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Understanding and predicting human mobility is vital to a large number of applications, ranging from recommendations to
safety and urban service planning. In some travel applications, the ability to accurately predict the user’s future trajectory is
vital for delivering high quality of service. The accurate prediction of detailed trajectories would empower location-based
service providers with the ability to deliver more precise recommendations to users. Existing work on human mobility
prediction has mainly focused on the prediction of the next location (or the set of locations) visited by the user, rather than on
the prediction of the continuous trajectory (sequences of further locations and the corresponding arrival and departure times).
Furthermore, existing approaches often return predicted locations as regions with coarse granularity rather than geographical
coordinates, which limits the practicality of the prediction.

In this paper, we introduce a novel trajectory prediction problem: given historical data and a user’s initial trajectory in

the morning, can we predict the user’s full trajectory later in the day (e.g. the afternoon trajectory)? The predicted continuous
trajectory includes the sequence of future locations, the stay times, and the departure times. We irst conduct a comprehensive
analysis about the relationship between morning trajectories and the corresponding afternoon trajectories, and found there is
a positive correlation between them. Our proposed method combines similarity metrics over the extracted temporal sequences
of locations to estimate similar informative segments across user trajectories.

Our evaluation shows results on both labeled and geographical trajectories with a prediction error reduced by 10-35%
in comparison to the baselines. This improvement has the potential to enable precise location services, raising usefulness
to users to unprecedented levels. We also present empirical evaluations with Markov model and Long Short Term Memory
(LSTM), a state-of-the-art Recurrent Neural Network model. Our proposed method is shown to be more efective when smaller
number of samples are used and is exponentially more eicient than LSTM.

CCS Concepts: · Computing methodologies→Machine learning approaches; · Information systems→Spatial-temporal
systems;

Additional Key Words and Phrases: Trajectory prediction, Location-based services, Human daily trajectory

ACM Reference Format:

Amin Sadri, Flora D. Salim, Yongli Ren, Wei Shao, John C. Krumm, and Cecilia Mascolo. 2018. What Will You Do for the Rest
of the Day? An Approach to Continuous Trajectory Prediction. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 4
(December 2018), 26 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗This is the corresponding author

Authors’ addresses: Amin Sadri; Flora D. Salim, lora.salim@rmit.edu.au; Yongli Ren, yongli.ren@rmit.edu.au;Wei Shao, wei.shao@rmit.edu.au,
RMIT University, Computer Science and IT, School of Science, Melbourne, VIC, 3000, Australia; John C. Krumm, jckrumm@microsoft.com,
Microsoft Research, USA; Cecilia Mascolo, cm542@cam.ac.uk, University of Cambridge, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2018 Association for Computing Machinery.
2474-9567/2018/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article . Publication date: December 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 • Amin Sadri, Flora D. Salim, Yongli Ren, Wei Shao, John C. Krumm, and Cecilia Mascolo

1 INTRODUCTION

Understanding human mobility has always been a substantial pursuit in academic research due to the multitude
of potential applications, such as link prediction [68], urban planning [25, 41], and resource management, such as
wireless system management [12] or smart home heating systems scheduling [14], to name a few. It also beneits
location-based service providers that deliver services to users based on their location, such as traic updates,
suggested routes [46, 52], or location-based advertisement [5, 53]. However, for these suggestions to be precise,
there is a need for trajectory prediction containing both spatial and temporal information of the user’s future
movements.
This paper tackles a novel trajectory prediction problem, and to the best of our knowledge, has only been

introduced and addressed the irst time in this paper. Given the historical data and the user’s trajectory in the irst
part of the current day (e.g trajectory in the morning), our problem aims to complete the user’s daily trajectory
by predicting the trajectory for the remainder of the day (i.e. prediction of the afternoon trajectory). In here we
strictly deine trajectory as a sequence of location and time points. Therefore, we do not predict the likelihood of
someone to be in a certain location at a certain hour, and the next few hours (or the predeined time window, and
the multiplier thereof, e.g. every 3 hours, 6 hours etc). Often with this problem, the evaluation is rather simplistic,
e.g. if the predicted location appears to be one of the multiple locations the users go to during the next look-ahead
time window, it is considered a true positive. This is not what we aim to do. Rather, we ask "when and where

someone will depart to after noontime, and what are the sequences of location and time that signiies the user’s every

departure thereafter until the end of the day (i.e. midnight)"? This means we aim to predict the most likely places
where a person will be later in the day given their patterns in the morning, with the variable departure time.
Therefore the segments between locations can be as short as a couple of minutes to a couple of hours and with
high variability in distance.

While there are many techniques for human location prediction, they all have one or more limitations that have
reduced their applicability for trajectory prediction in practice [10, 30, 31, 57]. This observation has motivated us
to purpose a continuous trajectory prediction approach.

Our proposed approach is unique in ofering all the following features:

• Sequence of locations: Most approaches in the literature focus on next location prediction, which is the
prediction of the user’s location at a certain time [10, 30, 31, 54, 57]. Although next location prediction
approaches are designed to predict only one location, they can predict the sequence of locations by multiple
implementations (e.g. every one hour) [18]. In this case, the departure times are not estimated and the
duration of stays is assumed to be constant. In contrast, our approach inherently returns the sequence of
visited locations and can predict the location at any particular time in the future.

• Departure times: Some location prediction approaches focus on only the next location that the user visits
regardless the time elapsed [22, 24]. The departure times from the locations are not estimated in these
approaches. Our algorithm estimates not only where a person will be later in the day (i.e. afternoon), but
also returns the sequence of departures time, given their movement patterns in the morning.

• Granularity: The past location prediction methods largely rely on discretizing the trajectory irst, and
then returning regions rather than accurate locations [3, 10, 40, 48, 49]. For example, the prediction model
is trained on GPS data, but the predicted location is a cell grid rather than GPS coordinates [10]. In our
approach, the predicted trajectory has the same granularity as the training/historical data.

• Generality: Most prediction techniques are designed for a speciic type of data. Some handle labelled
locations such as WiFi access points where the geographical information (e.g. latitude and longitude) may
not be available while others process geographical locations such as GPS data. The proposed method in
this paper is able to handle both labelled and geographical trajectories.
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Table 1. Comparison between Location prediction, departure time prediction, and our problem (continuous trajectory

prediction)

Location prediction

[10, 19, 24, 30, 57, 61]
Departure time prediction

[11, 39, 44, 47, 63]
Continuous trajectory

prediction

Question to be
answered

Where will the user be at a cer-
tain point in time?

When will the user depart
from the current location?

What is the user’s trajectory (se-
quence of locations and time
points) for the rest of the day?

Location
granularity of
the output

Region (e.g. POI, gridded map,
area covered by a cell tower)

N/A Same as the input (e.g lati-
tude and longitude for GPS
trajectories)

Sample output
inference

The user is at home at 6 p.m. The user leaves the oice at
4 p.m.

The user leaves the oice at 4
p.m., passes along George St.,
and arrives home at 5 p.m. The
user stays home for the rest of
the day.

• Diversity of the predicted locations: Some existing methods predict the location from a inite set
of locations, such as signiicant locations (e.g. home and oice) or stay points, while discarding other
locations [3]. For example, Eagle et al. consider only four discrete locations for prediction [20]. In contrast,
our method does not ignore any location that exists in the historical trajectories.

