
INTEGRATING SECURITY AND USABILITY INTO THE

REQUIREMENTS AND DESIGN PROCESS

Ivan Flechais

Oxford University
Computing Laboratory

Wolfson Building
UK – Oxford OX1 3QD

ivan.flechais@comlab.ox.ac.uk

Cecilia Mascolo

Department of
Computer Science

University College London
UK – London WC1E 6BT
c.mascolo@cs.ucl.ac.uk

M. Angela Sasse

Department of
Computer Science

University College London
UK – London WC1E 6BT

a.sasse@cs.ucl.ac.uk

Abstract: Security is a complex and important non-functional requirement of software systems. According to

Ross Anderson, “Many systems fail because their designers protect the wrong things, or protect the right things

in the wrong way” [Anderson, 2001]. Surveys [Department of Trade and Industry, 2004] also show that security

incidents in industry are rising, which highlights the difficulty of designing good security. Some recent

approaches have targeted security from the technological perspective, others from the human computer

interaction angle, offering better user interfaces for improved usability of security mechanisms. However

usability issues also extend beyond the user interface, and should be considered during system requirements and

design. In this paper we describe AEGIS, a methodology for the development of secure and usable systems.

AEGIS defines a development process and a UML meta-model of the definition and the reasoning over the

system’s assets. AEGIS has been applied to case studies in the area of Grid computing and we report on one of

these.

1. Introduction

Developing a secure software system is a

complex and time-consuming process that seeks

to accommodate frequently competing factors,

such as functionality, scalability, simplicity,

time-to-market, etc. Software engineering

research has recently focused on improving the

modelling abilities in terms of non-functional

requirements such as stability [Jazayeri, 2002],

performance [Denaro et al, 2004], fault tolerance

[Guerra et al, 2003] and security [Jürjens, 2003].

In this paper we will focus in particular on

security issues.

Techniques to incorporate security issues in

software design have already been developed

[Jürjens, 2003, Schneier, 2003], however there is

one important aspect of the design of complex

secure systems which has always been

neglected: current research in the field of Human

Computer Interactions in Security (HCISec)

illustrates that security mechanisms that do not

work in practice are not effective [Adams et al,

1999, Ka-Ping, 2002, McDermott et al, 1999,

Whitten et al, 1999]. Most of the research in

HCISec focuses on providing better user

interfaces (UIs) [Ka-Ping, 2002, Whitten et al,

1999], but it is clear that usability problems with

secure systems are more than just UIs and need

application of HCI factors and design

methodology.

Secure systems do not exist in a vacuum; they

exist for the purpose of providing people with

services and as such cannot operate without the

involvement of people. In security, the focus

tends to be on people who want to abuse the

system (attackers). This is to the detriment of the

regular users, who play an important part in

protecting it. Any secure system is a socio-

technical system [Brostoff et al, 2001], and the

requirements analysis and design process must

take this into account.

Most countermeasures require the involvement

of people at some level. Users can have vastly

different levels of experience, knowledge and

expertise. Designing a system that appropriately

accommodates these differing levels of aptitude

and training is vital if the countermeasures are to

be dependable. Therefore the design and the

development of a secure software system require

the inclusion of yet another important

requirement: usability.

This additional requirement introduces another

layer of complexity in the development process.

To date, no attempt in this direction has been

made. In [Ka-Ping, 2002], ten guidelines for

usable security are recommended, and in

[Brostoff et al, 2001] a security design approach

based on a safety-critical methods is proposed,

but neither of these actually provides practical

assistance or guidance for developers. At best,

they are given a means of analysing a system,

not building it.

In [Flechais et al, 2003] we presented a novel

method for building secure and usable software.

In this paper we build and expand on that work

and define the semantics of the steps of the

development. We present the secure software

development process AEGIS, which provides

important tools for developing secure and usable

systems. As part of AEGIS we define a UML

meta-model identifying assets, the context of

operation and supporting the modelling of

security requirements. This clear semantics

allows the developers and the users to formulate

constraints and needs for the security aspects of

the system in a simple but clear way, as shown

in the case study reporting on our application of

the work on Grid systems.

