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Abstract

The spatial structure of large-scale online social networks has
been largely unaccessible due to the lack of available and ac-
curate data about people’s location. However, with the re-
cent surging popularity of location-based social services, data
about the geographic position of users have been available for
the first time, together with their online social connections.
In this work we present a comprehensive study of the spatial
properties of the social networks arising among users of three
main popular online location-based services. We observe ro-
bust universal features across them: while all networks ex-
hibit about 40% of links below 100 km, we further discover
strong heterogeneity across users, with different characteris-
tic spatial lengths of interaction across both their social ties
and social triads. We provide evidence that mechanisms akin
to gravity models may influence how these social connections
are created over space. Our results constitute the first large-
scale study to unravel the socio-spatial properties of online
location-based social networks.

Introduction
Online Location-based Social Networks (LBSNs) have re-
cently attracted millions of users, experiencing a huge pop-
ularity increase over a short period of time. Thanks to
the widespread adoption of location-sensing mobile devices,
users can share information about their location with their
friends. Among the biggest providers there are Foursquare
and Gowalla, while other hugely popular social networking
services such as Facebook and Twitter have also introduced
location-based features.

Location is increasingly becoming a crucial facet of many
online services: people appear more willing to share infor-
mation about their geographic position with friends, while
companies can customize their services by taking into ac-
count where the user is located. As a consequence, service
providers have access to a valuable source of data on the
geographic location of users, as well as to online friendship
connections among them. The combination of these two fac-
tors offers a groundbreaking opportunity to understand and
exploit the spatial properties of the social networks arising
among online users, but also a potential window on real hu-
man socio-spatial behavior.
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Spatial networks have been extensively studied, partic-
ulary when dealing with transportation and mobility net-
works, Internet router connections, power grids, urban road
networks and other systems where nodes are embedded in a
metric space (Barthélemy 2011). In general, metric distance
directly influences the network structure of such systems by
imposing higher costs on the connections between distant
entities. Social networks, instead, have been largely studied
from a purely topological perspective, focusing on the struc-
tural position of their nodes and on structural mechanisms
that describe their evolution.

Sociologists have studied the effect of distance on social
ties with the underlying assumption that most individuals try
to minimize the efforts to maintain a friendship link by in-
teracting more with their spatial neighbors (Mok, Wellman,
and Carrasco 2009; Goldenberg and Levy 2009). Nonethe-
less, the connection cost that heavily affects other types of
spatial networks may not be as important in social systems,
particularly when focusing on online interactions. As pro-
posed by Cairncross (2001), distance may cease to play a
role because of the increasing availability of affordable long-
distance travel and new communication media, resulting in
the inevitable “Death of Distance”.

Social Ties and Geographic Distance
One fundamental spatial property of social networks is the
probability P (d) of having a social connection between two
individuals as a function of their distance d. Even though
there is universal agreement on the fact that P (d) decreases
with distance, the exact relationship between these two vari-
ables is still unclear.

Lambiotte et al. (2008) have found that it decays as
P (d) ∼ d−2 in a mobile phone communication network,
while Liben-Nowell et al. (2005) have found a different re-
lationship P (d) ∼ d−1 + ε among online bloggers on Live-
Journal in the USA, ε being a constant probability which
acts on online communities regardless of distance. In an-
other study, Backstrom et al. (2010) have similarly found
spatial scaling P (d) ∼ 1/d among online interactions: they
show how this association appears so strong and important
that it can be safely exploited to infer where Facebook users
are only from the location of their friends (Backstrom, Sun,
and Marlow 2010). It has also been proposed that the spa-
tial structure of social networks might be scale-invariant,



with a universal distribution P (d) ∝ d−1 (Hu et al. 2011):
nonetheless, the exact nature of this relationship in a spatial
social network often conveys interesting information about
how geographic distance constrains social ties.

