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Abstract

The integration of clusters of computers into computa-
tional grids has recently gained the attention of many com-
putational scientists. While considerable progress has been
made in building middleware and workflow tools that facil-
itate the sharing of compute resources, little attention has
been paid to grid scheduling and load balancing techniques
to reduce job waiting time. Based on a detailed analysis
of usage characteristics of an existing grid that involves
a large CPU cluster, we observe that grid scheduling de-
cisions can be significantly improved if the characteristics
of current usage patterns are understood and extrapolated
into the future. The paper describes an architecture and an
implementation for a predictive grid scheduling framework
which relies on Kalman filter theory to predict future CPU
resource utilisation. By way of replicated experiments we
demonstrate that the prediction achieves a precision within
15-20% of the utilisation later observed and can signifi-
cantly improve scheduling quality, compared to approaches
that only take into account current load indicators.

1 Introduction

During the last five years, computational scientists have
started to adopt Grid computing techniques and infrastruc-
tures in earnest. This has, in part, been enabled by the in-
creased computational power and available capacity from
commodity equipment, and by the emergence of inter-
organisational, national and international grid computing
infrastructures, such as the e-Minerals Grid [4] in the UK,
the Tera Grid [1] in the US or international grids, such as
EGEE [10].
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The vision ofgrid computing[2] is to integrate clusters
into global infrastructures in such a manner that users no
longer need to be aware of which computational resources
are used for executing their jobs and storing their data. This
requires solutions to a number of problems, including au-
thentication and authorisation, reliable file transfer, distrib-
uted storage management and resource scheduling across
organisational boundaries, which is the focus of this paper.

In order to achieve such a level of integration, the ques-
tion emerges of which cluster should be used to solve a par-
ticular computational task. Obviously, the clusters have to
match the resource requirements of the jobs at hand, but
apart from that, there may well be a significant degree of
freedom as to where jobs should be executed. Initially, it
was the scientists who had to make that decision and this
was often based on resources they knew about and had ac-
cess to. Once a cluster was identified the scientists sub-
mitted a job, typically a batch process, to adistributed re-
source management system(DRM), such as Condor [21],
PBS [13], or the Sun Grid Engine [11]. A DRM is respon-
sible for allocating the job to a node using some resource
allocation policy that may take into account node availabil-
ity, user priorities, job waiting time etc. Alternatively, the
job could be submitted to a service that abstracted away
from proprietary resource managers, such as the Globus
GRAM [7] or the GridSAM web service [16].

Today, those decisions are made, in an automated man-
ner, by portals, meta-schedulers or even through a fed-
eration of resource managers. Meta-schedulers perform
top-down scheduling decisions and federation of clusters
that perform load balancing between DRMs in a peer-to-
peer manner. Examples of such meta-schedulers include
Condor-G [21] and compute portals [22], both of which
support the scheduling of jobs across computational grids.
Examples of federation technologies include the flocking
techniques available in Condor [21].

The fundamental problem that all of the above tech-
niques have to solve is to select a DRM that can then sched-
ule a job on the resources that it controls. The problem



is made more difficult due to the level of autonomy of
DRMs that in general accept job submissions from more
than one meta-scheduler in addition to submissions from
local user communities. This level of autonomy prohibits
a centralised solution to meta-scheduling. Users are inter-
ested in completing their jobs as quickly as possible. When
optimising selection in this respect, different strategies can
be employed: the most commonly used one is to base the
decision on current utilisation, measured, for example, by
queue length in relation to the number of resources avail-
able. This approach delivers suboptimal results whenever
there is a significant standard deviation in the average job
length per cluster. In those circumstances it may well be
advantageous to submit a job to the DRM controlling the
cluster that appears to have the higher utilisation.

