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ABSTRACT

Many deep learning applications, like keyword spotting [1, 2],
require the incorporation of new concepts (classes) over time, re-
ferred to as Class Incremental Learning (CIL). The major challenge
in CIL is catastrophic forgetting, i.e., preserving as much of the old
knowledge as possible while learning new tasks. Various techniques,
such as regularization, knowledge distillation, and the use of exem-
plars, have been proposed to resolve this issue. However, prior works
primarily focus on the incremental learning step, while ignoring the
optimization during the base model training. We hypothesise that a
more transferable and generalizable feature representation from the
base model would be beneficial to incremental learning.

In this work, we adopt multitask learning during base model
training to improve the feature generalizability. Specifically, instead
of training a single model with all the base classes, we decompose
the base classes into multiple subsets and regard each of them as
a task. These tasks are trained concurrently and a shared feature
extractor is obtained for incremental learning. We evaluate our ap-
proach on two datasets under various configurations. The results
show that our approach enhances the average incremental learning
accuracy by up to 5.5%, which enables more reliable and accurate
keyword spotting over time. Moreover, the proposed approach can
be combined with many existing techniques and provides additional
performance gain.

Index Terms— Class Incremental Learning, Continual Learn-
ing, Multitask Learning, Keyword Spotting

1. INTRODUCTION

Recently, deep learning has enabled the boom of a variety of appli-
cations such as face recognition [3] and keyword spotting [1, 2]. Al-
beit remarkable performance, deep learning models are usually built
upon a fixed dataset, lacking the ability and flexibility of adapting
to sequentially incoming data (of the same class or new classes) [4].
For example, in keyword spotting, the initial model is built based on
a pre-defined keyword set. When the user intends to add new key-
words over time, the data-hungry nature of deep learning incurs two
challenges for model update. First, storing the previous data might
require substantial memory. Second, retrieving old data and training
a new model from scratch requires considerable time and computa-
tional resources. A research area, class incremental learning (CIL),
which tries to retain the acquired knowledge while learning new con-
cepts, has been initiated to address these challenges [5].

Typically, CIL consists of two stages, as shown in Figure 1.
The base model training stage utilizes the full dataset at hand to
train a base model. During the incremental learning stage, the base
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Fig. 1. Illustration of typical class incremental learning.

model will be fine-tuned with new data received over time (and a
part of the old data). A critical problem in CIL is catastrophic for-
getting [4, 5, 6, 7, 8, 9], that is, the model tends to be overfitted on
the new class data, while forgetting previously acquired knowledge,
thereby degrading the inference performance on old classes. This
originates from the imbalance between the old and new class data as
none or only part of the old data is retained to save storage during
fine-tuning [10, 11]. Moreover, the data imbalance issue also im-
plies bias at the classification layer: old samples are more likely to
be classified as new classes [12].

To deal with catastrophic forgetting, researchers have proposed
different techniques, which can be divided into three categories. The
initial attempt to resolve catastrophic forgetting is regularization.
Specifically, this method first locates the important model param-
eters that contribute more to the final classification by using certain
metrics such as the fisher information [7] and output gradients [6].
Then, an additional term is applied to the loss function to restrict
the changes of these important weights. Later, knowledge distilla-
tion [13], which transfers knowledge between different domains or
networks, has been adopted to retain the old knowledge when learn-
ing a new task [9, 14]. The output logits of new samples on the old
model will be recorded first, and an extra loss term is added to mini-
mize its difference with the output logits from the new model during
incremental training. These two approaches have been proven to
have poor performance in CIL [15]. Most recently, exemplar-based
approaches were proposed, where a small portion of old samples
are selected (randomly or with herding technique [16, 17, 18]) and
stored. In the incremental learning step, the exemplar set is com-
bined with new data for model updates, which shows great perfor-
mance in retaining old knowledge and learning new concepts. The
state-of-the-art incremental learning performance is achieved with a
combination of different techniques [19].