At the same time, the effect of online communication
tools on such relationship is still under debate, even though
initial results tend to confirm that distance is still an impor-
tant factor that shapes human online interaction, with some
individuals engaging preferentially with spatially close ac-
quaintances across different online and offline communica-
tion media (Mok, Wellman, and Carrasco 2009; Goldenberg
and Levy 2009; Scellato et al. 2010).

Analysis of Location-based Services
Location-based social platforms represent the ideal systems
to investigate the spatial properties of social networks aris-
ing among online users for three main reasons. First of all,
they uniquely provide data on both social connections and
geographic locations, making socio-spatial analysis possi-
ble. Then, user location information in these services is of-
ten more accurate than text-based descriptions usually avail-
able in other online systems (Hecht et al. 2011), as it is
acquired through sensing devices whenever users willingly
check-in, that is when they share with their friends infor-
mation about the place where they are. Finally, they have
quickly accumulated hundreds of thousands, and sometimes
millions, of users, thus enabling large-scale studies which
can uncover general properties and trends.

Among the many research questions that arise, apart from
the fundamental one about understanding the effect of dis-
tance on online relationships, there is the need to understand
whether space homogeneously affects users or if, instead,
some individuals prefer connecting to people further away,
leading to a heterogeneous system. Moreover, social net-
works are often characterized by a large number of social
clusters, where triads of individuals are mutually connected.
Although social triangles seem to generally appear across
different geographic scales (Lambiotte et al. 2008), differ-
ent users may exhibit varied preferences towards short-range
or long-distance triads (Scellato et al. 2010).

Spatial Properties of Online Social Networks
We will address these questions by analyzing three different
popular LBSNs: Brightkite, Foursquare and Gowalla. We
have collected data about all of them and extracted the social
networks among their users. We are able to assign a “home
location” to each user, in order to embed the nodes in a 2-
dimensional metric space.

Then, we design two randomized null models of a spatial
network which allow us to investigate the statistical signif-
icance of the empirical properties found in these networks.
We observe heterogeneity in the characteristic distance of
interaction across users, with some of them exhibiting pref-
erence towards short-range rather than long-distance ties.

In addition, we study the geographic properties of social
triads. Again, we find non-trivial heterogenities across
users, with some of them belonging mainly to geograph-
ically small triads and others to wider ones, spanning
thousands of kilometres. In particular, users with more

friends tend to create triangles with individuals further
apart far more than expected by chance. We discuss how
user heterogeneity seems compatible with mechanisms
akin to gravity models, with the likelihood of connection
between two users depending both on their popularity (i.e.,
number of friends) and on their distance.

This work constitutes the first large-scale study to inves-
tigate the spatial structure of online LBSNs, observing ro-
bust and universal properties across three of these social ser-
vices: the observed features may be the signature of social
processes happening regardless of the particular online tool
adopted by users. While previous research has been focus-
ing on defining new measures to take geographic distance
into consideration when dealing with social networks (Scel-
lato et al. 2010) and on exploiting simple socio-spatial prop-
erties to predict user location (Backstrom, Sun, and Marlow
2010), our contributions are different: we shed new light on
how these socio-spatial properties arise from social and spa-
tial factors and how user heterogeneity is related to both of
these aspects. We believe location-based features will be-
come ubiquitous in online social services: our findings may
then inspire how systems and applications are designed and
implemented on these services.

Data Collection
In this work we study three spatial social networks acquired
from different popular online location-based social services.
We extract the social networks arising among users and a
single geographic home location for each user.

Brightkite Brightkite was founded in 2007 as a social net-
working website which allows users to share their location
with their friends: it is available worldwide and it is based
on the idea of making check-ins at places, where users can
see who is nearby and who has been there before. Brightkite
users can establish mutual friendship links and they can push
their check-ins to their Twitter and Facebook accounts.

We study a dataset collected in September 2009 which
includes the whole Brightkite user base at that time, with
information about 54,190 users (Scellato et al. 2010). Since
this dataset was collected, Brightkite has gathered more than
2 millions members: nonetheless, this dataset represents a
complete snapshot of a popular location-based service in its
initial evolution phase.