Table 1 summarizes the diferences and shows the unique aspects of trajectory prediction approaches. Prediction
of the departure times in which the lengths of the stays are estimated [39, 47] has also been tackled by previous
research and is mentioned in the table. Table 1 also illustrates the sample outputs for a typical scenario. Assume
that the user is at the oice at 3 pm and wants to buy groceries on his way home from the oice. What location
prediction and departure time approaches can contribute to a recommendation system is to advise the departure
time (i.e. 4 pm) and the location at 6 pm (i.e. home). Predicting the user’s location, the recommendation system
suggests only places near the home or oice for shopping. However, having the trajectory of the user between
the oice and home, the recommendation system can also suggest the closest shops on the route home for the
user. It can also check if that shop is open at the time the user will reach the shop.

Despite its importance to applications, none of the existing works has focused on the completion of a partial
daily trajectory of a user while predicting spatial and temporal sequences with ine granularity for both labeled
and geographical trajectories. Routing and traic recommendations would greatly beneit from such an approach.
For example, assume that the user is on her way to work in the morning. By predicting the path to the oice and
the departure time, a location-based service provider could notify her of transport disruptions in advance and
suggest alternative routes with added precision. A short summary of our approach starts with a user’s trajectory
up to a certain time of the day. Our algorithm predicts the trajectory for the rest of the day. For example, we have
a trajectory for the morning (e.g. up to 12:00) and the problem will be to predict the trajectory in the afternoon
(e.g. from 12:00 to 23:59). We predict a trajectory which includes the sequence of future locations with time
stamps that will be visited by the user for the rest of the day. If the trajectory is a geographic one, e.g. GPS
locations, then the granularity of the prediction is at the GPS level rather than, like in other approaches, with a
coarser granularity of regions [56].
Methodologically, our approach investigates the similarities between the given sub-trajectory of the current

day and the historical data for prediction. Speciically, the trajectories from the historical data similar to the
given sub-trajectory play an important role in the prediction of the succeeding part of the new day’s trajectory.
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For example, it may be inferred from the historical data that if a user goes to university early in the morning,
she would leave the university early. Therefore, if the trajectory in the morning shows that the user goes to
university early, a reasonable prediction should anticipate that the user does not stay at the university for a
long time. Practically, we are solving a discrimination task by selecting a past afternoon trajectory according
to the similarity of morning trajectories. Therefore, deining a comprehensive similarity metric between the
trajectories is essential in the proposed method. To do this, we combine two similarity metrics by considering the
spatio-temporal properties of the trajectory as well as the sequence of the locations. We evaluate our method
with both labeled trajectories and geographical trajectories, and the results demonstrate the efectiveness and
eiciency of the method compared to baselines. Using our method, the prediction error is reduced by 10% and
35% for labeled trajectories and geographical trajectories, respectively. This saves the user’s time and enhances
her experience. For example, assume that a recommendation system recommends the user to watch ireworks in
the main square at 9 p.m. based on the prediction. However, the user arrives at 8 p.m. and she has to discard
the recommendation or wait for one hour. On average, our approach reduces the waiting time to 40 minutes.
Similarly, from the spatial point of view, the recommended location might be one kilometer away from the user’s
location. Using our method, the distance decreases to around 650 meters.

The main contributions of this paper are two-fold, the problem and the solution, including:

• We propose a novel continuous trajectory prediction problem: Given a user’s initial day trajectory (e.g

trajectory in the morning), can we predict the user’s daily trajectory for the rest of the day (e.g. prediction of

the afternoon trajectory).

• We introduce a mechanism that combines similarity metrics over temporal sequences of locations to
estimate similarity of user trajectories. This new metric provides an efective comparison between two
trajectories.

• We complete the partial daily trajectory by predicting the trajectory for the remainder of the day. To
ensure the quality of the predictions, diferent components are deployed in our method, including temporal
correlation, temporal segmentation, and outlier removal.

• We apply the method to two real-world datasets consisting of labeled trajectories and geographical trajec-
tories, and we show the reduction in the prediction error, which is the diference between the predicted
trajectory and the actual trajectory. The considerable decrease in prediction error unlocks more precise
spatio-temporal user recommendations in the context of location services.

In the next section, we discuss related work. In Section 3, we formally state the problem. In Section 4, we
discuss the rationale behind our approach by leveraging on the salient characteristics of human mobility. Our
approach for trajectory prediction is described in Section 5. The experiment results of our algorithm are reported
in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

Extensive research has been undertaken on mobility prediction, and it is a key issue in a large number of
applications, such asmobile wireless systems [12], road networks [31, 33], and smart homes [14]. In the networking
community, some researchers focus on prediction in WiFi networks, while others predict the connectivity to
GSM mobile phone towers (i.e. CID) [50, 62]. These methods anticipate client connectivity to the network to
enhance mobility management [42], cell assignment [15], paging [6], and call admission control [69]. In addition
to the mobility pattern of smartphone users, trajectory prediction is used in road networks where movements
are constrained to roads on the map [31, 33, 38]. Location prediction systems are also used in smart home
environments to maximize occupant comfort and minimize operation costs [14].
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2.1 Human mobility prediction

Researchers tackle the human mobility prediction problem in diferent ways. The main idea is to compare
the current pattern with historical data and to ind similar patterns for prediction. One way is extracting the
frequent trajectory patterns to predict unknown trajectories. Morzy et al. combine two well-known algorithms,
PreixSpan [26] and FP-tree [27], to discover moving rules of objects [49]. Some methods extract the frequent
patterns from the historical trajectories of all users in the database and provide a global strategy that works for
prediction. The main assumption in these methods is that people tend to follow the crowd in their movements [8,
40, 48]. Using the frequent patterns approach alone does not always work, because the user may not follow one
of the frequent patterns.

Some approaches combine the idea of global and individual strategies to obtain more predictability in results.
Speciically, when the individual predictor does not perform well or is not available due to privacy issues, the
global predictor is used [3, 10, 19, 66]. Another approach is to generate theories and models of human routine
behaviour and use them for prediction [4, 16, 30]. The research conducted by Gonzalez et al. shows that human
trajectories show a high degree of temporal and spatial regularity, and they modeled the individual travel patterns
with a single spatial probability distribution [25]. Calabrese et al. model mobility based on a person’s past
trajectory and the geographical features of the visited area to predict the next location [7]. Krumm et al. build a
Markov model based on the driver’s long-term trip history from GPS data to predict a driver’s next turn [36].
Ziebart et al. build a model of taxis’ mobility patterns to predict the destination given partially traveled route.
Similarly, the authors of [38] use a Bayesian model to model the taxi driver behaviour and predict the destinations.
However, both methods are designed to predict the destination, not the route. Our method predicts not only the
destination but the trajectory between the current location and the destination.