This paper is organised as follows: Section 2

will present an overview of the AEGIS process,

while Section 3 will describe the UML meta-

model for the AEGIS asset diagrams. In Section

4 we will present a case study in which AEGIS

has been applied. Section 5 discusses some of

the results and compares AEGIS to other work

and Section 6 summarises the paper and

indicates possible future directions for this work.

2. Overview of the AEGIS process

Appropriate and Effective Guidance for

Information Security (AEGIS) is a software

development process for secure and usable

systems.

AEGIS is formulated to be a lightweight process

that can fit into any software development

process (for example in [Flechais et al, 2003],

AEGIS was integrated into an incremental

development process [Boehm, 1988]). The

activity diagram in Figure 1 describes the core

steps of AEGIS, which consist of identifying

and securing the correct participants, getting

them to model the system’s assets in context

using our semantics defined through the UML

[Object Management Group, 2003b] meta object

facility [Object Management Group, 2003a],

assign a value on these assets, conduct a risk

analysis and, finally, design the countermeasures

that address the risks in a cost effective way.

Usability needs are addressed thanks to the

participation of users in the security design,

together with active consideration being given to

the user context during both security

requirements modelling and countermeasure

design.

In the next few sections we will give details of

the different stages of the process.

Identify Assets�

Gather Participants�

Model System Assets and Context�

Value Assets according to security properties�

Identify Threats� Identify Vulnerabilities� Identify Risks�

Design Countermeasures�

Assess Cost of Countermeasures�
in Context�

Assess Benefit of�
Countermeasures in Context�

[Cost, Benefit and Residual Risk
are acceptable]�

[Cost too high, Benefit too low]�

Figure 1. AEGIS activity diagram

2.1. Gather participants

AEGIS is designed as a participative design

methodology [James, 1996, Mumford, 1983,

Straub et al, 1998]. That is to say that different

stakeholders in the system are actively involved

in the process of eliciting security requirements

and deciding on security countermeasures. This

is because the system stakeholders have the most

pertinent domain knowledge. Therefore any

decision taken by these stakeholders should take

into account their different needs – and

specifically the need for usability.

The first step is therefore to identify and secure

the commitment of the stakeholders who will

participate in that design. There are four main

types of roles that can be differentiated

(although an individual can play more than one

role):

• Decision makers. They consist of project

management, owners (customers

commissioning the system), and anybody else

given a decision-making role in the

development of the system.

• Developers. They are the technical aspect of

the design team, responsible for the capture and

analysis of the system requirements down to

the design and implementation. These include

programmers, designers, security experts,

interface designers, etc.

• Users. They are the people that the system

should be designed to work with, and as such

are a major source of system requirements.

• Facilitators. They are the people who run the

AEGIS process, document the meetings and

serve as mediators in general.

Despite being traditionally regarded simply as a

technical problem, the design of security is

instead a socio-technical issue [Adams et al,

1999] – i.e. designing and building security must

involve both a technical and a social

undertaking. Developers are the best equipped to

handle the technical aspects of security; however

the social aspects of security are generally the

province of the owners and higher management,

who have the authority to institute, encourage

and enforce policies.

This is why it is essential to ensure the

participation of these groups of people: the

decision makers – who are better suited to

dealing with the enforcement of the social

requirements of security, the developers – who

are necessary for the technical implementation

of security, the users – who are the ultimate

source of usability requirements of the system,

and the facilitators – who ensure the smooth

running of the design process.

An important additional aspect during this phase

is to determine a single individual who will have

leadership for the security of the project. The

responsibility associated with this role is to

document decision-making, citing the arguments

and reasons for the decision, and to provide a

final say in any disagreement that may occur

during the process.

2.2. Identify and model assets in context

This step focuses on identifying the valuable

parts of the system, and modelling them in the

context in which they operate. Inspired by the

HCI design methodology Contextual Design

[Beyer et al, 1998], this contextual information

is essential as a means of recreating the

operating environment during the analysis and

design phases, thereby ensuring that user needs

are taken into account.

AEGIS defines three major categories of assets –

operatives, hardware and data.

• Operative

o User

o Administrator

o Developer

• Hardware

o Network link

o Computer

 Processing node

 Storage

 …

• Data

o Application

o Information

Operatives identify the people interacting with

the system, whether users, developers or

administrators. These assets tend to be the most

overlooked of all, because they are not generally

perceived as being a part of the system, but a

customer of the system.