Foursquare Foursquare was created in 2009 and it has
quickly risen as the most popular location-based service,
with more than 6 million users as of January 2011. Users
utilize the Foursquare application on their mobile devices,
which allows them to check-in, sharing with their friends
the place where they are. Foursquare provides game fea-
tures, since the user with the highest number of check-ins in
the last 60 days becomes the mayor of a place.

Acquiring Foursquare data requires user authorization to
collect personal information and has rate limitations set in
place. However, many Foursquare users choose to automat-
ically push their check-in messages to Twitter, which pro-
vides a public API to search and download these messages.



Dataset N K NGC 〈k〉 〈C〉 DEFF 〈D〉 〈l〉
Brightkite 54,190 213,668 50,896 7.88 0.181 5.73 5,651 2,041
Foursquare 258,706 2,854,957 254,532 22.07 0.191 5.90 8,494 1,442

Gowalla 122,414 580,446 117,361 9.48 0.254 5.44 5,663 1,792

Table 1: Properties of the datasets: number of nodes N and edges K in the social network, number of nodes in the giant con-
nected component NGC , average node degree 〈k〉, average clustering coefficient 〈C〉, 90-percentile effective network diameter
DEFF , average geographic distance between nodes 〈D〉 [km], average link length 〈l〉 [km].
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Figure 1: Empirical Complementary Cumulative Distri-
bution (CCDF) of the number of friends in Brightkite,
Foursquare and Gowalla. The inset shows the same distribu-
tions rescaled by dividing for the average number of friends
in each network: the three datasets fall on the same curve.

Thus, we have recorded approximately 4 million tweets,
each one containing a check-in sourced by a Foursquare
user during June 2010. Those messages come from about
250,000 different users and cover about 1.5 million locations
on the planet. We estimate that our sample contains approxi-
mately 20% to 25% of the entire Foursquare user base at col-
lection time. Each tweet provides a URL to the Foursquare
website, where information about the geographic location of
the venue can be acquired. Since Foursquare does not pro-
vide unathorized access to user friends list, we have acquired
friendship ties that Foursquare users have among them on
Twitter, where they are publicly available, extracting a so-
cial network. While the resulting social graph is not ex-
pected to be identical to the original Foursquare graph, it
provides a reasonable approximation and we will show how
it conveys meaningful information, comparable to the other
datasets. Finally, we extract as home location of each user
the geographic location of the place where he/she has more
check-ins overall.

Gowalla Gowalla is a location-based social network cre-
ated in 2009: its users check-in at places through their mo-
bile devices. Check-ins are shared with friends: as a con-
sequence, friends can check where a user is or has been;
conversely, it is possible to see all the users that have re-
cently been in a given place. The friendship relationship is
mutual, requiring each user to accept friendship requests to
allow location sharing. However, there is a small number
of user accounts that represent companies or other organi-
zations and appear to automatically accept every friendship

request. These accounts can become hugely popular and col-
lect thousands of connections.

Gowalla provides a public API to let other applications
integrate with their service: in particular, they provide infor-
mation about user profiles, friend lists, user check-ins and
place details. We have collected a complete snapshot of
Gowalla data in August 2010. For every user we have gath-
ered the user profile, the friends list and the list of all the
check-ins the user has made. Finally, for each place we have
collected its geographic location, as specified in Gowalla,
described as a latitude-longitude pair. Since users are iden-
tified by consecutive numeric IDs, we were able to exhaus-
tively query all user accounts. As in Foursquare, we define
the home location of each user as the place with the largest
number of check-ins.

Network Socio-spatial Properties
We first address the spatial properties of the social networks
under analysis, focusing on the main topological and ge-
ographic measures. We discuss the fundamental relation-
ship between likelihood of friendship and geographic dis-
tance and, finally, we define two randomized spatial net-
works models which will help later assessing the statistical
significance of the properties we observe in these systems.