2.2 Next location prediction

Somemethods focus on the next location prediction problem, which is a relaxed version of trajectory prediction [10,
18, 24, 30, 31, 57]. The next location prediction methods can be classiied into two groups according to their
prediction method. The irst group predicts the location of the user after a speciic time, ∆, which is speciied in
each study. For example, ∆ is 10 minutes and one hour in studies [19] and [61] respectively. Sadilek et al. proposed
a model for long-term prediction up to multiple years [54]. In some studies, the efect of ∆ on performance is
investigated [31, 57]. Do et al. changed ∆ to predict a set of locations visited by the user [18]. The second group
uses methods that do not take into account the time elapsed, but just focus on the next location that the user
goes to, whether it is after a short or a long time [22, 24]. In both groups, the GPS coordinates are quantized into
cell grid, and the output of the prediction is a cell rather than GPS coordinates.

Some approaches take advantage of other contextual factors to improve the performance [13, 17]. For example,
Domenico et al. improve the accuracy of the prediction by considering traces of multiple users and show the
correlation between the trajectories which can be a signal of social interaction [17]. Next location prediction
approaches mainly focus on making predictions at ixed and short time-scales, while our approach predicts the
entire remainder of a person’s day.

2.3 Machine learning models

Predicting one location among a set of inite locations (e.g., POIs, cells in a gridded map) makes the trajectory
prediction problem similar to a classiication problem. In this case, the locations are considered as the classes,
and machine learning classiication techniques are used for the next location prediction [1, 38, 65]. Krumm et
al. propose Predestination to predict drivers’ destinations by producing a probabilistic map of destinations via
Bayesian inference [38]. Anagnostopoulos et al. consider visited locations as the feature vector, and then evaluate
three classiication methods [1]. Tran et al. extract the semantics of the visited locations and use them as the
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features for a classiication tree [65]. To predict the next location within a smart building, Petzold et al. evaluate
ive machine learning approaches including Dynamic Bayesian Network, Multi-layer Perceptron, Elman net,
Markov predictor, and State predictor [51]. In [19], the performances of machine learning models such as Random
Forest, Linear Regression and Logistic Regression for predicting 10 semantic location labels are compared in
both personalized and user-independent modes. The more relaxed problem is occupancy detection, in which
the number of the classes is two [37, 58]. Classiication models cannot be directly applied to GPS data to predict
coordinates that consist of continuous values. On the other hand, our method is able to predict the continuous
values such as the latitude and longitude of the locations.

Recently, deep learning has become very popular. However, to perform representation learning with deep
learning require large datasets, as argued by Hu et al. [29], existing representation learning (eg for face recognition)
with deep learning is usually trained with millions of data samples. They proposed a novel approach to perform
representation learning with small data, which is 10,000 samples. The features that can be extracted from image
data are very rich. Daily trajectory data is very small, in comparison to image, audio, text logs, or similar data
that has been used in deep learning benchmarks and experiments.
More recent work on next location prediction on geographical trajectories are based on Recurrent Neural

Network (RNN) architecture [21, 35, 43]. The problem is largely focused on using histories of locations visited
in the past to predict the next location. This still requires large training samples. Unlike observed this problem,
in those papers, each visited location history is an instance. In our case, each day is a sample instance in our
historical data, and for each user, there can only be around 30 samples if we only have a month history, and up to
365 samples if a user’s trajectory is logged for up to a year.

2.4 Markov models and discretized (grid-based) approaches

In the literature, one of the common approaches for addressing the location prediction problem is the Markov
model [2, 10, 19, 22, 24, 45]. The diference between Markov-based approaches is the way that the states are
deined. For example, for GSM data, the cell towers are considered as states, while for WiFi data, WiFi access
points are Markov model states [70]. In a smart environment, proximity to a sensor can be considered as a
state [51]. Unlike those using ixed sensors, approaches using GPS data apply a prior spatial discretization (i.e.
vector quantization). Some approaches simply use ixed grid on the spatial space [8, 48, 49], while others extract
signiicant locations by clustering spatially or temporally [3, 10, 40]. For example, Ashbrook et al. irst, cluster
GPS data points to ind signiicant locations and then use Markov model to predict the user’s movement from
one signiicant location to another [3]. Banovic et. al use a Markov Decision Process (MDP) framework to model
routine behavior described as the user’s daily commute. In the irst step, the location logs, including latitudes,
longitudes, and time stamps, are converted into states and actions representing the user’s mobility for each day.
The states indicate the day of the week, the hour of the day (0-24), the location of the user, and whether the user
left, arrived, or stayed at the location for the past hour. The state transition probabilities are modeled with a
stochastic MDP to consider the environment’s inluence on arrival time (e.g. travel distance, traic) [4].
Using Markov models for the trajectory prediction problem has two weaknesses. First, only the last location

visited by the user is taken into account for the prediction of the next location. Some approaches use diferent
orders of Markov models to obtain better accuracy [3, 10]. Second, the output of a Markov model is limited to the
states representing a signiicant location, point of interest, CID, or any labeled location. Therefore, the Markov
model is not applicable to GPS data unless a prior spatial discretization is applied (e.g using a gridded map), and
this reduces the granularity of the predicted locations. The discretization stage may use density-based clustering
techniques to detect signiicant locations, stay points, or points of interests (POI) [8, 49]. The discretization, on
one hand, reduces the complexity of the problem and increases the certainty of the results. On the other hand, it
also reduces the precision of the approach due to the coarse granularity of the regions. As a result, predicted
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locations could include several important locations which are common in crowded cities where buildings are
in close proximity to each other. For example, if the oice and home are located in the predicted region, the
location-based service cannot distinguish when the user goes to the oice.

TPattern [48] is another example of a grid-based approach. The algorithm is a search tree of the next location
within certain time interval in the given spatial and temporal thresholds or resolutions. TPattern requires temporal
and spatial density threshold, and the algorithm discretized the working space through a regular grid with cell
size set by the user. For example, the experiment in the paper was conigured to discretize the GPS trajectories to
cells with resolutions of 100 meters, and within 200 seconds. TPattern is also very sensitive to the parameter
setting of the spatial thresholds and temporal thresholds. This means it cannot be applied to our problem that
looks for the set of consecutive location and time point within any resolutions, without requiring any thresholds,
and it is not applicable at all for labelled trajectories.

Compared to the Markov models or grid-based approach used for location prediction, our method can be used
to predict the next transition time in the trajectory and the location at any particular time. Furthermore, there is
no need for discretization in our method, which results in ine granularity.

2.5 Summary of gaps

This work addresses human mobility prediction across a day. Existing approaches do not make use of the rich
information contained in the previous part of a user’s daily trajectory. Unlike the other methods that predict the
destination only, our method predicts the trajectory to the destination using spatio-temporal points. We believe
this is vital for an efective location-based service. With trajectory prediction, we investigate not only where
will the user be in the future but also how the user gets to that location and when. There is no state-of-the-art
method, neither ML techniques, nor trajectory prediction solution, that tackles the same problem.
Our proposed algorithm works with both GPS trajectories (lat, long, timestamp), and labelled or symbolic

trajectories (location label, timestamp). The latter is important, as there are large logs of data from cell towers,
WiFi access points, Bluetooth beacons, and also Places of Interests, location-based social media check-ins etc. with
only location labels or identiiers, without actual location information. Existing trajectory prediction algorithms
are not usually applicable to labelled trajectories as they often involve distance based computation, which cannot
be performed on labelled trajectories without any exact location information. Therefore, most problems (and
solutions) that deal with labelled trajectories are focused on next location prediction at the next look-ahead time
with a predeined time window or temporal resolution.