In this paper, we argue that scheduling based on future
resource utilisation improves the user’s quality of service.
However, this requires the ability to predict future utilisa-
tion on clusters. The main contributions of our work are
the design and evaluation of a predictive scheduling ap-
proach for resource utilisation based on linear Kalman fil-
ters, a state-space model forecasting technique. Focusing
primarily on CPU utilisation, our approach exploits the fact
that users’ job submission patterns are repetitive. To prove
this point, we have evaluated the utilisation history of a 940
node cluster, which has been used by approximately 30 dif-
ferent scientists from a number of different disciplines over
a period of two years. We found that the job submission
patterns are highly repetitive in several respects, and based
on these data show how linear Kalman filters are able to
detect these patterns and predict the execution time of jobs
within 15-20% of accuracy. We present an architecture for
such predictive grid scheduling and discuss how it can be
implemented using the Condor resource manager. Through
replicated experiments with utilisation observed in practice,
we demonstrate that allocation decisions based on these
Kalman filter predictions can reduce waiting time compared
to näıve scheduling based on shortest queue lengths, while
the computational costs for using Kalman filter scheduling
are negligible.

The paper is further organised as follows: Section 2 con-
tains the description of our approach and illustrates the ar-
chitecture and implementation of our framework. In Sec-
tion 3, we present the results of our experimental evalua-
tion and describe the advantages of the approach. Section 4
contains a discussion of related work, while Section 5 con-
cludes the paper by illustrating possible future directions.

2 Predictive scheduling

In 2002, we have been instrumental in establishing a
large cluster at UCL. The cluster uses Condor to scav-
enge otherwise unused CPU time of some 1,100 student

 

 

 

 

Figure 1. User activity during analysis period.

Windows workstations to process chemistry, physics and
geological computations, in the form of batch processes.
Largest of its kind in the UK, the Condor cluster is being
actively used by some 30 computational scientists.

We have retained utilisation logs of the UCL Condor
cluster for two years. The volume of computation is such
that we argue that it is comparable to a dozen clusters of
average size and it therefore represents a good sample. Fol-
lowing high level screening, we have selected a period of
four months for detailed analysis, characterised by a higher
than usual level of activity.

Rather than observing jobs anonymously, our detailed
analysis investigated the time and number of jobs submitted,
as well as the length of computation, on a user-by-user ba-
sis. That analysis revealed a number of very interesting re-
sults. Figure 1 shows the times when the most active eleven
users submitted jobs to the cluster during the four month
period that we analysed in detail. A rectangle against a user
and a date indicates that the user has submitted jobs during
that day. The key observation to be derived from that fig-
ure is that, even though these were the most active users,
they did not all submit jobs all the time. Moreover, there
are very detectable patterns of job submission. For exam-
ple James and Dino use the cluster for extended periods of
time. Arnaud and Maria use the cluster for 3-6 days of in-
tensive activity followed by a period of inactivity that is at
least equally long.

Figure 2 shows the distribution of job arrivals during a
randomly selected three day period. The figure shows three
data series, one for each day, where each column shows the
number of jobs that were submitted in any six minute inter-
val. What can be seen from Figure 2 is that, on each day,
job submissions do not occur with a regular distribution but
users submit large numbers of jobs in one go and then there
are extended periods where no jobs are submitted. The rea-
son for this behaviour is that users rarely submit jobs man-
ually but, rather, automate submission using computational
workflow tools, such as the OMII-BPEL environment [9],
Condor’s DAGMan [21] or simply with shell scripts.



Figure 2. Job submission rates during three
randomly selected days.
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Figure 3. Job length by users.

The most interesting observation is shown in Figure 3.
The figure shows the distribution of job lengths for the four
most active users. It shows that the vast majority of jobs that
Sally submits are shorter than an hour, while Dino regularly
submits long running jobs the length of which often exceeds
20 hours. James submits jobs with an average length of
about 7 hours and his job distribution has a non-negligible
standard deviation. The root cause for these observations is
that users utilise the same set of computational applications
over extended periods of time, within or across sessions,
and apply them to different studies and data sets.

The discussion of the empirical samples above shows
that the behaviour of users who submit jobs to a grid is not at
all random, but, rather, follows regular patterns. It is this ob-
servation that we use and exploit in our aim to improve the
quality of scheduling decisions that meta-schedulers, por-
tals or federations of grids need to make. The basic idea
is that, because job submission occurs in distinctive pat-
terns and the duration of jobs may vary between minutes
and days, established prediction techniques may yield bet-
ter scheduling decisions than the standard technique of sub-
mitting to the DRM, which has the cluster with the shortest

queue length or the lowest current load. We use this insight
to derive the two main hypotheses of this paper.