Hardware assets are the physical entities in the

system which need to be protected. From a

security standpoint, an attacker who has physical

access to the hardware is much more likely to

succeed than one who does not. Identifying the

presence and role of the physical assets in the

system is therefore vital in the overall design of

the security countermeasures.

Data assets are subdivided into applications and

information. Applications refer to the software

that runs on various hardware assets. These will

generally correspond to the more traditional

architecture for the system (which concerns

itself with the software architecture).

• Security Measure

o Operative

o Hardware

o Data

A final category is that of security measures,

which consists of any of the previous assets.

Security measures can take the form of

operatives (e.g. guards, administrators checking

system logs, or users having secure passwords),

hardware (e.g. dedicated optical networks that

are much more resistant to interception,

dedicated encryption hardware or random

number generators) or data (e.g. a security

policy governing the backup of information, an

encryption algorithm, a firewall application or

an encryption key).

Once these assets have been identified, they can

be modelled using the semantics defined in

section 3.1. (see also Figure 5). Of critical

importance in this phase is the recreation of the

context in which the system operates. Context

refers both to the physical and cultural

environments that surround and affect the

system. This step is crucial in providing the

participants with the system knowledge

necessary for designing a usable system later on.

The next step consists of assigning a value to

these assets according to various security

properties as described in the following section.

2.3. Value assets according to security

In order to elicit security requirements from the

participants, it is necessary to first explain and

agree on the meaning of security properties. The

three most common security properties are

defined as follows [Gollman, 1999]:

• Confidentiality: property of security that

concerns unauthorised disclosure of

information

• Integrity: property of security that concerns

unauthorised modification of information

• Availability: property of security that

concerns unauthorised withholding of

information

Security requirements elicitation is achieved, for

each of the assets, by having the participants

judge the importance of the asset in terms of the

security properties defined above

We recommend using a qualitative rating system

based on natural language which gives

flexibility in the rating of the assets, however it

is equally possible to adopt quantitative rating

systems. The qualitative approach allows

participants to use their own words to define

how important assets are, and by ranking the

results hierarchically, a breakdown of the most

important security properties for the assets can

be identified.

Experience has shown that scenarios are very

useful in making participants both understand

what the security property means, but also, how

important it is in relation to the asset. These

various scenarios should be documented,

possibly in the form of abuse cases [McDermott

et al, 1999] – UML use cases of an attacker and

the actions taken to conduct an attack.

For more information on the semantics of

modelling the security requirements for the

assets, see Section 3. The following step should

consist of a risk analysis to identify threats,

vulnerabilities and risks to the system.

2.4. Risk analysis

Risk analysis attempts to determine which

threats and risks the system faces in order to

feed into the design of security countermeasures

that are appropriate to the threats and are cost-

effective to the risks. Knowledge of existing and

past threats and vulnerabilities is essential, as is

the presence of expert security knowledge in

order to interpret and adapt this information to

the situation at hand.

This step is not about dictating the security

needs of the system, it is about painting the

picture of the threats, vulnerabilities and risks to

the system in its current form. The designers, the

developers and the decision makers should then

use this information to decide if, what, and how

much security should be built into the design.

A risk analysis generally goes through a three-

step process of:

• Identifying Threats – Threats are the

potential sources of attacks to the system.

Things that characterise threats include the

attacker, their motive, their target, their

resources and their risk-aversion.

• Identifying Vulnerabilities – Vulnerabilities

are areas of the system that are amenable to

exploitation. This is where security advisories,

security scanners, good knowledge of the

technologies being used and information about

past attacks become important.

• Identifying Risks – Risk is the likelihood of

an attack successfully exploiting one or a

sequence of vulnerabilities in order to

compromise an asset. This information is

generally best acquired from security experts

who have the knowledge and experience

necessary to assess these risks.

2.5. Security design

This next phase is an iterative process of

designing potential security measures and

assessing their respective costs and benefits in

the context in which they will be used. The aim

of this is to reduce all the risks identified

previously to an acceptable level, whilst

ensuring the reliability of the system by

providing usable mechanisms, education,

incentives and disciplinary measures to motivate

people in the system to behave in the expected

manner.