However, we identified that all the existing approaches focus on
the incremental learning step, while ignoring the optimizations in the
base model training stage. Intuitively, to retain the old knowledge
while learning new concepts, we would that expect the feature repre-
sentation (or embedding) produced by the base model to be general
to the new classes as well [19]. In other words, if we can train a



more representative and transferable base model, we can alleviate
the catastrophic forgetting issue during incremental learning. This
assumption is tenable due to the fact that for a given neural network
and accuracy, there exist multiple sets of weights, i.e., training a neu-
ral network multiple times with the same setting results in different
sets of model weights. So, the question is how to obtain a set of
weights that is more transferable to new classes.

In this work, we propose the use of multitask learning during the
base model training to improve the generalizability of embeddings.
Multitask learning involves learning multiple tasks in parallel while
using a shared representation [20]. If we define different subsets of
base classes as different classification tasks, the model would see
different combinations of the base classes. As a result, the model
is forced to learn a set of weights based on different views of the
dataset, which would be more transferable to new classes. Moreover,
the number of training epochs needed for incremental learning is de-
cided empirically in current approaches. We introduce a validation
set and the early stopping technique to avoid underfitting or overfit-
ting in practical scenarios. Experimenting with the Google Speech
Commands (GSC) and UrbanSound8K datasets, we demonstrated
that our approach can further enhance the average classification ac-
curacy by up to 5.5%, which enables more reliable and accurate key-
word spotting over time. Furthermore, our approach is compatible
with many other existing approaches and adds extra performance
gains over them as it works on the base model training stage.

2. PRIMER

2.1. Related Work

Existing literature on CIL mainly addresses two research problems,
i.e., catastrophic forgetting of old knowledge and data imbalance be-
tween old and new classes.

Catastrophic forgetting: refers to the fact that the model for-
gets previously attained knowledge on old classes when learning
new concepts with new class data. Previous works to combat catas-
trophic forgetting can be categorized into two groups - without and
with samples of old classes. Techniques such as parameter con-
trol [6, 7, 8], knowledge distillation [13], exemplar replay [16, 17,
18, 21, 22, 23], and generative adversarial network [24] are proposed
in the literature, as discussed in the Introduction.

Data imbalance: no matter with or without old samples, there
exists a huge imbalance between old and new samples during incre-
mental learning stage. As a result, the model will be overfitted to the
new classes. To address it, BiC [10] adds an extra bias correction
layer to correct the model’s outputs. WA-MDF [12] aligns the norm
of new class weight vectors to that of the old class weight vectors
and [11] applied cosine normalization in the classification layer.

Overall, the state-of-the-art approaches combine multiple tech-
niques such as knowledge distillation and data balancing to achieve
optimal performance [19].

2.2. Motivation

For each line of work, we identified certain limitations that motivate
this work.

First, existing approaches that deal with catastrophic forgetting
all focus on the incremental learning stage, while ignoring the im-
portance of the base model training. In particular, we observed that
training a neural network for multiple times under the same set-

(a) Epoch 15 (b) Epoch 45 (c) Epoch 100
Fig. 2. Comparison of confusion matrix after training for (a) 15 (acc
old = 0.91, acc new = 0.24), (b) 45 (acc old = 0.83, acc new = 0.82),
and (c) 100 (acc old = 0.86, acc new = 0.92) epochs. The green and
red box represent old and new classes, respectively.

ting1 will result in different sets of weights (or embeddings), i.e., the
model weights are not unique. This observation raises a question,
among different sets of model weights, which one is more beneficial
for incremental learning? Since less transferable embeddings will
force the model to alter its weights significantly to learn new con-
cepts, the previously attained knowledge will be destroyed, leading
to more severe catastrophic forgetting. Thus, we hypothesise that
it is possible to alleviate catastrophic forgetting by training a more
transferable base model.