Our first hypothesis is that we can use the job execu-
tion history and resource utilisation of the past to predict
resource utilisation and hence availability in the immediate
future linear Kalman Filter theory. The second hypothe-
sis of this paper is that we can improve the quality of grid
scheduling in comparison to techniques that use shortest
queue length, by using this ability to forecast resource util-
isation.

2.1 Prediction Theory

Users are generally interested in minimising the time be-
tween their submission of a job and its completion. We refer
to the elapsed time between these events from the point of
view of a DRM as thejob turn-around time. The utilisation
of the cluster by other users may affect the level of service
obtained and, as a consequence, the overall length of a job,
as the various users compete for underlying resources.

We predict future cluster utilisation by applying Kalman
filter forecasting [15], originally developed in automatic
control systems theory and applied in many different fields,
from telecommunications to weather forecasting. Kalman
filters are essentially a method of discrete signal process-
ing that provide optimal estimates of the current state of a
dynamic system described by astate vector. The state is
updated using periodic observations of the system, using a
set of recursive prediction equations. In this manner, we
can calculate, at timet the predicted value of the utilisation
time t + h ∗ T , with h > 0 (i.e., afterh sample intervals).
A detailed mathematical description of the model we have
relied upon is presented in [17].

In a grid environment, numerous indicators of utilisation
can be selected as a basis for these observations, such as job
queue lengths and resource availability, the choice of which
will depend on resource management systems and schedul-
ing policies in place and their effect on the duration of the
lifetime of a job. We discuss the choice of utilisation fac-
tors and job length indicators in Section 2.2 and our specific
choice of indicator in our implementation in Section 2.3.

One of the main advantages of Kalman filters is that there
is very little computational and storage overhead as they
are expressed through recursive equations. The entire his-
tory of the system does not have to be maintained and it is
sufficient to record the value of the current inner-state and
the parameters of the recursive equations, updated at every
step. This low amount of state ensures better scalability in
large scale grid environments. Moreover, this class of pre-
dictors does not require a training phase, unlike other types
of forecasting techniques based on machine learning [18].
However, an initial set of parameters used to bootstrap the
system must be tuned to the environment and indicators at



hand. This is further discussed in Section 2.3.

2.2 Architecture

In this subsection we explore how the Kalman filter
based prediction technique can be used in an architecture
of production level grid environments to improve cross-
organisational scheduling decisions. Key components that
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Figure 4. Architecture of Grid environment

are of interest to us here are illustrated in Figure 4:

• Distributed Resource Management system:As previ-
ously stated, the resource management system is re-
sponsible for managing a collection of resources at
each site, allocating resources to tasks, according to
policies determined by the resource owners.

• Submission services:These components provide a ser-
vice abstraction for job scheduling and resource allo-
cation at each site offering means for clients to dele-
gate the responsibility of managing and allocating re-
sources in the local environment to a scheduler or job
queue local to the site. Jobs are submitted to these ser-
vices in the form of a job description and associated
input files and executables.

• Information services:Such services will provide de-
scriptions of underlying resources, such as availability
and characteristics of the resources available at a site.
These enable remote clients to determine the suitabil-
ity of a resource and the potential utilisation they may
obtain from a site before submitting their job for exe-
cution.

• Meta-schedulers:Meta-schedulers are responsible for
managing the use of resources at multiple sites on be-
half of a user. They are responsible for the process
of resource selection and job distribution across sites.
Meta-schedulers can take various forms, from web-
based portals providing an interface through which a
user can submit jobs, to local applications responsible

for generating and managing jobs according to a com-
putational workflow specified by the user.

It is the meta-scheduling process that we are specifically
concerned with here. Faced with a potentially large number
of sites providing resources of comparable capabilities and
matching the job requirements, careful selection is required
to maximise the throughput of jobs submitted by the user.
Relying solely on information currently made available by
the resource information services is not sufficient to deter-
mine the suitability of a particular site and we must also
avoid potential starvation of the meta-schedulers awaiting
resources. Taking into account predicted utilisation patterns
can considerably improve the meta-scheduling process.