The design of the security should be driven by

the risks identified previously, with attention

being paid to those which are deemed to be most

important. During this design, the cost of the

implementation, deployment, operation and

maintenance of the resulting secure system

should be assessed. For usability purposes, the

user cost of applying the measures in the context

of operation should also be assessed and

factored into the decision making. These costs

should be evaluated against the benefits of the

security measures and their ability to mitigate

risks.

In the next section we describe the UML meta-

model that is used to give semantics to the assets

definition specified by the participants.

3. Asset model semantics:

3.1. Asset model

The semantics for an asset model are described

using the UML Meta Object Facility [Object

Management Group, 2003a] as can be seen in

Figure 2. The meta-model defines the semantics

for models of assets which can then be built by

the participants. The reasons for choosing UML

for this kind of modelling are obvious: UML is a

well-understood notation among developers, it is

widely supported and easy to extend (through

the meta object facility). The simplicity of the

extension means that non-experts can also easily

understand and use this as a starting point if

provided with a basic introduction.

1

0..*

1..*

1..*

works in

1..*

1..*
works in

1 0..*

1..*

1..*

interacts with

interface

network

node

computer application information

asset securityAttribute attribute�

confidentialityAttribute

intergityAttribute

availabilityAttribute

classifier

operative

administrator

user

physicalEnvironmentculturalEnvironment

package

room

organisationjob

Figure 2. Asset model semantics

Four new objects are defined in the meta-model

in Figure 2:

• asset

• operative

• physicalEnviroment

• culturalEnvironment

Although we have previously identified

operatives as being assets, the AEGIS meta-

model refines the semantics with a distinction

between operative and asset. This is to

accommodate the differences of interaction that

operatives have with other assets and other

operatives. Bearing in mind the similarity of an

operative to a UML user, the same look was

chosen to depict an operative, as seen in

Figure 3.

operative�

Figure 3. Diagram for operative

In addition to the assets and operatives, the

physical and cultural context surrounding both

the assets and operatives can also be depicted

through the physicalEnvironment and

culturalEnvironment components. Asset

and operative both extend the UML MOF

classifier and should therefore be modelled

as such (see figure 5 for an example).

physicalEnvironment and

culturalEnvironment both extend the

core UML package and should therefore be

modelled as packages. These two components

can thus contain assets and operatives

and serve to represent the boundaries of both

physical environments (such as rooms) and

cultural environments (such as security culture).

For example, a system administrator operative

and a secretary operative sharing the same room

should be apparent.

3.2. Security requirement modelling

In order to document the security requirements,

Asset is a classifier (Figure 4) that contains

securityAttributes, which have been

defined as confidentialityAttribute,

integrityAttribute and

availabilityAttribute. These attributes

should be used to record the value of each asset.

asset

+confidentiality:String=low

+integrity:String=medium

+availability:String =high

Figure 4. Diagram for asset

Additional attributes can also be defined, such as

for example a non-repudiation attribute or

dependability attribute, depending on the needs

of the system. These securityAttributes

extend the core attribute element of the

UML MOF and can thus be depicted in a similar

manner. Thus, an asset can be drawn as shown

in Figure 4.

4. Case study:

AEGIS has been applied in a number of case

studies involving Grid projects. These projects

are developing the technology and expertise

necessary to deploy large scale distributed

networks for the purpose of providing access to

very large sets of data (where normal

distribution channels are inadequate), access to

computational facilities (such as the spare CPU

cycles on home computers, or specific

supercomputers for instance) or a combination

of both. Since the field of Grid computing is

relatively recent, the security requirements and

difficulties in building suitable countermeasures

are not very well understood. Furthermore, the

vast storage capability, processing power and

bandwidth that makes Grids so useful also

makes them prime targets for malicious attacks.

In order to test and validate the usefulness of

AEGIS as well as its ease of use (for facilitators

and developers), it has been taught to a group of

graduate software engineering students who then

applied the process to four different grid

projects. We report here on one of the sessions,

which involved a biological simulation grid

project.

4.1. Learning AEGIS

The principles and processes of AEGIS were

taught to a group of six students in a two-hour

session. The basic principles of AEGIS were

explained through a series of slides, as well as a

sample asset model. Once this introduction

completed, the students were given a manual

and access to two members of the biological

simulation grid project.