Second, during incremental learning, existing works usually re-
port an empirical value for training epochs2 and this number varies a
lot for the same dataset. For instance, on the CIFAR-100 datset, the
number of training epoch for BiC [10], WA-ADB [12] and iCarl [23]
is set to 250, 180, and 70 respectively. With the increase of training
epochs, the model tends to shift to new classes due to data imbal-
ance between old classes and new classes. Figure 2 compares the
confusion matrix of a CIL task at different training epochs, where
class 0-7 are old classes and class 8-10 are new classes. We can
observe that when the number of training epoch is small (i.e., 15),
the model has not acquired enough knowledge about the new classes
and the accuracy on new classes is poor. With more training epochs,
the performance on new classes increases gradually, and the model
becomes overfitted with excessive epochs (i.e., 100). Consequently,
setting a proper value for training epochs is critical to deal with data
imbalance in CIL.

3. METHODOLOGY

Motivated by the discussion above, we introduce multitask learning
to CIL to improve the generalizability of feature representations. As
shown in Figure 3, the full base dataset is decomposed into multiple
subsets and they form a multitask setting, where the classification of
each set is regarded as a task. These tasks are trained concurrently
with a shared representation. After multitask training, the model
backbone and the largest head (corresponding to full base dataset) is
forwarded to the incremental learning step, where the state-of-the-art
techniques can be directly applied.

3.1. Intuition of Multitask Training

Multitask learning forces the model to simultaneously solve multiple
tasks at once [20], and has been used to help improve the generaliza-
tion of the model in solving all tasks, by preventing the model from
overfitting to any particular task [25]. In the context of CIL, gener-
alizability of the model is crucial, since it is necessary for the model

1Without changing any hyper-parameter and simply run the same code
again to achieve a similar accuracy.

2Such empirical value is obtained with the full dataset of the new classes,
which is unavailable in practical CIL setting.
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Fig. 3. Illustration of multitask learning based CIL.

to retain previous knowledge while learning about new classes. We
designed a multitask learning scheme that aims to simulate the in-
cremental learning steps at the base model training stage, by di-
viding the dataset into different subsets. For example, with base
classes such as ‘air conditioner’, ‘car horn’, ‘children playing’ and
‘drilling’, we can create different classification tasks by taking clus-
ters of them, including {‘air conditioner’, ‘car horn’}, {‘air condi-
tioner’, ‘drilling’} and {‘air conditioner’, ‘car horn’, ‘children play-
ing’, ‘drilling’}. This grouping of the base learning classes aims to
make the model find a solution which can solve all these classifica-
tion tasks at once, instead of overfitting to the whole base dataset. As
a result, the generalizability of the base model is improved, leading
to better performance in the incremental learning stage. This partic-
ular setup is analogous to the incremental learning stage, where the
model is required to perform well on different sets of classes.

3.2. Multitask Creation

Important design choices that arise from adopting multitask training
are: (1) the number of tasks, and (2) the cluster of classes that each
task corresponds to. If we have N target classes in the dataset used
in base model training, there are 2N − 1 distinct valid tasks (which
equals to the number of subsets excluding the empty set). With the
number of task being 1 and the cluster being the entire set of classes,
we have the conventional setup of a fully-supervised training on the
base dataset. The number of distinct tasks grows very rapidly as
N increases, so it is infeasible to train on all of them, and a design
choice should be made. With the number of classes being closer to
N , the task itself is harder. However, restricting all the tasks to have
high number of classes reduces the diversity of tasks presented to
the model, and it may not help in improving the generalizability of
the solution that the model converges to. In this work, we explore
different choices of tasks, along two directions: (1) tasks with dif-
ferent number of classes (such as 5, 4, and 3 classes for each task),
and (2) those with different subsets of classes but the same number
of classes (such as 5, 4, 4 and 4 classes, but each task is a distinct
subset).

3.3. Learning Rate Scheduler

One of the most important hyperparameters affecting the amount of
knowledge retention in CIL is the learning rate during incremen-
tal steps, in which the models are fine-tuned. Some existing works
adopts a cosine annealing for training with a large starting learn-
ing rate (0.01) [19]. We observed that this large starting learning
rate significantly changes the weights of the neural network, and this
could make knowledge retention difficult. On the other hand, adopt-
ing a fixed small learning rate causes training to be slow.

