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U n d e r s ta n d i n g  a n d  C h a n g i n g  B e h av i o r

smartphones for  
Large-scale Behavior 
Change interventions

A s smartphones proliferate 
through  out society, so too does 
the opportunity to leverage these 
devices to study, understand, and 
positively affect human behavior. 

The growing opportunity to research and influ-
ence people’s daily lives has two primary cata-
lysts. First, device manufacturers are quickly 

developing smartphones with 
rich capabilities in terms of 
computational power and sen-
sor availability. Second, the 
developing culture around 
smartphones focuses on usage 
rather than the devices them-
selves, which many users con-
sider indispensable. (For more 
information, see the “Smart-
phone Advances Present 
Opportunities” sidebar.)

Rapid technological devel-
opments and the widespread 
adoption of smartphones 
raises the question of whether 

smartphones could provide an effective mech-
anism for tackling ongoing challenges related 
to the global population’s health and well-be-
ing. For example, in the US, 26 percent of the 
adult population is obese,1 and smoking kills 
nearly six million people every year.2 Similarly, 

about one in six Americans report a history of 
depression.3 In many of these cases, lifestyle 
changes—brought on by informing, teaching, 
and supporting those who seek to change—
might lead to positive health outcomes.

Behavior-change interventions (BCIs) are a 
well-studied means that behavioral scientists 
have developed to induce these changes. These 
techniques have recently been brought online 
and can now be delivered over the Internet. 
However, they have yet to be fully ported to 
and integrated with sensor-enhanced smart-
phones. Recent work has shown that we can 
make inferences about user contexts, physical 
activities,4,5 and mental states (including emo-
tions6 and stress7) using data from smartphone 
sensors, which has great potential for BCIs. For 
example, weight-reduction interventions are 
tied to the participants’ physical activity, while 
interventions related to mood disorders are 
inherently related to monitoring participants’ 
mental states.

Here, we examine open questions and chal-
lenges related to merging smartphone sensing 
and BCI applications. We highlight recent work 
from the mobile sensing domain and describe 
how it can support the design of smartphone 
BCIs. In particular, we present two applications 
for behavioral monitoring and change—Emo-
tionSense and SensibleSense, respectively—and 

Equipped with cutting-edge sensing technology and high-end processors, 
smartphones can unobtrusively sense human behavior and deliver 
feedback and behavioral therapy. The authors discuss two applications 
for behavioral monitoring and change and present UBhave, the first 
holistic platform for large-scale digital behavior change intervention.
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describe the UBhave project, a holistic 
platform for large-scale BCI.

digital Behavior  
Change interventions
BCIs center on advice, support, and 
relevant information. Traditionally, 
they’ve been used to improve both 
physical and mental well-being. Doc-
tors, therapists, teachers, and coaches 
deliver BCIs to patients and students to 
guide them as they go about their daily 
activities. Behavioral scientists have 
used survey data gathered through 
BCIs to study human behavior.

Naturally, BCIs are limited in their 
reach and scale, because they’re con-
strained by the time and costs associ-
ated with patients meeting with their 
therapists. Furthermore, they remain 
inaccessible to those in remote areas. 
These challenges have been tackled 
by using the Internet for mass BCI 
delivery and developing digital BCIs 
 (DBCIs) that let researchers and practi-
tioners reach an audience that extends 
well beyond their time and budgetary 
constraints.