The two members of the project were able to

represent both a developer and a system user

point of view and their participation was secured

for two hours and thirty minutes (although the

user unfortunately had to leave after one hour).

The students were given the tasks of identifying

the security needs of the project and conducting

as much of a security analysis as possible within

the timeframe.

Initial questions from the students were focussed

on understanding what the project was about and

how the basic architecture functioned. The grid

project was described as providing a group of

universities a means of centralising access to

different “simulations of molecules of biological

importance”.

It was quickly identified that the project was

expected to provide a secure environment for

these different universities to operate in. In

addition to this, there were long-term plans to

expand the system to private sector

pharmaceutical companies. In light of this, the

need to provide a secure environment was

further reinforced by the fact that the private

sector had very high confidentiality

requirements, to the extent that “it’s really hard

to convince them [pharmaceutical companies]

to share their data with anybody – to even go

outside of their own building”.

Although academic use and provision of

simulation data was free of confidentiality

constraints, the private sector had very high

requirements of confidentiality for their own

simulations. A long-term aim of the project was

therefore to provide their software to these

private companies so they could federate their

own databases in a compatible format and query

the union of the private and public databases, but

not allow queries from outside access to their

own simulations.

The importance of the biological simulation

data, also called trajectories, was further

identified through the following questions

“would you place a high cost on producing the

data? The manpower and equipment

involved…”, “would the R&D of other

pharmaceutical companies be interested [in this

data]?”. Both answers were positive and

showed that producing the data was expensive

and the simulations could be very valuable to

third parties.

4.2. Modelling the system

At this point, the students tended to want to

focus on the specific security needs of the

confidentiality of the database of simulations.

After a quick reminder that the analysis should

start by identifying all the assets and various

stakeholder operatives, the students started

building an asset model later formalised as can

be seen in Figure 5.

The grid project representatives initially had

trouble understanding what was required of

them “what do you mean by asset?”, although

the students were quickly able to explain and

lead them through an analysis. The modelling

process consisted of one student drawing the

asset model onto a whiteboard while the group

of students as a whole asked detailed questions

about the architecture that would inform the

diagram.

For example, having identified that the project

was geared to providing users with simulation

data, the then users asked questions about how

this data was served to the user, what kind of

server it resided on, where the server was

housed, and so on. This in turn led to the

identification of a number of other assets, such

as the application server which provided

authentication, authorisation and accountability

services. Apart from the basic user, operatives

were identified by asking leading questions,

such as “who is in charge of maintaining the

system”, “who has access to the server room”,

or “who supplies the information in the

database”. These operatives were then modelled

as shown in figure 5. The interactions between

the operatives and the assets were identified

throughout the process of building the model,

such as the administrative task of maintaining

the authentication mechanism which became

apparent when the students identified the

existence of that asset.

One finding that corroborates other AEGIS case

studies was that many of the administrative

duties in the system, such as backup, patching,

maintenance of the authentication mechanism

(in this case based on SSL digital certificates,

and a username and password combination for

users who don’t have certificates), and

maintenance of the authorisation mechanism

(role-based access control) were not initially

apparent. Identifying these required detailed and

probing questions, for example when the

representatives mentioned that the system was

backed up (“who backs the system up? Is there a

policy for when and what to backup?”), or that

digital certificates were used to authenticate

users (“How do users get a certificate?”, “Who

do they apply to for access to the

system?”). What is interesting is

that simply establishing that an

administrator has to monitor,

backup, and maintain the system

– with little to no supervision or

help – throws up a number of

questions with regards to both

the scalability of the system (can

the tasks expected of the

administrator be extended to

cover one or two orders of

magnitude more users?) and the

effectiveness of the current

system security (which in the

absence of training, audit and

documented policies is wholly

dependent on the competence of

the administrator – not on the

technical countermeasures).

4.3. Identifying security

requirements

Building on the discussion at the

start of the analysis, students

tried to get the representative to

rate the confidentiality

requirement of the trajectory files

(simulation data). “How

important is it for you to be able

to keep this secret?” to which the answer was

“we have no need for confidentiality… At the

moment.” When questioned further, “from an

academic user point of view, using your own

words, how would you rate, how important

would confidentiality be? Would it be low,

unimportant, high, essential…” The answer was

that the requirement for confidentiality was low,

however from the pharmaceutical company’s

point of view, the requirement for confidentiality

was deemed to be medium to high in some

cases. However since the system did not

currently involve pharmaceutical companies, the

current requirement was originally judged to be

low.