By obtaining this information, the user can be notiied about the consequence of her movements in advance. In
this way, a location-based system alerts the user about events that may happen during the trip to the destination.

3 PROBLEM DEFINITION

In this section, after introducing the notations, we deine the problem. Table 2 lists the symbols used in this paper.

Deinition 3.1. A trajectory is a trace of locations, represented by a series of chronologically ordered points,
p1 → p2 → ... → pm , where each point consists of a location and a time stamp p = (loc, t). Thus, <
p1, · · · ,pi , · · · ,pm >=< (loc1, t1), · · · , (loci , ti ), · · · , (locm , tm) >. For geographical trajectories, such as for GPS
data, loc is a geospatial coordinate set; in labeled trajectories, e.g. a sequence of Cell IDs of WiFi Access points,
loc is the label assigned to a location.

Deinition 3.2. The historical trajectories of the user containing n days of data is HT =
〈

Tr 1, ...,Trn
〉

where
Tr i denotes the trajectory of the user during the i-th day. A day starts at 0:00 and ends at 23:59.

Deinition 3.3. Current day is the target day when the prediction takes place. The trajectory of the current day
is Tr .
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Table 2. Definitions of symbols

HT set of historical trajectories
i index of trajectory in HT
n number of historical trajectories
T time when the prediction starts
T r trajectory of the current day
T rpre given sub-trajectory of the current day from 00:00 to T
T rpost to be predicted sub-trajectory of the current day from T to 23:59
T r ipre the irst sub-trajectory of the i-th day from 0:00 to T

T r ipost the second sub-trajectory of the i-th day from T to 23:59

W(T r
i ) weight between T rpre and T r ipre ∈ HT

µ mean value
σ variance
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(a) Device Analyzer dataset (b) MDC dataset

Fig. 1. Correlation between the trajectories in the mornings and in the aternoons

Deinition 3.4. Prediction time (T ) is the time of the current day when the prediction starts.

Deinition 3.5. Tr ipre is the irst sub-trajectory of the i-th day that is from 0 : 00 to T while Tr ipost is the second
sub-trajectory of i-th day that is fromT to 23 : 59. For the current day, the sub-trajectory from 0 : 00 toT isTrpre
and the sub-trajectory from T to 23 : 59 is Trpost .

The deinitions of the symbols are listed in Table 2. Given these deinitions, we can now deine our problem
statement.

Problem: Given the historical trajectory, HT , and the user’s initial trajectory of the current day, Trpre , our
problem is the prediction of the continuous trajectory for the rest of the day, Trpost .
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4 OBSERVATIONS IN HUMAN DAILY TRAJECTORY

In this section, we discuss the rationale behind our approach by discussing three observations, each of which is
examined on data described in the following subsection.

4.1 Data description

To validate the observations, we evaluate two types of datasets: a labeled dataset (Device Analyzer) and a
geographical dataset (Mobile Data Challenge). We use these same two datasets for our subsequent experiments.

• Device Analyzer: The Device Analyzer app gathers data about running background processes, wireless
connectivity, GSM communication, and some system status and parameters. In this dataset, MAC addresses,
WiFi SSIDs, and other forms of identiication are hashed due to privacy purposes. Therefore, there is no
ground truth or information about the geography or semantics of the locations. The trajectories consist of
labeled cell tower IDs (CID), and the sampling rate is every 15 minutes. This makes the trajectory length
equal to 96 for one day. In our experiments, we consider 225 users who have more than 40 days of data. For
each user, we apply our approach to the last 10 days [67].

• MDC dataset: The Mobile Data Challenge (MDC) dataset provides geolocation information for nearly
200 users. In addition to GPS data, WLAN data is also used for inferring user location. The location of
WLAN access points was computed by matching WLAN traces with GPS traces during the data collection
campaign. As an adequate amount of data is needed for prediction, we exclude users who do not have
enough data and only considered users with more than 40 days of data. 136 users satisfy this condition.
Similar to Device Analyzer dataset, we process the same amount of data (i.e. 10 days) for each user and
RMSE is reported over all instances [34].

The Device Analyzer data provides hashed cell tower IDs (CIDs) and we call it the labeled trajectory dataset
trajectory, composed of CIDs and time stamps. The MDC dataset provides the geographical location of the user
and the trajectories include latitude, longitude, and time stamps and we call it the geographical trajectory dataset.
When T is 12 : 00, the trajectory of a day is split into morning and afternoon sub-trajectories.

4.2 Observation 1: Positive correlation between the morning and aternoon sub-trajectories

People’s morning trajectories are positively correlated with their afternoon trajectories. That is to say, if a user
has the same trajectories over two mornings, it is highly likely that she will have the similar trajectories in the
afternoons.
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Figure 1 shows the scatter plot for similarities in the mornings and in the afternoons measured by Dynamic
Time Warping (DTW). (We explain later how we apply DTW to our labeled and geographic datasets.) In Figure 1a,
each of the 2000 points represents 2 random days taken from the same user in the labeled dataset. The vertical axis
represents the morning DTW diference of the two days, and the horizontal axis represents the afternoon DTW
diference, where a smaller diference indicates higher similarity. Since this is labeled data, the DTW diferences
are integers ranging from 0 (high similarity) to 48 (high diference). The strongest cluster in this plot is centered
around (10,10). This indicates that days that are relatively similar in the morning and also relatively similar in the
afternoon. Exact matches are rare, hence there are no points at (0,0). The size of each point is proportional to the
number of points occupying that coordinate.
Figure 1b shows the same analysis for 2000 random pairs of days in the geographic dataset, where the DTW

diference is a continuous value. We again see a large cluster near (0,0). Taken together, the plots in Figure 1
imply that if two trajectories are similar in the morning, it is expected that they are similar in the afternoon, too.
This validates the irst observation. For example, if someone works for two companies and has two routines,
the morning trajectory often identiies which routine will be followed in the afternoon. We make use of this
observation by predicting a person’s afternoon trajectory based on their morning trajectory

4.3 Observation 2: Positive temporal correlation

The importance of each historical trajectory varies and depends on its date. To show the date efect, 2000 random
trajectory pairs are selected from each dataset. Each trajectory pair includes two trajectories from two days
with less than 30 days gap from the same user. Figure 2 shows how much the closeness of the dates relects the
similarity between two trajectories, where similarity is again measured by DTW. Speciically, the x-axis indicates
the gaps (∆) in days between the dates of two trajectories, while the y-axis relects the average similarity. It
is observed that 1) overall, as ∆ increases, the similarity decreases, and 2) when ∆ = 7, the weekly periodicity
appears, which means trajectories are more similar between two days with 7 days diference. Thus, in general,
the closer the date of a historical trajectory to the current prediction date, the more important it is. The reason
is that people often have a similar routine in two close days (e.g. two consecutive days) [13]. This temporal
correlation indicates that higher priority should be given to the trajectories with the closer dates or dates that
are one week apart. For example, for prediction of Monday mobility, this observation implies that it is better
to use the trajectory of the last Monday rather than the trajectory from the last Tuesday. We use the temporal
correlation to compute weights on each previous day to use for predicting the current day. Days with higher
correlation are given more weight.