DBCIs can provide continuous, mul-
timodal access to information and 
surveys, and tools such as LifeGuide 
(www.lifeguideonline.org) have been 
developed to help researchers seam-
lessly design and build DBCIs and 
deploy them on the Web. These inter-
ventions automate interactions that 
patients would traditionally have with 

their therapist: they can provide tai-
lored advice, support goal setting, help 
users plan and chart their progress, 
and send personalized emails or SMS 
reminders. Providing such low-cost yet 
high-level interactivity and availability 
can positively affect a variety of behav-
iors, including those related to tobacco 
and substance use, diet, sexual behav-
ior, and stress.8

Although Web-based DBCIs 
broaden the reach and scale of BCIs 
by automating the process of soliciting 
and delivering tailored information, 
they’re characterized by three major 
constraints. First, they have stringent 
requirements for when patients can 
interact with them, owing to the tech-
nical limitations of delivering a DCBI 
via a Web browser, which typically 
means the intervention can only be 
delivered to users who are at a com-
puter. Although this is certainly less 
constraining than face-to-face meet-
ings with a therapist, patients might 
not have access to relevant informa-
tion in the moment that matters the 
most—for  example, accessing dietary 
advice while at a restaurant.

The second constraint is that Web-
based DBCIs depend on participants’ 
self-reporting to monitor progress. As 
with the first constraint, this stems 
from the restrictions that browsers 
impose on collecting data relating to 
users’ behaviors, which must be con-
ducted via surveys and self-reports. 

This kind of input might be subject to 
reconstruction bias or inconsistent with 
the patients’ actual behaviors.

The final constraint is that they’re 
typically adopted by self-selecting 
groups of participants. Participation 
in DCBIs continues to be primarily for 
targeted populations: spreading posi-
tive health outcomes throughout soci-
ety is an ongoing challenge.

Sensor-enabled smartphones are 
poised to readily solve two of these 
challenges and act as a gateway to solve 
the third. Smartphones have been ad-
opted across the globe and are regularly 
used to access local and social informa-
tion. Recent research about collecting 
and making inferences about peoples’ 
physical and mental well-being using 
smartphone sensor data and delivering 
information via feedback interfaces in-
cludes the methodologies and technical 
solutions to passively monitor users’ 
progress and give them tailored infor-
mation when they need it most.

Furthermore, DBCIs that leverage 
inferences from sensor data have the 
potential to uncover the social and psy-
chological triggers that affect the be-
haviors that patients and therapists seek 
to change. For example, you can bet-
ter intervene at the right time and place 
and in the right context if you know 
that someone who wants to quit smok-
ing has a strong urge to smoke when 
stressed, when with certain people, or 
at specific locations. Figure 1 outlines 

Typical modern-day smartphones can sense their orienta-

tion, acceleration in three dimensions, and location, and 

they can record audio. these standard features let researchers 

seamlessly access data streams that reflect the device owner’s 

habits, activities, and routines. In addition to sensors, smart-

phones today place more digital memory and processing ca-

pabilities in individuals’ pockets than computers of decades 

past placed on peoples’ desktops. this advance ushers in an era 

in which powerful machine-learning algorithms for statistical 

 inferences from sensor data can be designed to run on com-

modity phones.

Furthermore, smartphones have become indispensable to many 

peoples’ daily lives. their continuous presence and usage let re-

searchers link the sensor data they collect back to the device’s owner. 

beyond being present—or indeed, within arms’ reach—for large 

proportions of their owners’ day, smartphones are increasingly be-

ing used as the main device to participate in social networks, query 

the Web, and, more broadly, access and produce information.

smartphone advances Present opportunities
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the tasks involved with behavior inter-
vention through smartphones.

Behavioral Monitoring
Smartphones are ubiquitous, unob-
trusive, and sensor-rich computing 
devices, carried by billions of users ev-
ery day. More importantly, owners are 
likely to “forget” their presence, allow-
ing for the passive and effortless collec-
tion of data streams that capture user 
behavior.

Typical modern-day smartphones, 
such as the Samsung Galaxy SIII or the 
Apple iPhone 5, include a wide range of 
embedded sensors, including an accel-
erometer, compass, GPS, microphone, 
and screen proximity sensor. Yet the 
data that’s passively available from 
these devices doesn’t end here. If we 
also consider the radios in smartphones 
as sensors, then the list increases to in-
clude Bluetooth, the Global System 
for Mobile Communications (GSM), 
Wi-Fi, and near field communication 
(NFC). Smartphones are also equipped 
with powerful processors (such as the 
Galaxy SIII Quad-core 1.4 GHz Cor-
tex-A9) that let them locally compute 
intensive classification tasks, such as 
voice processing or image recognition.