As a result, we propose a two-step fine-tuning strategy to mit-
igate this. First, the majority of the up-stream layers of the neural
network are frozen, while the down-stream layers which include the

classification layer with the newly added neurons are trained with
a relatively large learning rate. After the down-stream layers, and
the new neurons in particular, converge to a reasonable solution to
both new and old classes, the up-stream layers are unfrozen and the
entire network is fine-tuned with a small learning rate. An early stop-
ping mechanism is also adopted in our scheme because it is difficult
to find the balance between overfitting and underfitting when using
a fixed number of training epochs (which is commonly adopted in
previous works).

4. EVALUATION

4.1. Experiment Setting

Dataset: We evaluated the proposed approach on two audio datasets.
UrbanSound8K dataset [26] consists of 10 different environment
sound events such as drilling, car horn, street music, etc. There are
8,732 audio clips sampled at 22 kHz, where each clip lasts for 3-
4 seconds. Following [27], we extracted four audio features (Log-
mel spectrogram, chroma, tonnets, and spectral contrast) using the
first 3-seconds of a clip. As a result, the created input has a size
of 128×85, where 128 represents the number of frames and 85 rep-
resents aggregated feature size of the four audio features. Google
Speech Commands (GSC) [26] is a widely used dataset in keyword
spotting. We pick the 20 core keywords as the classes and each class
contains 3,200 1-second clip. Log-mel spectrogram features have
been extracted and a 32×32 input is created.

For UrbanSound8K dataset, we set the number of base class and
incremental class as 4 and 2 respectively, i.e., 4-2-2-2. Similarly,
GSC dataset is split to 5-3-3-3-3-3. For both datasets, the (train,
test, validation) splitting ratio is set to (0.7, 0.2, 0.1). We allocate a
fixed memory to store K (default 100 for UrbanSound8K and 200
for GSC) exemplars for all previously seen classes.
Model Architecture: We designed a convolutional neural network
to classifier the audio events. The network consists of four Conv2D
layers with ReLU activation, each followed by a BatchNormaliza-
tion layer. Then, a Dropout (0.5) layer and an AveragePooling layer
is connected before the final classification layer. Stochastic gradient
descent is used as the optimizer. All the code is implemented in Py-
Torch and run on a NVIDIA GeForce RTX 2080 GPU. We use the
hard parameter sharing approach for our multitask learning, where
the hidden layers for different tasks are shared and remain exactly
the same and only the classification layer is trained separately.
Baseline: We compare our work to the method proposed by Mittal
et al. [19] which reported state-of-the-art results for CIL. Specifi-
cally, [19] first utilizes the cross entropy (CE) loss and knowledge
distillation (KD) loss on new classes to learn new knowledge. Then,
it constructs a small but balanced exemplar set (including current
incremental classes) to correct the bias and preserve old knowledge
(with CE loss and KD loss). For more details, please refer to the
original paper [19]. We adopted the same incremental learning strat-
egy as in [19] and the difference only comes from the base model
training, i.e., single task ([19]) vs. multitask (ours).

4.2. Results

Impact of Task Creation: First, we systematically explored the
configurations of different tasks along two directions: (1) tasks with
different number of classes, and (2) those with different subsets of
classes. Figure 4 demonstrates the change in model accuracy as we
vary the configuration of tasks, on the GSC dataset. From Figure
4(a), we could infer that adding more tasks with the same number of
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Fig. 4. Impact of task creation.

Table 1. Time overhead when training with different number and
choice of tasks/heads.

Heads Training Time
per Epoch (s) Heads Training Time

per Epoch (s)
[5] 2.16 [5,4,4] 4.79

[5,4] 3.41 [5,4,4,4] 5.35
[5,4,3] 4.65 [5,4,4,4,4] 6.44

[5,4,3,2] 5.44 [5,4,4,4,4,4] 7.42

classes but different subsets did not lead to consistent performance
improvements. On the other hand, from Figure 4(b), we could see
that increasing the number of tasks with different classes led to a
consistent increase of performance, up to 5%, although a diminish-
ing effect could be seen when we add more tasks.