4.4 Observation 3: Outlier trajectories

There are outlier trajectories, which are diferent from people’s normal routine (i.e. visit to a location by exception)
and which are unlikely to happen again (especially considering the entire trajectory as a whole). Then, when
making trajectory predictions, these outlier trajectories should be excluded. Here, we elaborate one example to
clarify the efect of outlier removal stage. Assume that the user has a strict routine on Wednesdays and we want
to predict the afternoon trajectory given a Wednesday morning trajectory. The temporal correlation speciies to
pick the afternoon trajectory of the last Wednesday because it is the closest day to the current day with similar
morning trajectory. Now, assume that on Wednesday afternoon last week, the user deviated from his routine to
visit a new location (e.g. visiting a friend in a hospital) and this visit had never been repeated in the historical
data. Observation 3 implies that such a visit was temporary and unlikely to happen again. In other words, the
predicted trajectory should not be nor include an outlier.

In summary, the proposed method is based on the above observations. 1) We predictTrpost using the historical
trajectories that have the sub-trajectories similar to Trpre . 2) We calculate temporal correlation to give priority
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the historical trajectories based on their relative date. 3) The historical trajectories that include outliers are not
used for the prediction.

5 CONTINUOUS TRAJECTORY PREDICTION

In this section, we provide an overview of the proposed approach to partial human daily trajectory prediction, as
shown in Figure 3:

(a) The irst stage is to compareTrpre withTr ipre , the morning sub-trajectories from the historical trajectories.
The goal is to weight the historical trajectories based on their similarities to Trpre . Two similarity metrics
are deployed in our approach: Dynamic Time Warping (DTW) [32] and Edit Distance(ED) [9]. We will
describe these metrics later in the section.

(b) The temporal correlations are processed to quantify the impact of date diferences on the prediction.
(c) Together with (a), the temporal correlation betweenTrpre andTr ipre are used to enhance the corresponding

importance of Tr ipre . For example, the afternoon trajectory of yesterday might receive a higher weight
compared to the afternoon trajectory of a day from last month.

(d) The two similarity measures (DTW and ED) are normalized in this stage. After normalizing the similarity
measures, they are combined to form the inal weight of each historical trajectory. The inal weights
indicate the similarity of the morning parts of the historical trajectories to Trpre . The afternoon part of the
trajectories that received high weights will be used for prediction in the inal stage.

(e) A temporal segmentation method [55] is deployed on the historical afternoon trajectories. Then, the
prediction is performed within each segment. Ideally, each temporal segment represents the period over
which an activity is undertaken. For example, if the user often goes for lunch between 12:00 and 13:00,
[12:00, 13:00] is one of the temporal segments.

(f) In each afternoon segment, a distance matrix is built. The distance matrix indicates the distance/similarity
between two sub-trajectories in the historical data during that segment. Based on the distance matrix, we
discard the outlier sub-trajectories that represent the trajectories that are unlikely to happen during the
current day. From the rest of the trajectories, we choose the sub-trajectory of a day with the highest weight
assigned in stage (d). The predicted sub-trajectory are linked together to form Trpost .
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We detail each of the above components in the following sections, including trajectory similarity metrics,
temporal correlation, temporal segmentation, and outlier removal.

5.1 Similarity metric

There are several metrics to measure the similarity between two trajectories. For example, the four most common
metrics are Fréchet Distance, Dynamic Time Warping (DTW), Longest Common Sub-Sequence (LCSS), and Edit
Distance (ED), all of which have been introduced and compared by Toohey and M. Duckh [64]. Of these metrics,
DTW relies on matching points in trajectories. Speciically, a single point in one trajectory can be matched to
multiple points on the other trajectory based on the distances. The calculation of distances between the points is
performed using a chosen distance function. For labeled trajectories, the distance function only checks whether
the two labels are equal or not. If the two labels match, the distance is zero. Mismatched labels have a distance of
one. For geographic trajectories, the distance between points is the great circle distance measured from the two
latitude/longitude pairs. DTW considers delays in the trajectories. This means that similar sub-trajectories are
matched together even though their timestamps are diferent. However, outliers can signiicantly afect DTW
because there has to be a match between every point in both trajectories [64]. ED aims to count the minimum
number of edits needed to make two trajectories equivalent. This means after the edits all of the locations in
the trajectories have to be the same. For geographical trajectories (i.e. MDC dataset), we consider two locations
as the same location if they are within 0.1 range in latitude and longitude. Among diferent variations of edit
distance, we use the one described by Chen et al. [9]. ED compares the trajectories in every ine-grained time slot
and does not consider delays in the trajectories. ED is more robust in the treatment of outliers than DTW.

As the similarity metric plays a critical role in our approach, we propose a metric that integrates DTW and ED
together to provide a comprehensive similarity measure. This is reasonable, because 1) Fréchet distance and DTW
are highly correlated (R = 95%); 2) LCSS and ED are highly correlated (R = 83%) [64]. Furthermore, DTW and ED
are compatible with non-geographic (labeled) trajectories such as trajectories represented by cell tower IDs.

Figure 4 shows the similarity matrix over 20 successive days using DTW based on the Device Analyzer (labelled)
dataset. Speciically, each entry denotes the similarity value between trajectories in two days. It is observed that
days 17-20 are very diferent from the other days. The user may have gone for a trip in that period to visit new
places in other cities. And the calendar shows that this period is from Friday to Sunday, which strengthens this
hypothesis.
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5.2 Weighting historical trajectories

Here, we specify how we combine DWT and ED with the observed temporal correlation between trajectories.
Given Trpre , its DTW similarity to Tr ipre ∈ HT is deined as follows:

WDTW (Tr i ) = DTW (Trpre ,Tr
i
pre ) ×TDTW

cor (∆), (1)

where Tcor denotes the efect of the temporal correlation in the weighting. ∆ denotes the diference between the
dates whenTrpre andTr i happened. To calculateTcor (∆), we use the historical trajectories to ind the correlation
between the trajectories with ∆ days diference. Here, we are emphasizing the efects of Observation 2 that ∆ is
an important factor governing the similarity between days based on how far apart they are in time." Similarly,
the ED similarity is deined as follows:

WED (Tr
i ) = ED(Trpre ,Tr

i
pre ) ×T ED

cor (∆). (2)

Small values ofWDTW (Tr i ) andWED (Tr
i ) mean that theTrpre andTr ipre are similar. According to Observation 1,

among the historical trajectories, ones that are most similar to Trpre in the morning should get higher weights
when predicting the afternoon trajectory.

5.2.1 Normalization. Before summing up the ED and DTW similarity values, they are z-normalized. That is,
each type of similarity values has zero mean and a variance of one. This provides a comprehensive similarity
measure that plays a critical role in our approach.

W (Tr i ) =
WDTW (Tr i ) − µDTW

σDTW
+

WED (Tr
i ) − µED

σED
, (3)

where µ and σ denotes the mean and variance that are calculated for each user separately, and they are based on
the user’s historical data.W () is the total weight assigned to a historical trajectory considering ED and DTW

metrics and temporal correlations. WDTW (T r i )−µDTW
σDTW

and WED (T r i )−µED
σED

are the normalization for DTW and ED,
respectively. This normalization is introduced to remove the scale efects and gives both metrics an equal priority.