The availability of data from these 
sensors, blended with local computa-
tional power and machine-learning 

techniques, lets smartphones autono-
mously infer various user activities. For 
example, they can infer physical states, 
such as running, walking, or driving, 
from accelerometer data, while the mi-
crophone sensor can reveal users’ con-
versation status (speaking or not), the 
Bluetooth radio can detect recurring 
colocation with other Bluetooth devices 
(including other phones), and GPS data 
can track users’ locations.

More recently, research has shown 
how similar blends of data, machine 
learning, and onboard processing 
availability can make inferences about 
 peoples’ mental states, including their 
emotions and stress levels.6,7 How can 
these systems augment DBCIs, and 
what are the ongoing challenges?

emotionsense
As we’ve described, current DBCIs rely 
on users’ self-reports to monitor prog-
ress and understand users’ moods. Yet 
such reports can be subject to recon-
struction bias and are only available 
when users volunteer them.

As a potential alternative to mood 
self-reports and surveys, we designed 
EmotionSense,6 a passive monitor-
ing smartphone application that can 
 autonomously capture emotive, behav-
ioral, and social signals from smart-
phone owners. Two key components let 

EmotionSense automatically recognize 
who’s speaking and what the speaker is 
feeling using classifiers running locally 
on phones.

Speech recognition. We implemented 
the speaker recognition component 
using the hidden Markov model Tool-
kit (http://htk.eng.cam.ac.uk). We use 
the Gaussian Mixture Model (GMM) 
machine-learning technique to capture 
speech and silence. For speech recog-
nition, we collected approximately 
10 minutes of voice data from each ex-
periment participant and generated a 
128-component universal background 
GMM, representing the combined 
speech data. We used this model to de-
tect ongoing conversations.

We also trained a complementary 
GMM silence model using silent audio 
data; its role is to detect and filter silent 
audio samples to avoid unnecessary 
processing in the emotion recognition 
component. We also trained per-user 
models using audio data from each 
participant: once a conversation has 
been detected, these models infer who 
is participating.

Emotion inference. The emotion infer-
ence component’s design is similar to 
that of the speaker recognition com-
ponent. We first trained a background 
GMM representative of all emotions 
and then generated emotion-specific 
GMMs. However, instead of collect-
ing training data from the users, we 
used data from the Emotional Prosody 
Speech and Transcripts library,9 a stan-
dard benchmark library in emotion and 
speech processing research. Although 
this library would let us train for up to 
14 “narrow” emotions (such as cold-
anger, hot-anger, and panic), we instead 
grouped the classes into five “broad” 
emotions that reflect those used in the 
social sciences literature: angry, afraid, 
happy, neutral, and sad.

Inferring emotional states from mi-
crophone audio samples is a multistage 
process. First, we converted a recorded 
audio file into a vectorial representation 

Figure 1. The three key components of digital behavior interventions using 
smartphones: monitor behavior, learn and infer behavioral patterns, and deliver 
targeted feedback for behavior change.

• Tailored behavior change intervention 
• User feedback via the smartphone 

• Develop behavior models  
• Infer when to trigger intervention
• Adapt sensing   

• Gather mobile sensing data 
• Collect online social network
 relationships and interactions  

Monitor

Deliver 

 Learn 
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of the voice signal over time, comparing 
it to the conversation and silence mod-
els. If the audio file contains nonsilent 
data, it’s further processed for a com-
parison with each user-specific model 
preloaded on the participants’ phones. 
The model with highest likelihood for 
a match is assigned as the model of the 
recorded audio file.