Socio-spatial properties
More formally, a spatial social network is a social network
whose actors are positioned in a space equipped with a met-
ric (Barthélemy 2011). In our case, online users are located
over the 2-dimensional surface of the Earth and we adopt the
great-circle distance as metric: the distanceDij between any
two nodes i and j is then computed given their geographic
coordinates. Then, the social network can be represented as
an undirected graphGwithN nodes andK links, with users
as nodes and where a link exists for each social tie (e.g.,
a person lists another user as one of his/her friends). We
associate a length lij to each social link so that lij = Dij .

The general properties of these three datasets are re-
ported in Table 1. The social networks are heteroge-
neous in size, ranging from 54,190 nodes in Brightkite
to 258,706 in Foursquare; the average degree is lower in
Brightkite and Gowalla, respectively 7.88 and 9.48, than
in Foursquare, where users have on average 22.07 friends.
Thus, Foursquare presents a much denser and bigger so-
cial network, a consequence of its dominance of the LBSN
market. All networks present a giant connected component
which contains the vast majority of the users. The degree
distributions for the three networks are reported in Figure 1:
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Figure 2: Empirical Cumulative Distribution (CDF) of the
geographic distance between all users (dotted line) and be-
tween connected friends (solid line) for the three datasets.

they all show a heavy-tail, with some users having thousands
of friends. Rescaling the degree distributions by their aver-
age values results in a common trend, as shown in the inset.
These networks also exhibit high values of average cluster-
ing coefficient, between 0.18 and 0.26, and short topological
distances among their nodes, with 90% of all couples being
less than 6 hops away. These properties confirm the small-
world nature of LBSNs, as found in other online social sys-
tems (Leskovec and Horvitz 2008).

The average geographic distance between users 〈D〉 is
consistently larger than the average distance between friends
〈l〉 across all the datasets: while the first value ranges be-
tween 5,600 and 8,500 km, the latter has much shorter val-
ues, between 1,400 and 2,000 km. This already provides
evidence that the probability of having a social link between
two users decreases with distance: we will further investi-
gate this relationship later. The distribution of social link
length is comparable across the three datasets, as shown in
Figure 2: about 40%-50% of all couples of friends are within
100 km, with more than 3% of all links being shorther than
1 km. Instead, the distribution of distances among users,
also shown in Figure 2, has a different behavior: about 50%
of users are at distances larger than 4,000 km across all the
networks.

Online Friendship and Distance
To further investigate how social links appear more likely
to exist between close rather than distant users, we study
the probability of friendship P (d) as a function of distance
d by counting Ld, the number of social links with length
d, and by estimating Nd, the number of pairs of users at
distance d. This gives us P (d) = L(d)/N(d). As dis-
cussed before, this relationship has been found to be close to
a law P (d) ∼ d−α, with values of α ranging between 1 and
2 (Liben-Nowell et al. 2005; Lambiotte et al. 2008; Back-
strom, Sun, and Marlow 2010; Goldenberg and Levy 2009).

As shown in Figure 3, our datasets present noisy pat-
terns and, furthermore, Brightkite and Gowalla exhibit an
almost flat probability in the range 1-10 km, while all curves
then decrease as distance grows and then they reach another
steady probability between 1,000 and 4,000 km, maybe
denoting a background probability that affects individuals
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Figure 3: Probability of friendship between two users as a
function of their geographic distance for the three datasets
under analysis. The two straight lines represent probability
P (d) ∼ d−α with two different exponents α = 0.5 and
α = 1.0.

within this distance threshold. Similar constant trends at
short and long geographic ranges have also been found in
other online systems (Backstrom, Sun, and Marlow 2010;
Liben-Nowell et al. 2005). The appearance of social ties
longer than 4,000 km becomes constrained by the fact that
both Europe and North America, where a large part of users
are based, are not large enough to allow such long-range
connections and their mutual distance is about 6,000 km.