5.3 Temporal Segmentation

Factorizing a time period into several temporally homogeneous segments is called temporal segmentation.
Considering trajectories from a user, temporal segmentation reveals the departure times when the user changes
her activities. For example, assume one leaves home at 7 am, works at the oice from 9 am to 4 pm, and then goes
outdoors until 6 pm every day. In this example, 7am, 9am, 4pm, and 6pm are the departure times and [7am-9am],
[9am-4pm], [4pm-6pm], and [6pm-7am] are the temporal segments .

To predict the trajectory of the user in the afternoon, a temporal segmentation method is applied to historical
trajectories to ind the usual changes in the user’s daily activities, such as when the user usually goes from
home to work. Then, a sub-trajectory is predicted for each segment. Temporal segmentation allows us to analyze
ine-grained segments and discard the outlier sub-trajectories in each segment.

We use the Information Gain Temporal Segmentation (IGTS) introduced in [55]. IGTS computes the distribution
of the user’s locations in each segment and tries to capture the segments that have the lowest entropy. Low-entropy
segments imply that the user’s location is predictable in that segment. For example, [12am-6am] is a low-entropy
segment for a common user because the user is probably at home during this period. If the trajectories contain
geographic locations, before using IGTS, the locations should be quantiied (e.g by using gridded map). To ind
the number of the segments, IGTS uses a formula to choose the best candidate from a range of numbers based on
knee-point detection [55]. If the number of the segments is too large, the predicted trajectory will have a high
variation. Therefore, we select the best candidate for the number of segments ranging from 2 to 6. The temporal
segmentation method is applied per user. This makes the method highly robust to individual habits and routines.
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5.4 Outlier removal

In this stage, we discard the historical trajectories that have abnormal sub-trajectories in the afternoon. According
to Observation 3, these trajectories are discarded because it is unlikely to have a sub-trajectory similar to the
abnormal sub-trajectories. The abnormal sub-trajectories are sub-trajectories that are not found in the historical
data such as going to the airport to pick up someone, visiting a friend in a hospital, or inspecting an apartment to
buy. The outlier removal stage is done regardless of similarities in the morning parts. This means we discard the
historical trajectories with abnormal sub-trajectories in the afternoon even if the morning parts are similar to the
current day.

To remove the outliers, we build a distance matrix for each afternoon segment results from temporal segmenta-
tion stage (e.g. from 1 pm to 4 pm). The distance matrix, DS1, is an n × n matrix where DS1

i j denotes the distances
between the sub-trajectories i and j in segment S1. We use DTW to compute the distance matrix. An outlier
sub-trajectory is based on its closest neighbour (the most similar sub-trajectory). If the closest distance is higher
than a threshold, the sub-trajectory is considered as an outlier. The outlier removal is performed in each segment
independently.

5.5 Linking trajectories

Finally, we make the prediction for each segment obtained from the component of temporal segmentation,
then link these predictions together to form the prediction of Trpost . Namely, the corresponding segment in
Tr ipost ∈ HT with the highest weightW (Tr i ) is selected as the prediction for each segment in Trpost . Then, we
naturally link the predictions for each segment together to make the prediction for Trpost .

6 EXPERIMENTS

Before evaluating the efectiveness of the proposed method thoroughly, we clarify the experiment setting. For
each user, we pickm consecutive days of trajectories (m > n), where n denotes the size of historical trajectories
used for the prediction of one day afternoon trajectory. For each day, we run our approach while considering
the past n days as the historical data, using the (n+1)-th day as the irst test trajectory. Based on the morning
trajectory (i.e. the given part of the trajectory of the current day), we predict the afternoon part of the (n+1)-th day.
For the next day, again, we predict the afternoon trajectory based on the past n days and the morning trajectory
of that day. We continue the prediction of the afternoon sub-trajectories for each day until we reach them-th
day. Therefore, we have (m − n) test instances for each user. In other words, each day of data is treated as a test
instance. Figure 5 shows three sample instances from one sample users’ trajectories.
For each instance, the predicted trajectory is compared to the actual trajectory and the error is calculated

using DTW. The prediction error shows how much the predicted trajectory is similar to the actual trajectory. If
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Table 3. Tests show that our algorithm’s mean performance is beter than the baseline algorithms on the Device Analyzer

dataset by a statistically significant margin

TrAf PreHeat Most frequent visit Last week trajectory
RMSE 25.6 26.1 28.5 31.4

Wilcoxon test - 0.0015 0.00001 < 0.0001
p-value

the predicted trajectory is exactly the same as the actual trajectory, DTW returns zero. Otherwise, the error is
the DTW distance between the two trajectories. DTW is an efective way to evaluate the prediction, because it
accounts for both the spatial and temporal diferences between the prediction and the actual trajectory. Calculating
the error for each instance, the Root Mean Square Error (RMSE) is reported for all data. Speciically, RMSE is the
root mean square of the prediction errors measured by DTW. For the labeled trajectories, we also report precision
and recall in addition to RMSE. However, it should be noted that precision and recall only consider the set of the
predicted locations and do not consider the sequence and transition times. In the experiment results, our method
is denoted by "TrAf".

6.1 Baselines

For comparison, we use the following baselines:

• Last week trajectory: According to Section 4.3, of the historical trajectories, one of the most similar
trajectory toTrpost is the trajectory of the afternoon of the last week. We use this as our irst baseline. This
baseline is similar to "Same place" baseline used in the next location prediction methods [18].

• Most Frequent visit: This baseline inds the most visited locations at each time of the day. For example,
for inding the location at 1 pm, the method searches for the location in the historical trajectories that is
most often visited at 1 pm [18, 19].

• PreHeat: This algorithm was designed for the problem of occupancy detection. Speciically, given the
historical records and the morning occupancy, PreHeat predicts the occupancy in the afternoon. To this end,
this method detects 5 days that have the most similar occupancy patterns to the current day in the morning
and then, the probability of the occupation is calculated based on the detected days. Please note that since
there is no state-of-the-art method that tackles exactly the same problem addressed in this paper, we chose
PreHeat, a state-of-the-art-method targeting originally a diferent problem (i.e. occupancy detection) as a
baseline comparison, as this has some similar characteristics which allow some level of comparison. We
adapt PreHeat to make it applicable to our data. For labeled trajectories, we consider one day instead of 5
days because it is not possible to calculate the mean value of labels. For geographical trajectories, the mean
values of the latitude and longitude are considered as the coordinate of the predicted location. We also
evaluate the algorithm when the number of the detected similar days is 10 [58].

• Markov model: It is one of the most popular approaches for mobility prediction problem [2, 10, 19, 22, 24,
45]. However, Markov models cannot be applied directly to the GPS data and there should be a discretization
stage for deining Markov states. In our implementation, we use a grid map for discretization, and each cell
is considered as a state.