emotionsense evaluation
We evaluated the EmotionSense sys-
tem through several offline microben-
chmark tests and a deployment with 18 
participants, who recorded their emo-
tions in a daily diary. Our benchmark 
results showed that the system achieved 
greater than 90 percent accuracy for 
speaker identification and greater than 
70 percent accuracy for broad emo-
tion recognition. The results from the 
deployment showed that the users ex-
hibited neutral emotion far more than 
the other emotions, and at a high level, 
the distribution of detected emotions 
matched the distribution reported by 
the participants through self-reports. 
Furthermore, the results showed that 
the users exhibited sad and angry emo-
tions less when in larger groups than 
when in smaller groups. These results 
agree with research in the social psy-
chology literature.10,11

The results from our first Emotion-
Sense trial demonstrate the potential of 
combining passive sensor data collec-
tion and machine learning to provide 
continuous monitoring of participants’ 
emotional states while collecting data 
representative of each person’s social 
interactions and mobility. Broadly 
speaking, approaches such as Emotion-
Sense facilitate the collection of data by 
social psychology researchers by auto-
matically capturing and classifying user 
activities. Researchers can use it not 
only to understand the correlation and 
the impact of interactions, activities, 
colocation, and location on the emo-
tions and behavior of individuals but 
to pave the way for sensor-enhanced 
DBCIs. Mobile DBCIs that use Emo-
tionSense could deliver information in 

meaningful moments and trigger ad-
vice, support, and tailored feedback 
based on the participant’s physical and 
expressed emotional states.

Behavioral Change
Smartphones are not only powerful 
gateways to sensor data but also an 
ideal platform for providing feedback 
and interventions. Users spend a signifi-
cant amount of their time interacting 
with these personal devices. Moreover, 
smartphones let us build interven-
tions using inferences from sensor data 
streams as triggers for information de-
livery, so the interventions are custom-
ized for optimal effect. For example, if 
a user is more likely to comply with an 
intervention when at home, the GPS 
sensor detect these moments.

sociablesense
We designed SociableSense,12 a smart-
phone-based platform for providing 
real-time feedback to users to foster and 
improve social interactions. Although 
providing feedback about social inter-
action might seem simple,  sociability 

changes in patients who suffer from a 
variety of disorders, ranging from the 
autistic spectrum to depression. The 
system we developed wasn’t tested in a 
medical setting, but it demonstrates the 
potential for smartphone technology 
to monitor facets of behavior directly 
linked to BCI domains.

SociableSense, like EmotionSense, 
captures data from the sensors in 
off-the-shelf phones. It then uses this 
data to model the users’ “sociability” 
based on their collocation and interac-
tion patterns. The system then closes 
the loop by providing real-time feed-
back and alerts to make people more 
sociable. SociableSense relies on the 
distribution of the computation across 
 mobile devices and a cloud-based back 
end (see Figure 3).

We define a user’s sociability as the 
strength of the user’s connection to his 
or her social group. The system mea-
sures the strength of a user’s relations 
and his or her overall sociability based 
on the network constraint.13 In a social 
network, the network constraint for 
a node quantifies the strength of that 

Figure 2. Prototype applications that use emotion inference algorithms. (a) The 
app used during the trial, which gave feedback about the distribution of inferred 
emotions. Another app was used to demo the inference algorithms, which lets 
participants (b) view live feedback about motion detection and (c) record an audio 
clip of their voice to obtained the inferred emotion.

(a) (b) (c)
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node’s connectivity to others. For any 
two people in a social network, the 
person with the lower network-con-
straint value has the higher connectiv-
ity strength and is thus considered more 
sociable.