Surprisingly, we find that our data are closer to a law
with α = 0.5, whereas larger exponents have been found
in other similar studies: hence, in LBSNs long-range social
ties have a higher probability of occurrence than in other
social systems. A potential explanation of this behavior is
that LBSNs are relatively new, so they have mainly attracted
early adopters. These users tend to be tech-savy, with many
already existing long-distance online friendship ties which
they bring to these services. This might not happen in other
social networks, such as mobile phone networks or Face-
book, which have already undergone through an initial phase
and are already mature. Indeed, mobile phone connections
show a larger exponent α than online social networks: phone
conversations are much more constrained by geographic dis-
tance than interactions on Facebook. It might be possible
that as location-based services become more mainstream
their user audience may broaden and include individuals
which are affected by distance in a stronger way.

Network Randomization
After these initial investigations, we will assess the statisti-
cal significance of the empirical spatial properties of these
networks using two randomized models, which capture ei-
ther the geographic or the social properties of the original
social networks and randomize everything else:

• Geo: this null model keeps the user locations unmodified
and then assigns every social link between two users at
distance d according to the relative probability of friend-
ship P (d) (as reported in Figure 3).

• Social: this null model keeps the social connections as
they are, shuffling at random all user locations.
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Figure 4: Empirical Cumulative Distribution (CDF) of the average friend distancew for each user in the social network, together
with the distributions obtained in the randomized models.

The overall properties of these models are a direct conse-
quence of their definition. Both models result in a network
with exactly the same number of nodes and, on average, the
same number of edges. The Social model has the same so-
cial properties of the original network, such as degree distri-
bution, clustering coefficients and topological network dis-
tances, but link lengths are distributed as the pairwise user
distances: as a result, the average link length becomes higher
than in the original network, with 〈lSOC〉 = 〈D〉. On the
other hand, the Geo model has the same distribution of link
lengths of the original network, so that 〈lGEO〉 = 〈l〉, but
the social properties are now lost: the degree distribution is
peaked and has no heavy-tail, while the average clustering
coefficient is much lower, since there are less social triads.
Nonetheless, the two network models present similar distri-
bution of topological distances, with 90% of all couples of
nodes always within 6 hops.

We will exploit these two null models in the following
sections by comparing their properties to the ones of the real
networks, in order to better understand whether the observed
socio-spatial characteristics might be explained in terms of
simple geographic or social factors. Every analysis per-
formed on a randomized model will be averaged over 50
different realizations of the model itself.

Socio-spatial Properties of Individual Users
We now focus on individual users, studying how their social
ties stretch across space. We define

wi =
1

ki

∑
j∈Γi

lij (1)

as the average friend distance of user i, where Γi is the set
of neighbors of node i and ki = |Γi| is its degree. The over-
all distribution of w is reported in Figure 4 for the original
social network and for the two randomized versions. The
existence of values over all geographic scales is due to the
existence of users with different characteristic lengths of in-
teraction. For instance, about 10% of users have connections
with an average length of just 10 km, whereas about 20% of
users exhibit distances above 2,000 km. Since this distri-
bution closely matches the aggregated link length distribu-
tion in Figure 2, links with different geographic lengths do
not appear homogeneously across all users. Instead, there is
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Figure 5: Average distance strength s(k) as a function of
node degree k for the original network and for its two ran-
domized versions. Each trend is fitted by a law s(k) ∼ kβ .
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Figure 7: Empirical Cumulative Distribution of average triangle link length 〈l∆〉 for the original network and for the two
randomized models.

heterogeneity between users, with some of them with only
short-range connections and others with long-distance ties.
These correlations are stronger than one would expect by
chance: in fact, the two randomized models show how val-
ues of w should be more peaked around the average, instead
of over a large range of magnitudes.

Another interesting result is obtained by studying the cor-
relation between the average friend distance wi and the de-
gree ki. We study the user distance strength (Barrat et al.
2004), defined as

si =
∑
j∈Γi

lij = kiwi (2)

and then we compute the average distance strength s(k)
for all users with degree k. In absence of any correla-
tion, this measure should be scaling linearly with the degree
s(k) ∼ k〈l〉, while a relation of the form s(k) = Akβ with
β 6= 1 or A 6= 〈l〉 would imply correlation between the dis-
tance strength and the degree. In particular, β > 1 signals
that users with more friends tend to have longer connections
than users with fewer friends, while β < 1 would imply the
opposite correlation, with users with more friends having
shorter social links.