From a requirements point of view, capturing

this information is important. On the one hand,

the system as it is does not require that particular

type of security, on the other, the system as

server_Room

switch

databaseServer
applicationServer

firewall

fileServer

mirror_DatabaseServer

httpServer

environmentalControls

internet

firewall

database

confidentiality : String = med/high

integrity : String = essential

availability : String = med/high

DB2_Interface

confidentiality : String = low

integrity : String = essential

availability : String = med/high

trajectory

confidentiality : String = low/high

integrity : essential

availability : med/high

authenitcation_Module

confidentiality : String = high

integrity : String = high

availability : String = med/high

authorisation_module

confidentiality : String = high

integrity : String = high

availability : String = med/high

accounting_Module

confidentiality : String = high

integrity : String = high

availability : String = medium

data_Mining_Module

confidentiality : String = low

integrity : String = essential

availability : String = med/high

administrator

user

connects to

mirror

connects to

connects to
connects to

connects to

connects to

hosts
hosts

tunnel s through firewall

hosts

hosts

hosts

hosts

backup
maintains authentication detailsmaintains authorisation detailsworks on

connects to

connects to

connects to

connects to

tunnels through

monitors

scientist

Figure 4. Case Study Asset Model

envisioned in a future development may have a

high requirement for this kind of security.

Furthermore this also illustrates the need to

identify and represent as many stakeholders in

the system as possible to identify potentially

conflicting viewpoints. As can be seen in Figure

5, the confidentiality requirement for trajectory

was therefore rated as “low/high”, which

highlights this basic conflict.

Identifying the security requirements of other

assets did not highlight any further conflicts, and

it was quickly established that the integrity of

the trajectory files was the most important

security requirement of the system. This was

because the whole purpose of the system was to

provide accurate data. Thanks to the

dependencies of the integrity of the trajectory

files, the database was also judged to have an

equal need for integrity. The availability of the

data was not judged to be very important in the

short-term, but in a future commercial

application this would be more important. This

was further justified by the fact that the project

had already designed server mirrors in the

architecture of the system.

Another series of assets that proved to be of

interest were the authentication, authorisation

and accounting modules. Although they were

originally expected to resolve security issues in

the system, the identification of high integrity

and confidentiality requirements show that they

also raise security issues. It is in this type of area

that AEGIS shows its main difference from

other security approaches, because it takes the

point of view that every asset, including the

security measures, has specific needs. These

effectively highlight the need for good usability,

training, incentives and enforcement for security

measures that require the involvement of an

operative. Without those, the requirements of the

security measures may not be met.

5. Discussion and related work:

As shown in the case study, a number of issues

were identified through AEGIS. First of these

was that the security roles of operatives in a

system are frequently overlooked, and technical

security mechanisms are generally assumed to

solve a security problem. By identifying security

requirements on security mechanisms, these new

security problems are highlighted. Modelling the

tasks that operatives must perform in the system

also helps to highlight some of these problems.

Although the case study shows that some

confusion existed at the beginning of the

process, the participants quickly adopted the

method, and in a relatively short period of time

new issues and requirements were identified.

This also highlights the importance of the role of

facilitator in the process of AEGIS where it is

easy to get sidetracked on a particular area,

whilst ignoring a multitude of other problems.

A final point concerns the resolution of

conflicting requirements. Different stakeholders

in the system will have different points of view

about what is important to them. This is typical

of any reasonably large engineering project and

establishes the need for making decisions based

on conflicting data. With regards to security, it is

very important to understand the need for the

cost-benefit analysis of any security decision.

The differences between the short and long-term

security needs in the system do not necessarily

have to cause serious difficulties. It is cheaper to

compromise on a short-term implementation

than it is to compromise on the long-term

design. Any security mechanisms that have been

designed but not implemented will be cheaper to

implement at a later date than in a system where

it is necessary to overhaul its original design.

6. Summary and future work:

AEGIS has been presented as a development

process that provides both usability and security.