The SociableSense prototype mea-
sures two relation graphs, based on 
collocation (the collocation network 
constraint) and interaction (the in-
teraction network constraint). We 
define collocation of a pair of users 
as being in proximity to each other, 
and we define interaction as speaking, 
in person, to one another. The system 
captures collocation patterns through 
a coarse-grained Bluetooth-based in-
door localization feature. Two sets of 
Bluetooth devices, representing social 
locations (such as common rooms, 
coffee rooms, and games or entertain-
ment zones) and work locations (of-
fice spaces, meeting rooms, and video 
or audio conferencing rooms) must 
be installed in the deployment envi-
ronment. Then, by mapping the Blue-
tooth media access control (MAC) 
 addresses and locations, the system 
can identify whether a user is at work 
or in a social location.

This methodology also helps reduce 
energy consumption by avoiding Wi-Fi 
or GPS, which are generally expensive 
in terms of energy consumption. Also, 
GPS doesn’t generally work in indoor 

office locations. Interaction patterns, 
instead, are captured via the micro-
phone sensor and a speaker identifica-
tion classifier, as described earlier.

To provide implicit incentives to the 
users to become more sociable, we im-
plemented a gaming feature that infers 
the most sociable person, who is then 
referred to as the group’s mayor. When 
a user is in a sociable location, an alert 
is sent to all other participants so in-
terested people can join the user. The 
application then displays the strengths 
of the user’s relations and the mayors 
of the group to encourage active user 
participation in the experiment and to 
motivate users to socialize.

sociablesense evaluation
We evaluated the social feedback com-
ponent of the SociableSense system 
with a deployment over two weeks. To 
understand the effect of the feedback 
mechanisms and alerts, we conducted 
the evaluation in two phases. During 
the first phase, we disabled the feed-
back mechanisms; we enabled them for 
the second phase. Each phase lasted one 
week, and we measured users’ average 
sociability in terms of the collocation 
and interaction network constraints 
during each phase.

The results showed that the average 
network constraint with respect to col-
location and interaction networks is 

lower when feedback mechanisms were 
enabled. In other words, user sociabil-
ity increased when the feedback mecha-
nisms were displayed. The results also 
showed that the feedback mechanisms 
had a greater effect in social than in 
work settings, which might be because 
they present more opportunities to 
interact.

Overall, this deployment has shown 
that smartphones are a viable platform 
for providing interventions and feed-
back to the participants. Moreover, 
phones can also be used to monitor the 
effect of these interventions on users. 
The mechanisms implemented in Socia-
bleSense can be used as building blocks 
for more advanced DBCIs.

Binding sensors  
and interventions
A new multidisciplinary project, UB-
have (www.ubhave.org), aims to tackle 
the challenges of bringing mobile sens-
ing into DBCIs. The project is a col-
laboration between the Universities of 
Cambridge, Birmingham, Southamp-
ton, Oxford, and University College 
London in the UK. The project aims 
to devise the first holistic platform 
for large-scale DBCI design and de-
livery, focusing on and extending the 
three major components described in 
Figure 1: monitoring, learning, and 
developing.

design and Build
Drawing from the principles that 
guided the design of the LifeGuide sys-
tem, the UBhave project aims to build 
a platform that will make the rapid 
prototyping, building, and deployment 
of mobile-based DBCIs that lever-
age the power of smartphone sensors 
as seamless as possible. Researchers 
and practitioners who want to build a 
sensor- enhanced DBCI shouldn’t need 
to know about sensor sampling control 
and smartphone battery life manage-
ment. Our sensing framework will au-
tomate these controls while allowing 
those with technical expertise to trans-
parently test their own designs.