This relationship is reported in Figure 5 for the three
datasets under analysis: we obtain values of β in the range
1.10-1.18 across the different networks, showing weak posi-
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Figure 6: Probability that a social link belongs to a triangle
as a function of its geographic length for the three datasets
under analysis. The solid lines show the average probability
that a link belongs to a triangle for each network.

tive correlation. Real data show a pattern much closer to the
Social model, which has s(k) ∼ k, with β = 1, rather than
to the Geo model, which instead has much lower values of
β in the range 0.2 − 0.4, denoting negative correlation be-
tween node degree and average friend distance. As users add
more and more friends, on average their link length slightly
increases, in contrast to what found in the null models, pro-
viding evidence that users with more connections tend to
have friends further away.

Socio-spatial Properties of Social Triangles
We now shift our attention to understanding the geographic
properties of social triangles. Social networks usually
present several triads, resulting in high values of clustering
coefficient. Our networks also exhibit similar patterns, with
clustering values between 0.18 and 0.26. We extract 377,438
triangles in the Brightkite social networks, 18,764,129 in
Foursquare and 1,327,559 in Gowalla. Between 70% and
86% of all links in each social network belong to at least
one triangle, given their highly clustered structure.

We find that social triangles arise at a wide range of geo-
graphic lengths: however, investigating the probability that a
link belongs to a triangle as a function of its length provides
a surprising result, since this probability is largely unaf-
fected by distance, as shown in Figure 6. As a consequence,
a link is equally likely to belong to a social triangle regard-
less of its length. A related result was found by Lambiotte
et al. (2008): many spatially local clusters of people appear
in mobile phone communication networks, with social links
below 40 km more likely to belong to social triads, but then
this likelihood reaches a constant value for longer links. As
we have already seen, online behavior appears less sensitive
to distance than mobile phone communication. Overall, the
trend that longer links equally participate to social triangles
holds also in our datasets.

To assess user heterogeneity, we compute the geographic
mean length l∆ of the three links of each triangle and then
we compute the average triangle geographic length 〈l∆〉i for
each user i by considering all the triangles he/she belongs to.
This value does not take into account how many triangles
users belong to, as the clustering coefficient does: instead,
we aim to assess merely the geographic span of a user’s so-
cial triangles, whatever their number might be. In Figure 7
we show the distribution of 〈l∆〉 over all users: triangles
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Figure 8: Average triangle link length 〈l∆〉 users with the
same degree as a function of user degree for the original
network and for the two randomized models.

with different geographic span are not equally arising among
all users, but instead there are users with smaller triads and
users with wider ones. For example, there are at least 20% of
users with an average triangle length less than 100 km, while
the top 20% have values above 2,000 km. This heterogeneity
is much higher than one would expect if space did not mat-
ter, as the Social model shows mainly values in the range
1,000-10,000 km. Nonetheless, if social mechanisms were
not taking place at all, then social triads should have been
smaller, as the Geo model exhibits. The existence of both lo-
cal, short-range triads and global, long-distance ones needs
to be related to both the influence of geographic distance
and of social processes such as homophily, triadic closure
and focus constraint (McPherson, Lovin, and Cook 2001;
Granovetter 1973; Feld 1981).

We further study this heterogeneity arising among users
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Figure 9: Average link length 〈lij〉 as a function of the prod-
uct of the node degrees kikj for the original network and
for its two randomized versions in Gowalla. The other two
networks exhibit similar patterns.

by computing the average 〈l∆〉 as a function of the node
degree. In these social networks 〈l∆〉 increases with the
number of friends, as shown in Figure 8. This effect is not
present in the randomized networks: the Social model shows
no correlation at all, while the Geo model exhibits the op-
posite trend, with smaller triangles appearing among users
with higher degrees. Apparently, there are both social and
geographic factors influencing social triangles, since having
only one type of factors does not capture the empirical data.