Through the definition of MOF-compliant

semantics, we have described an asset model

notation, capable of documenting security

requirements. By modelling the context in which

the system operates and the interactions of the

operatives and the assets of the system, this

notation also allows the documentation of

usability needs. Finally, we have presented a

case study in which AEGIS was taught and

applied to a grid project. The case study

highlighted that AEGIS is easy to learn,

provides a clear means of documenting security

requirements and is useful in identifying the role

and importance of operatives in the system.

Future work may include identifying issues

concerning the resolution of conflicts in security

requirements gathering, incorporating decision

making support, improving tools support for

AEGIS and also integrating AEGIS into Model

Driven Architectures [Object Management

Group, 2004].

7. References:

Adams, A. & Sasse, M. A. Users Are Not The

Enemy. Communications of the ACM 1999. Vol. 42,

No. 12 December

Anderson, R. Security Engineering: A Guide to

Building Dependable Distributed Systems. 2001.

Wiley.

Beyer, H. & Holtzblatt, K. Contextual Design :

Defining Customer-Centered Systems. 1998.
Morgan Kaufmann Publishers, Inc.

Blakley, B., McDermott, E., & Geer, D. Information

Security is Information Risk Management. New

Security Paradigms Workshop 2001. pp 97-104.

Boehm, B. W. A spiral model of software

development and Enhancement. IEEE Computer

1988. 21(5) , pp 61-72.

Brostoff, S. & Sasse, M. A. Safe and Sound: a

safety-critical approach to security design. New

Security Paradigms Workshop 2001.

Denaro, G., Polini, A., & Emmerich, W.
Performance Testing of Distributed Component

Architectures. S.Beydeda and V.Gruhn (eds),

Building Quality into COTS Components - Testing

and Debugging. 2004. Springer.
http://www.cs.ucl.ac.uk/staff/w.emmerich/publication

s/BeyadaGruhn/PerformanceTesting.pdf

Department of Trade and Industry. Information

Security Breaches Survey. 2004.
http://www.security-survey.gov.uk/

Flechais, I., Sasse, M. A., & Hailes, S. M. Bringing

Security Home: A process for developing secure and

usable systems. New Security Paradigms Workshop

2003.

Gollman, D. Computer Security. 1999. Wiley.

Guerra, P. A. d. C., Rubira, C., & de Lemos, R. A

Fault-Tolerant Software Architecture for

Component-Based Systems. Lecture Notes in

Computer Science 2003. 2677 , pp 129-149.

Springer.

James, H. L. Managing Information Systems

Security: a Soft Aproach. Proceedings of the

Information Systems Conference of New Zealand

1996. IEEE Society Press, Los Alamitos, CA.

Jazayeri, M. On Architectural Stability and

Evolution. Reliable Software Technologies - Ada-

Europe 2002, Vienna, Austria, June 17-21 2002.
http://www.infosys.tuwien.ac.at/Staff/mj/papers/arch

stab.pdf

Jürjens, J. UMLsec: Extending UML for Secure

Systems Development. LNCS 2003.

Ka-Ping, Y. User Interaction Design for Secure

Systems. 2002. http://zesty.ca/sid

McDermott, J. & Fox, C. Using Abuse Cases for

Security Requirements Analysis. Proceedings of the

15th Annual Computer Security Applications

Conference 1999.

Mumford, E. Designing Human Systems - The Ethics

Method. 1983. http://www.enid.u-

net.com/C1book1.htm

Object Management Group. Meta Object Facility

(MOF) Specification. Technical Report 2003a.

Object Management Group. Unified Modeling

Language version 1.5. 2003b.
http://www.omg.org/technology/documents/formal/u

ml.htm

Object Management Group. Model Driven

Architecture. 2004. http://www.omg.org/mda/

Schneier, B. Beyond Fear Thinking Sensibly about

Security in an Uncertain World. 2003. Copernicus

Books.

Straub, D. W. & Welke, R. J. Coping with Systems

Risk:Security Planning Models for Managerial

Decision-Making. MIS Quarterly 1998. 22:4 , pp

441-469.

Whitten, A. & Tygar, J. D. Why Johnny Can't

Encrypt: A Usability Evaluation of PGP 5.0 .
Proceedings of the 8th USENIX Security

Symposium, August 1999, Washington 1999.