Figure 3. SociableSense architecture: the data processing and inference tasks are 
distributed across mobile devices and a cloud-based back end.
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Monitor and infer
The project will harness the Emotion-
Sense and SociableSense frameworks to 
uncover and expose targeted features of 
human behavior that can be extracted 
from mobile sensors and used to moni-
tor and infer peoples’ moods, physical 
activities, and social relations.

adapt and Learn
The sensor monitoring components will 
also be paired with experience sam-
pling questions, daily goals, and sur-
veys. This will help the system further 
learn about how individuals interact 
with their devices in varying contexts, 
thus making it possible to personalize 
DBCIs.

tailor and deliver
Bringing smartphone DBCIs to their 
full potential will not only mean learn-
ing about users via sensors and their 
feedback. It also entails understanding 
and detecting when and how to deliver 
the tailored information.

share and diffuse
Finally, we hope to integrate UBhave 
with online social networking (OSN) 
sites to extend its ability to measure 
participants’ social context and to re-
cruit users. Mobile sensing has been 
integrated with OSN,14 but the sens-
ing component was predominantly 
used to enhance the OSN experience. 
OSN sites, however, represent an un-
tapped resource in designing and deliv-
ering BCIs. They offer an irreplaceable 
source of information on the psycho-
logical characteristics of different 
groups—essentially acting as another 
behavioral sensor.

UBhave will go beyond monitoring 
of a single user, correlating information 
gathered from a user’s social network to 
better understand behavior. Behavioral 
problems often appear as the result of 
an impact of the social environment. 
For example, you’re more likely to be-
come obese if you’re socializing with 
obese people.15 Thus, with UBhave, we 
plan to devise efficient interventions by 

concentrating on a whole social clique 
rather than just the individual.

Furthermore, UBhave will deal with 
data from multiple sources: smartphone 
sensors, OSN sites, and event-triggered 
user surveys. Behavioral modeling un-
der such a diverse set of data sources, 
and for a large number of users in par-
allel, is an open problem for statistics 
and machine learning.

ongoing Challenges
These design goals present several 
open challenges in mobile sensing for 
DBCIs, which are also promising re-
search areas for the pervasive comput-
ing community.

energy Constraints
Continuous sensing enables real-time 
monitoring of a user’s behavior, yet it 
quickly depletes the mobile device’s bat-
tery, rendering any DBCI that relies on it 
unusable. In EmotionSense, we tackled 
energy efficiency by dynamically adapt-
ing sensor duty- cycling to increase the 
sampling rate when the user’s context 
is changing. In SociableSense we exam-
ined the trade-off between sensor sam-
pling frequency and accuracy versus the 
latency incurred.

To appropriately monitor and deliver 
DBCIs, how should sensor sampling 
adaptation be designed? Will a generic 
design suffice, or will sensor sampling 
control become inherently tied to the 
DBCI domain? To what extent can we 
solve this problem outside of the DBCI 
domain? Or, will sampling control 
methods need to be tailored to individ-
ual scenarios? For example, does the 
sensing of activities required for smok-
ing cessation differ so substantially 
from monitoring emotional well-being 
that we’ll need to adopt different sensor 
control techniques?

data Processing and  
inference Challenges
The amount of data generated by mo-
bile sensing can quickly surpass the 
storage and processing capabilities of 
today’s most powerful computers.16 

Ultimately, raw sensing data must be 
reduced to features of interest that not 
only explain human behavior but also 
provide actionable recommendations 
(or at least data that can be turned into 
interpretable feedback).

Novel statistical tools must be devel-
oped to extract behavioral features from 
a large set of heterogeneous data com-
ing from smartphone sensors and online 
social networks. Another open research 
area is the intelligent distribution of the 
computation across multiple heteroge-
neous devices (mobile and fixed, includ-
ing a cloud-based back end).

generalizability
People neither behave nor express 
their behavior in a uniform way. To 
what extent do the machine-learning 
techniques used, for example, to infer 
 emotional states need to be tailored to 
individual users?

Recently, researchers have proposed 
methods that capture similarity in hu-
man behavior, such as eigenbehaviors14 
and community similarity networks.5 
The underlying idea is to identify pop-
ulations that can be treated uniformly 
for the sake of behavior inference. In 
addition, before delivering DBCIs, we 
need to understand how individual 
traits and personal attitudes can impact 
their effectiveness.

