(1) q2 q(2)

t0 / Start 3 0 3 0
t1 / Bid 2.1 0.9 2.7 0.3
t2 / Bid 1.2 1.8 2.4 0.6
t3 / Bid 2.1 0.9
t4 / Bid 1.8 1.2
t5 / Bid 1.5 1.5
t6 / Bid 1.2 1.8

t7 / Redistribution 2.1 0.9 2.7 0.3

Figure 8: Example of quota redistribution (with t7 − t0 = t)

strate an optimal choice for qinit, qmax, t and α.
This concludes the discussion about our auctioning approach to

the conflict resolution problem. In the following section, we il-
lustrate how this mechanism can be instantiated and used to solve
conflicts.

6. EXAMPLE
In this section, we present an example of inter-profile conflict

using an instant messaging application on top of our reflective mid-
dleware, and show how our auctioning mechanism can be success-
fully applied to resolve it.

One of the services that our instant messaging application can
customise is the way messages are delivered among peers that have
started a chat. In particular, our middleware provides four different
policies among which the application can choose: a SendChar
policy, which is used to deliver to the peers a character at a time;
a SendLine policy, which is used to deliver to the peers a line
of characters at a time; a SendZippedLine policy, which first
compresses a line of characters and then sends it to the peers, and
finally a SendEncryptedLine policy which first encrypts and
then sends a line of characters to the peers. Each of these policies
requires a different amount of resources to be used (in particular,
battery and bandwidth), and achieves a different quality of service
(in terms of availability and privacy of the message). The corre-
sponding policy specifications are shown in Figure 9.

SendChar
{(Battery,4),(Bandwidth,10),(Availability,10)}
SendLine
{(Battery,3),(Bandwidth,6),(Availability,7)}
SendZippedLine
{(Battery,5),(Bandwidth,4),(Availability,5)}
SendEncryptedLine
{(Battery,6),(Bandwidth,7),(Availability,4),(Privacy,10)}

Figure 9: Policy specifications

Let us suppose that three peers peer1, peer2, and peer3 get in
reach of each other and want to start a chat. In order to do so,
we assume they have to agree on a common policy to be applied
to exchange messages. During the lifetime of the chat, the policy
used may change to adapt to new context configurations where the
currently used policy is no longer suitable. However, when this
happens, all the chatting peers must agree on the new policy to use.

The peers’ application profiles are represented in Figure 10. The
first peer enables each of the four policies in different contexts; the
second peer prevents the use of the two heaviest policies, Send-
Char and SendEncryptedLine; finally the third one prevents
the use of SendChar, while leaving SendLine always enabled
(there is in fact no context associated to it). Leaving one or more



% peer 1 % peer 3
SendMessage SendMessage

SendChar SendLine
Bandwidth > x1

SendLine SendZippedLine
Bandwidth < x1 Bandwidth < x3

SendZippedLine SendEncryptedLine
Bandwidth < x1/2 Battery > y3

SendEncryptedLine
Battery > y1

% peer 2
SendMessage

SendLine
Battery < x2

SendZippedLine
Bandwidth < y2

Figure 10: Application profiles

% peer 1 % peer 2 % peer 3
Battery 4 Battery 7 Privacy 10
Bandwidth 3 Bandwidth 9
Availability 10

Figure 11: Utility function specifications. peer1 aims at max-
imising availability without wasting to many resources; peer2

aims at minimising resource consumption, and peer3 aims at
maximising privacy.

policies always enabled is a good way to reduce the risk of ending a
conflict resolution process with a failure because no agreed policy
could be found. However, this increases the risk of conflicts and,
therefore, the time used to resolve them (which is anyway rather
low, as it will be shown in the next section). It is up to the applica-
tion to decide which strategy is best.

Assuming that the utility functions are the ones shown in Fig-
ure 11, and that the current execution context enables the following
sets of policies:

P1 = {SendLine, SendZippedLine, SendEncryptedLine}
P2 = {SendLine, SendZippedLine}
P3 = {SendLine, SendZippedLine, SendEncryptedLine}

for peers peer1, peer2 and peer3 respectively, then the conflict
resolution process proceeds as described below.

Computation of the solution set

I[|SendMessage|]{peer1,peer2,peer3} = P1 ∩ P2 ∩ P3

= {SendLine, SendZippedLine}

Computation of bets
High weights associated to resources in utility function specifica-
tions mean that the user aims at sparing resources; however, pol-
icy specifications estimate the amount of resources consumed, not
spared. In order to give higher scores (i.e., higher bid prices) to the
policies that reduce resource consumption, we therefore need to
compute the value: LMAX− expected consumption. For example,
if we assume LMAX = 10, WMAX = 10, and RQMAX = 4
(i.e., battery, bandwidth, availability and privacy), then:

upeer1(SendLine) =
(10 − 3) ∗ 4 + (10 − 6) ∗ 3 + 7 ∗ 10

10 ∗ 10 ∗ 4
= 110/400 = 0.275

Assuming that each peer has a quota qpeeri > 1 (i.e., the bid is not
constrained by current quota, as each bid bi,j ∈ [0, 1]), we obtain:

B[|{SendLine, SendZippedLine}|]{peer1 ,peer2,peer3} =
{(SendLine, peer1, 0.275), (SendZippedLine, peer1, 0.22),
(SendLine, peer2, 0.2125), (SendZippedLine, peer2, 0.2225),
(SendLine, peer3, 0), (SendZippedLine, peer3, 0) }

Election of the winner
Bids received for each policy in the solution set are added, and the
policy that maximises the sum (i.e., social welfare) is selected:

peer1 peer2 peer3

SendLine : 0.275 + 0.2125 + 0 = 0.4875
SendZippedLine : 0.22 + 0.2225 + 0 = 0.4425

Therefore:

W[| B[|{SendLine, SendZippedLine}|]{peer1 ,peer2,peer3}|]
= SendLine

Finally, each peer’s quota is adjusted in the following way:

q1 = q1 − 0.275 − 0.2125

1
− 0.2125 − 0

2
− 0

3

q2 = q2 − 0.2125 − 0

2
− 0

3

q3 = q3 − 0

3

7. IMPLEMENTATION AND EVALUATION
We have implemented our middleware in Java that supports the

full reflective model and the conflict resolution mechanism described
in this paper. We have also developed an instant messaging appli-
cation on top of it and ran tests on a Compaq iPAQ PDA running
Linux. Application profiles and utility functions have been encoded
using the eXtensible Markup Language (XML). We chose to use
XML as we believe this language may enhance context-aware and
user-driven interactions between middleware and applications, sup-
porting a representation of information that is both easily manipu-
latable by machines and readily understandable by humans.

The middleware platform currently requires less than 250Kb of
persistent storage, and less than 800Kb of memory (without con-
sidering the memory required by the Java Virtual Machine). We
have measured the average time required to start a service, with and
without conflicts. We have experienced no time increase in the case
of intra-profile conflicts, and an increase of around 20% (450ms
instead of 365ms) in case inter-profile conflicts between two peers
were detected and solved (with only 300 bytes of information sent
around). In both cases, there was no human perception of the delay
as most of the time is taken by the loading and provisioning of the
service.

In our auctioning scheme, the role of the auctioneer can be played
by more than a middleware instance at the same time, as bidders
may be distributed across different machines (inter-profile conflicts);
this requires cooperation among all the middleware instances in-
volved, to compute the solution set and to exchange bids. The com-
munication paradigm we are currently using requires that all the
peers remain connected while the conflict resolution mechanisms
is performed, otherwise a failure is reported. We plan to investigate
and develop different communication paradigms that allow our auc-
tioning protocol to be resilient even in the presence of individual’s
disconnections.



8. CONCLUSION AND FUTURE WORK
In this paper we presented a microeconomic approach to conflict

resolution in a mobile setting. In particular, we modelled a mo-
bile distributed system as an economy where applications compete
to have a common service delivered according to their preferred
quality-of-service level; in this economy, middleware plays the role
of an auctioneer, collecting bids from applications and selecting the
policy that maximises social welfare. This approach is particularly
suited in the mobile setting as it meets the requirements of simplic-
ity and customisability that are typical of this environment.

The auction protocol we used can be extended in many direc-
tions. For example, we based our mechanism on the assumption
that each service is delivered using one policy at a time; however,
this policy may be the result of applying a set of other (sub)policies
one after the other. Considering the example illustrated in Sec-
tion 6, policy SendZippedLine is a combination of Zip and
SendLine. Our mechanism could be extended to deal with con-
flicting situations where middleware is in charge of both selecting
a winning policy, and fairly distributing the various (sub)policies
to the participating applications. Applications could be asked, for
example, to bid a price, not only for a policy, but also for its con-
stituents. Moreover, if applications do not agree on a common set
of enabled policies (i.e., the solution set is empty), the conflict reso-
lution process fails. To reduce the risk of such failures, our auction-
ing mechanism could be extended so that applications that weaken
their requirements, and enable a larger set of policies, could be re-
warded (e.g., through quota recharging). However, the cost of these
approaches should be carefully considered as we are targeting a
mobile setting characterised by resource-scarce devices, and we do
not want to compromise efficiency while handling the conflict res-
olution process.

Our plans for the future include an investigation of how user’s
needs can be dynamically mapped into application profiles and util-
ity functions. In [6], a goal-oriented approach has been investigated
to operationalise user’s goals into services of the system. In [12],
a reflective extension of this work has been proposed in order to
allow system behaviour to adapt to the changing context (as it is
necessary in a mobile environment). In order for this to be feasible,
the context (and its changes) must be represented at run-time. This
representation must take place in a way that is both readily under-
standable by humans and easily manipulatable by machines. Our
work has already moved in this direction, with the idea of using
XML to represent both context and profiles; we plan to investigate
this issue further.
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