6.2 Experiments on labeled trajectories

In this experiment, we predict the labeled afternoon trajectories of 2250 days from 225 Device Analyzer users (10
for each user). The length of the historical data is 30 days, i.e. n = 30, which means for prediction of the afternoon
trajectory, Trpost , we process the morning trajectory, Trpre , as well as the trajectories of the user during the
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Fig. 6. Results for 2250 instances from the Device Analyzer(labeled) dataset. ▲ denotes the mean value. Table 3 shows the
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Fig. 7. Distribution of precision and recall of predicting the full set of locations of the whole day (Device Analyzer dataset).

The temporal aspects of the errors are not considered in this experiment.

previous 30 days. Here, T is 12 pm which means we have the trajectory of the current day up to 12 pm and
trajectory between 12 pm and 12 am is unknown. This makes the lengths of Trpre and Trpost equal to 48. The
impacts of the prediction time and size of historical trajectories are investigated in the following subsections.
In Figure 6, the y-axis denotes the similarity between the predicted trajectory and the ground truth. The box

plot containing inter-quartile range (IQR), a measure in descriptive statistics. The IQR is the 1st quartile (25%)
subtracted from the 3rd quartile (75%). The box demonstrates the values between 1st quartile and 3rd quartile
while whiskers extend to data within 1.5 times the IQR. The median is also shown in the box. The maximum
error is 48 and this happens when none of the predicted Cell tower IDs (CIDs) is the same as the actual CIDs. The
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Table 4. Tests show that our algorithm’s mean performance is beter than the baseline algorithms on the MDC dataset by a

statistically significant margin

TrAf TrAf TrAf PreHeat PreHeat Most frequent Last week
(Excl. OR) (Excl. OR & TS) (5 days) (10 days) visit trajectory

RMSE 6.3 7.5 7.6 8.6 10.1 13.0 14.7
Wilcoxon test - < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

p-value

igure shows that the trajectories predicted by our method are more similar to the actual trajectories. To show
that this superiority is not by chance, a statistical analysis, Wilcoxon test, is conducted. RMSE and the p-values
are reported in Table 3. All the tests show our algorithm’s mean performance is better than the baselines’ means
to the 0.0001 signiicance level.

It can be seen that the variation of the result is high and the certainty of all methods are low. The reason is that
the human mobility has some limits for prediction and it is not completely predictable [61]. In fact, it is likely to
see new trajectories that are diferent from the historical trajectories. For example, the user may leave the oice
earlier, or she may catch up with her friends after the working hours.

The reality is that the performance of each method depends on the user’s behaviour. For example, if morning
trajectories and afternoon trajectories of a user are highly correlated then our method works better. For users that
have strict routine over a week, the trajectory of the last week is an appropriate estimation for today’s trajectory
compared to other methods. However, our method has the best result on average.

In addition to DTW, which considers temporal and spatial aspects at the same time, we conduct temporal and
spatial evaluation separately. For spatial evaluation, we report the distribution of precision and recall in Figure 7.
To calculate precision and recall, the set of predicted locations is compared to the actual locations visited by the
user. Clearly, the temporal aspects such departure time are not considered. For temporal evaluation, we report
the diference between the actual and predicted irst departure time after 12 p.m. Figure 8 shows the results. It
can be seen that our method outperforms the baselines in both experiments.
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6.3 Experiments on geographic trajectories

From the MDC dataset, all the users with more than 40 days data are chosen for evaluation (136 users). The size of
the historical trajectory is 30 days in this experiment, i.e. n = 30. The total number of test instances is 1360 (10 for
each user). For each instance, we measure the similarity between the predicted trajectory and the ground truth.
Figure 9(a) shows the box plot. For each method, the ▲ indicates the mean value while the box plots report

inter-quartile ranges (IQR). To show the impact of Temporal Segmentation (TS) and Outlier Removal (OR), we
run our method with and without these stages. The results indicate the positive impact of TS and OR. Figure 9(b)
shows the distributions of the DTW distance between the actual and predicted trajectories, where we can see that
the trajectories returned by our method are closer to the ground truths with higher probabilities of low DTW.
The RMSE of our method is 35% less than the best baselines, which has a signiicant impact on the level of

accuracy that location service recommendation can achieve and therefore on the user experience. Similar to
other experiments, we evaluate the performance using DTW, which is able to consider both the temporal and
spatial deviation. 35% reduction in error means, on average, that the user is 35% closer to the predicted location
or the user has to wait for 35% less time for an event to take place. In practical terms, this means that the user
spatial and temporal proximity to a recommended event (e.g., a show, a train to catch) is more than doubled.

6.4 Impact of historical trajectory size

Here, we investigate the impact of the size of the historical trajectories, n, on the accuracy of the prediction.
Speciically, we vary n from 2 to 60 days with the step length 1 on the Device Analyzer (labeled) dataset. In this
experiment, we use three users with a total of 943 days of data ( 467, 221, and 255 for the three users). The RMSE
is reported in Figure 10.
From Figure 10, we can observe that: 1) the last week trajectory approach is not afected because it does not

consider the historical trajectories; 2) increasing n makes the most frequent visits approach more accurate. This
trend continues until n = 7, and after that increasing the historical trajectory size makes the approach worse.
The reason is that the user may change behaviour and may not go to the places that she used to go. A long series
of historical data causes the most frequent visits approach to promote the locations that have been frequently
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accurate prediction).

visited a long time ago; 3) the proposed method handles the size of the historical trajectories well. There are
two reasons for this. First, by considering the temporal correlation, we give priority to the trajectories from
consequential dates. Generally, closer dates are more consequential. This gives the trajectories from a long time
ago less efect. Secondly, our method only uses the historical trajectories that have the similar morning trajectory
as Trpre . Therefore, if the behaviour of the user changes, our method recognizes it by analyzing and comparing
the morning trajectories.
Changing n causes a trade-of between the accuracy and processing time. For a large value of n, we have

accurate results but at the same time, our approach becomes more costly. In our experiment, we set n to a number
between 20 to 30, because increasing n more than 30 does not lead to a signiicant increase in accuracy.

6.5 Impact of prediction time

According to our problem formulation, the current day trajectory of the user up to prediction time T is known.
Here, we investigate the impact of prediction time, T , on the accuracy. To this end, we design the experiments by

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article . Publication date: December 2018.



20 • Amin Sadri, Flora D. Salim, Yongli Ren, Wei Shao, John C. Krumm, and Cecilia Mascolo

2.0

2.5

3.0

0.0004 0.0016 0.0064 0.0256 0.1024 0.4096 1.6384 6.5536

Threshold

R
M

S
E

Fig. 12. Impact of the threshold of the outlier removal on the accuracy of prediction. The dashed line shows when there is no

outlier removal stage.

varyingT from 1 am to 11 pm with a step length of 1 hour, and we use the last 20 days as the historical trajectories,
i.e. n = 20. In this experiment, the same set of users as Section 6.3 are analysed. Speciically, the experiment on the
geographic dataset is repeated 23 times (once for each T ). Figure 11 shows the relationship between prediction
accuracy in RMSE and prediction time. It is observed that: 1) the trends are decreasing because DTW returns
smaller values for short trajectories; 2) furthermore, when we have more data from the current day, the prediction
is more accurate. If the prediction time is after 7 pm, our method and "most frequent visits" overlap, otherwise
our method outperforms the baselines; 3) there is a steeper decrease starting around 12 pm in the DTW of our
method. This means the trajectories from 11 a.m. to 12 p.m. is very informative and more predictive.