We hypothesise that having many similar tasks may not offer
much help in improving the model’s generalizability, while having
more distinct tasks is better at doing that. This is because our mul-
titask training objective is to allow the model to see wider and more
diverse combinations of the base classes, so that it can be effectively
extended to new classes during incremental learning. Consequently,
if the tasks are too similar (i.e., huge overlapping of classes), the
model might not be able to learn more generalizability. For exam-
ple, in the extreme case, if all the tasks contain the same classes, our
approach degrades to single task learning.

For a given set of base classes, a good construction of multi-
ple tasks is critical for our approach. In this work, we focused on
the number of classes and tasks in multitask learning, without uti-
lizing the prior knowledge about the dataset. For example, grouping
classes based on their semantic meaning might be helpful in creating
high-quality tasks. We will explore it in the future.

In terms of time overhead, from the results shown in Table 1, we
could observe consistent increase in training time per epoch when
the number of tasks was increased, and when the number of classes
in each task was increased.

Overall, the results demonstrated that having more than a single
task helps in improving the model’s performance, especially when
the tasks are more distinct from each other. We will therefore se-
lect ‘4 heads [5, 4, 3, 2]’ as the multitask setting for the rest of the
evaluation.
Impact of Exemplar Quantity: As the number of exemplars avail-
able at the incremental learning stage can have a significant im-
pact on the performance, we further conducted a set of experiments
with varying quantity of exemplars: 20, 50, 100, 200, 300 and 400
for Google Speech Commands (GSC) and 10, 20, 50, 100 and 200
for UrbanSound8K (US8K). Figure 5 shows the accuracy of the
model across different amounts of exemplars. We could see a gen-
eral trend of improving performance as the number of exemplars
was increased, with a diminishing effect. The performance of mod-
els starts to plateau with around 200 exemplars on the GSC dataset,
and around 100 exemplars on US8K.
Comparison with Baseline: To compare with the state-of-the-art
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Fig. 5. Impact of exemplar quantity.

Table 2. Effect of different losses on the incremental learning per-
formance. CE refers to Cross Entropy, KD refers to Knowledge Dis-
tillation, N refers to New samples, and O refers to Old samples (ex-
emplars).

# of class 5 8 11 14 17 20 Avg
CE N 96.97 60.23 43.79 35.73 29.46 26.22 39.09
CE N+KD N 97.08 60.75 43.34 37.43 36.20 34.85 42.52
CE N+CE O 97.25 88.77 79.07 72.88 72.82 57.27 74.16
CE N+CE O
+KD N 96.78 84.65 78.27 77.91 73.60 72.55 77.39

CE N+CE O
+KD O 97.12 85.72 80.64 78.99 74.30 71.93 78.32

CE N+CE O+
KD N+KD O 97.35 87.92 81.47 77.66 73.80 73.27 78.82

method, we conducted the same set of experiments mentioned in
the previous section, using only a single task as the baseline. From
Figure 5, we could see that our method started with similar perfor-
mance as the previous state-of-the-art method when very few exem-
plars were allowed, and showed a consistent improvement of up to
5.5% in accuracy compared to the baseline as the amount of exem-
plars increased on GSC, and up to 3.2% on US8K.
Impact of Losses: To understand which technique contributes most
to the incremental learning performance, we created different vari-
ants of the approach by selecting different losses. Table 2 presents
the results at different incremental steps and the average accuracy for
incremental learning. We can observe that without exemplars (first
two rows), the accuracy drops substantially (by 40%) compared to
the optimal performance. Knowledge distillation merely improves
the accuracy by 3% (row 2-row 1, or row 4-row 3). Overall, the per-
formance gain is dominated by the use of exemplars and knowledge
distillation provides limited accuracy enhancement.

5. FINAL REMARKS

In this work, we first identified that a more transferable feature rep-
resentation of the base model might be beneficial for incremental
learning. Then, we introduced multitask learning to the base model
training stage to improve the generalizability of representations.
With two audio datasets, we explored the impact of multitask cre-
ation, exemplar quantity, and different losses. The results show that
our approach improves the average incremental accuracy by up to
5.5%. A thorough comparison with more baselines is planed as a
future work. Our work opens the door to improving the quality of
base model in incremental learning, which motivates the exploration
of various generalization techniques in the future.
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