This signals that users with less friends tend to gener-
ate social triangles on a smaller geographic scale, while
users with many more friends belong to triangles with longer
links. This suggests that there might be strong connection
between the social properties of a given user and the geo-
graphic distance of his/her friendship connections.

Discussion
We have seen how users exhibit different characteristic
geographic scales of online interaction, with weak positive
correlation between number of friends and their average
distance. Also, a similar heterogeneity appears with respect
to social triads, with users participating in geographically
wider triangles as their degree increases. Our findings are
robust across the three LBSNs under analysis, as they arise
regardless of the particular service we consider, the data
collection methodology, the time elapsed since the creation
of the service or the size of the social network. However, the
properties we observe in the real systems are not appearing
in the two randomized versions of these networks: therefore,
their socio-spatial structure can not be explained by taking
into account only geographic factors or social mechanisms.

Indeed, this claim can be further supported by considering
the average length of a link lij as a function of the product
of the degrees kikj . As observed in Figure 9, longer links
tend to arise between users with more friends, while links
connecting users with fewer friends tend to be much shorter.
This effect signals significant correlations between users so-
cial properties and their spatial behavior. In fact, it is not
appearing at all in the Social model: this denotes how there
might be an underlying spatial process taking place which
results in this correlation, since social ties are not equally



likely to appear regardless of their geographic length. On the
other hand, the Geo model exhibits the opposite trend, with
shorter links appearing mainly among well-connected users.
Hence, distance is not the only factor affecting the link for-
mation process: in other words, when only mechanisms
which depend on geographic distance are in place, a user ac-
cumulates many friends only where there are many potential
friends living nearby, i.e., if he/she is located in an area with
high density of users. Furthermore, such geographic model
can not explain how some users accumulate thousands of
friends, creating a heavy-tail in the degree distribution.

A more accurate modelling of these networks requires
the incorporation of processes mingling social and spatial
factors. An interesting possibility is related to gravity
models, which have long been used to model connections in
spatial networks such as trade flows across countries (Bhat-
tacharya et al. 2008). In this formulation the intensity of
interaction between two spatial nodes i and j is proportional
to NiNjf(dij), where Ni is the importance of node i, dij
is their distance and f(d) is a deterrence function which
captures spatial effects. A gravity model balances the
effect of spatial distance with other node properties: the
underlying assumption is that longer (and more expensive)
ties will appear mainly between important entities, while
a node will connect to an unimportant one only if they are
close to each other.

Gravity models are only a first tentative step, as they
are expected to fail at reproducing some of our observa-
tions. In particular, gravity models only focus on pairs
of nodes, without taking into account social effects such
as triadic closure and focus constraint (Granovetter 1973;
Feld 1981). Furthermore, any notion of “node importance”
in a social network appears vague and uncertain, thus
making the definition of a sound social gravity model
hard to specify. Such individual importance may be an
exogenous variable which affects the socio-spatial structure,
such as being a well-known celebrity or any other type of
individual popularity or social influence measure.

As people spend more time online, more and more data
will be available regarding their spatial behavior and their
social connections, allowing more reliable and precise mod-
els to be built. Such models present many potential appli-
cations in the design of any type of location-based service,
but also important implications for other systems such as
security mechanisms, user identification techniques and rec-
ommendation engines.

Conclusions and Future Work
In this work we have studied the socio-spatial properties of
users of location-based services. Our methodology is based
on two randomized null models and highlights how observed
properties deviate from what would be expected by chance
with purely social or geographic mechanisms. We find that
LBSNs present universal spatial features across them, re-
gardless of the service, its number of users or the adopted
sampling method. We observe and discuss heterogeneity in
user socio-spatial behavior: users exhibit friendship connec-
tions across a wide range of geographic distance, showing
similar variability in the social triads they belong to.

An interesting direction for further work is understanding
how such heterogeneity arises in correlation with the tem-
poral evolution of the social network, as users spend more
time on the service. This may lead to a better understanding
of the generative mechanisms behind these properties and to
new predictive models.
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