6.6 Impact of outlier removal

In this experiment, the efect of the outlier removal stage with diferent thresholds is investigated. Figure 12
shows the impact of the threshold used for detecting outliers on the accuracy of the proposed approach on
the geographic dataset. The x-axis has a logarithmic scale to assist interpretation. When the threshold is too
small, a high portion of the sub-trajectories is recognized as outliers. In this case, the error is high because some
useful information for the prediction is discarded. By increasing the threshold up to 0.0128, the results improve
further. When the threshold increases, fewer sub-trajectories are recognized as outliers. When the threshold is
higher than 1.638, none of the sub-trajectories are recognized as outliers and the performance is the same as the
approach without outlier removal.

6.7 Experiments on the gridded map

Here, we compare our method with a irst-order Markov model. To run Markov model on the geographic dataset,
we use a gridded map to discretize the GPS data. In this case, each state is one of the cells in the gridded map.
Consequently, the locations predicted by Markov model are cells rather than geographic coordinates. Figure 13
shows the diference between the outputs of our method and the Markov model.

To compare the results, we discretize the output trajectory from our method. To measure the prediction error,
we compared distance between the centroid of the predicted and the actual tile in the Markov model. Figure 14
shows the efect of the gridded size on the performances of both methods. For large grid sizes, the Markov Model
performs better than our method. However, when the grid size is reduced, our method performs better, because
the data becomes sparse and there is not enough historical data to build a Markov Model.
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Fig. 13. (a) Sample output of the proposed approach. The red dashed line shows the predicted trajectory of our method. The

black line is the actual trajectory of the user (b) Sample output of the Markov model. The red cells in the gridded map show

the prediction of the Markov model.
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6.8 Comparison with Recurrent Neural Network on Geographical Data

One interesting observation is the eiciency and efectiveness of our proposed method. One may ask ś how
does this compare with deep learning? Performing representation learning with deep learning traditionally
requires large datasets. As argued by Hu et. al. [29], existing representation learning (e.g. for face recognition)
with Convolutional Neural Network architecture is usually trained with millions of data samples. This recent
work by Hu et al. [29] claimed to be irst to perform representation learning with small data, which is 10,000
samples, with rich features that can be extracted from image data. For some time-series data based problem, small
amount of data also does not work well [59, 60]. In our case, each day is a sample instance in our historical data,
and for each user, there can only be around 30 samples if we only have a month history, and up to 365 instances
if a user’s trajectory is logged for up to a year. Trajectory data also does not have as many features as image

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article . Publication date: December 2018.



22 • Amin Sadri, Flora D. Salim, Yongli Ren, Wei Shao, John C. Krumm, and Cecilia Mascolo

Ot-1 Ot Ot+1

Ct-1,ht-1

Xt-1

Ct-1

sigmoid

Xt

sigmoid tanh sigmoid

Ct+1,ht+1

Xt+1

ht

tanh

ht-1

Next unitLast unit

Fig. 15. Architecture of Long short-term memory.

data, requiring re-engineering of the deep learning application. We have previously shown in Figure 10 that
our method has converged at n=30, which means having more than 30 instances do not necessarily reduce the
prediction error. Therefore, our hypothesis is that deep learning is not going to work well for our problem.

To test this hypothesis, we implement a Recurrent Neural Network model. This is because many recent works
for location prediction using deep learning is mainly based on Recurrent Neural Network (RNN) architecture
[21, 35, 43]. In this instance, we compared our proposed solution with Long short-term memory (LSTM) on
geographical trajectories prediction. LSTM is a widely used recurrent neural networks which is capable of
learning long-term time dependencies [28]. The architecture of the LSTM is illustrated in Fig. 15. Compared
with traditional recurrent neural network, LSTM adds four gates to inoperative all cell states. There are three
main gates called input gate, forget gate and output gate for input state xt , hidden state ht and output state
ot , respectively. The other gate is a sigmoid function which is used to modulates the output of these gates. It
perfectly solves the gradient vanish problem in recurrent neural networks.
In this experiment, we used a single hidden layer LSTM since the structure of data is simple. The parameter

setting of LSTM is shown in Table 5.
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Table 5. Parameter setings for LSTM.

# Hidden Layer 1
# Neurons in the Hidden Layer 32
Number of Features 2
Length of Instance 48
Optimizer Adam
Loss function Mean Square Error

0

20

40

60

80

100

120

140

 User1  User2  User3

Users

R
M

S
E

Methods

LSTM (30 samples)

LSTM (60 samples)

TrAf (30 samples)

Fig. 16. Comparison between our method and the LSTM for three randomly selected users. The y-axis indicates RMSE of our

method and the LSTM. We used 30 training samples and 60 training samples for LSTM and only 30 samples for the proposed

TrAf method.

Since the computational complexity of neural networks is extremely high, we randomly selected three users
and predicted their future trajectories using our proposed methods and LSTM. The experimental setting is as
same as the setting in section 6.3. We selected 30 days as the training dataset and 10 days as the testing dataset.
For each instance, we measured the diference between ground truth and predict trajectories with DTW and
calculated the RMSE for each method. We also tried another set of experiment with 60 training days and 10 days
testing sample because the performance of the LSTM usually only improves with more training samples. The
comparison result is shown in Fig. 16.

The experiment results shows that our proposed method is signiicantly better than LSTM with small sample
size regardless of extreme long time training for LSTM. LSTM performs better with more training samples because
neural networks heavily rely on the size of the training samples. For the second user, the performance of LSTM
with 60 samples is slightly better than the proposed method. However, with the small size of training samples
(30 samples), our methods is signiicantly superior than LSTM in both efectiveness and eiciency on small size
training data. We acknowledge the limitation of the LSTM experiments on the small number of users at the
moment. We have also not explored fancier techniques in exploring additional mobility features or enriching the
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trajectory representation, such as with trajectory embeddings [23].Further evaluation is needed to analyze the
factors inluencing the possible variability of the results.

7 CONCLUSION AND FUTURE WORKS

This paper presents a method for completing the user’s daily trajectory using the initial trajectory of the current
day and historical trajectories. The algorithm takes both temporal and spatial aspects into account to investigate
the similarities between the sub-trajectories. To improve the performance and reliability of the method, we
add some other phases including temporal segmentation, extracting temporal correlation, and outlier removal.
The method is applied to the situation where user trajectories are either labeled or geographical. This paper
concentrates primarily on the issues of accuracy, and the experiment results show that the proposed method
signiicantly outperforms the state-of-the-art in terms of accuracy and also eiciency. Furthermore, we investigate
the impact of diferent parameters on our method. The high level of precision obtained by the technique has the
power to unlock more precise location service recommendations.
Our future works include leveraging other types data in addition to user’s trajectories for improving the

performance. For example, in the Device Analyzer dataset, using the context values, such as smartphone logs,
sensor data, and user’s activities, could make the prediction more accurate. We will also explore the inherent
categories and proiles of user behaviours to explore the predictability across diferent groups.
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