Privacy
Data captured from smartphone sen-
sors raises privacy concerns. For ex-
ample, microphone recordings used 
to identify speakers could contain 
sensitive audio data, and information 
 captured from the GPS sensor might 
contain locations that users don’t want 
to share. There have been some works 
on the privacy aspects of smartphone 
sensing, such as preserving the anonym-
ity of sensor reports without reducing 
the precision of location data.18 How-
ever, systems such as those discussed 
here could record voices of people who 
have not given their informed consent, 
which is illegal in some countries (such 
as the US).
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Robust methodologies for smart-
phone-based speaker identification 
would begin to overcome this issue, yet 
speaker identification is prone to in-
accuracies when environmental noise 
varies, so this might not solve the prob-
lem. How can systems avoid record-
ing voices of people colocated with the 
phone user? Moreover, as demonstrated 
in the SociableSense system, it’s more ef-
ficient to process audio files in the cloud 
than locally on the phone, but this re-
quires implementing privacy-preserving 
techniques for remote processing.

designing for Participation
Passive sensing of human behavior 
through smartphones is possible, as 
demonstrated by the EmotionSense and 
SociableSense applications. However, 
many challenges and unanswered re-
search questions remain when it comes 
to behavior intervention. For example, 
research systems in the area of mobile 
sensing and DBCIs have yet to solve the 
problem of tailored, timely intervention 
and sensing on a large scale. What is 
the right moment for providing an in-
tervention? How do various triggers af-
fect user compliance?

With smartphone-based DBCIs, us-
ers can receive interventions at the most 
appropriate time and place. Yet con-
text-specific dissemination of DBCIs 
remains an unexplored research area. 
What role do social and mobile digital 
technologies play for successful BCIs? 
We plan to explore the technological, 
psychological, and social factors influ-
encing uptake, usage, and effectiveness 
of different intervention characteristics 
and components in promoting positive 
behavior change. We hope to under-
stand when and in which context peo-
ple get the most from DBCIs and how 
to encourage people to use DBCIs.

evaluating sensor-Based dBCis
Assessing whether a mobile phone ap-
plication helps deliver a desired BCI 
involves two important questions: 
First, is the context sensed accurately 
and with high enough granularity? 

Sensors in smartphones weren’t origi-
nally designed to capture behavior. For 
example, the microphone sensor is de-
signed for phone calls—not for speech 
or emotion recognition. The data that 
sensors capture might be inaccurate, 
not only due to the sensor itself but 
also to the location of the phone rela-
tive to speakers, environmental noise, 
the cultural background of partici-
pants, and their varying emotional 
expressivity.

Second, the evaluation of a DBCI 
must answer such complex questions as 
whether the induced behavior change is 
long term or temporary. Thomas Webb 
and his colleagues point out the impor-
tance of sound psychological theories 
for successful DBCIs.8 Therefore, we 
envision future systems that require a 
highly interdisciplinary presence when 
being designed, built, and evaluated. 
With smartphone-based DBCIs, users 
can receive interventions at the most 
appropriate time and place. Yet, con-
text-specific dissemination of DBCIs 
remains an unexplored research area. 
What role do social and mobile digital 
technologies play in delivering success-
ful BCIs?

The field of DBCIs is rapidly 
transforming how we think 
about well-being improve-
ment. Building on a solid 

body of existing work on mobile be-
havior sensing and Internet-based 
intervention dissemination, UBhave 
strives to offer comprehensive, large-
scale DBCIs. We are set to create tools, 
methods, and support systems that will 
let a wide interdisciplinary community 
participate in advancing knowledge 
and skills in the field of digitally sup-
ported behavior change by creating 
and implementing DBCIs. Progress in 
this field is currently impeded by the 
fragmented, laborious process of cre-
ating individual applications. We hope 
to rectify this situation by providing 
an extensible open source software 
platform that lets computer science 

and social science researchers rapidly 
 develop and easily adapt and share 
mobile  DBCIs. 
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