By making more informed decisions as to where to sub-
mit the job, we can reduce the waiting time and global
scheduling overhead of the job and as a consequence in-
crease the throughput of the meta-scheduler.

The attributes that will affect the duration of the life-
time of a job at a site between submission and completion
can vary according to scheduling policies in place and the
process by which resources are allocated to competing users
and tasks. Beyond the capacity of the individual resources,
which will directly affect the length of the execution of a
job, other job length indicators can be considered. For ex-
ample, in the context of a simple batch queuing system op-
erating on a FIFO basis, such as the Portable Batch System,
we can potentially rely on the number of jobs in the queue
to be a direct factor of how long a specific job will have
to wait before being served. However, this figure may be
misleading if we do not take into account past utilisation
trends. Whilst a site may have a larger queue than another
at any particular time, an analysis of utilisation trends us-
ing Kalman filter forecasting techniques might reveal that
the queue length varies much more rapidly at one site and
consequently that jobs queued are potentially shorter, mak-
ing it a much more suitable choice for the meta-scheduler.
On the other hand, Condor – as we will see in the following
section – operates according to a policy-based resource allo-
cation mechanism, where resource claims are a more suited
choice of indicator.

The selection of job length indicators should be adapted
to policies in place, but it may also be beneficial to con-
sider other attributes of the environment, such as network
bandwidth: jobs submitted may require or can produce con-
siderable amounts of data, and the amount of time needed
to transfer that data may have an impact on the overall job
length.

Forecasting by using Kalman prediction requires regular
readings of the state of the resources, or, more specifically,
the selected job length indicators, to be made at the targeted
cluster in regular intervals. For this purpose, it can be very
valuable for the predictions to be built within the adminis-
trative domain of the site before being communicated to re-



mote meta-schedulers. A prediction service residing within
the domain, may have access to finer grain utilisation data
such as per user job activities and specific job type charac-
teristics that a site may not be willing to share with an ex-
ternal observer. However, because the Kalman filters do not
require the past history of the system, it is perfectly possible
for an external observer, such as the meta-scheduler itself,
to build predictions based on information obtained from the
Resource Information services, around the period of time
desired. Whilst coarser grain utilisation data may have to
be relied upon, such as general resource availability, an ex-
ternal service operating on behalf of a user can restrict its
observations to the specific subset of resources at a site that
will match the job requirements of this user, and fine tune
the parameters of the prediction according to the specifica-
tion of the overall computational process. We also cannot
assume that a prediction service will be available at every
accessible site. The ability to conduct these predictions in-
dependently and with minimal input from site providers is
an important characteristic of our approach in an environ-
ment where site autonomy and heterogeneity is the norm.

2.3 Condor Implementation

We have used the Condor job scheduling and resource
management system and GridSAM to implement a meta-
scheduling environment that relies on the above Kalman fil-
ter forecasting techniques and architecture to select suitable
clusters of Condor resources on which to schedule jobs.

We build on previous work [12] that involved incorpo-
rating web service support into the Condor architecture, by
exposing key functionality of Condor, such as resource in-
formation and job submission as individual web services.
We have also, in the context of this work, created a Condor
plugin for GridSAM. The GridSAM service enables users
to remotely submit jobs to a wide range of underlying re-
source management systems in the form of Job Submis-
sion Description Language (JSDL) documents, an emerging
GGF standard [16]. Jobs submitted to GridSAM are dele-
gated to DRMs through a collection of DRM-specific plu-
gins. By implementing a plug-in for GridSAM that relies
on Condor’s web service interface to remotely interact with
Condor, we have provided it with the capability to schedule
jobs across multiple sites and it is on this service that we
rely here to act as a meta-scheduler for our system.

We can relate our implementation to the above architec-
ture as follows:

• Distributed Resource Management System:The Con-
dor resource management system is responsible for
managing the site at the resource level.

• Job Submission Service:The Condor scheduler, for
which there may be multiple in a single Condor cluster,

is responsible for managing a queue of jobs on behalf
of the user and managing their remote execution in the
local cluster. It provides a Web Service interface for
job submission and monitoring.

• Information Services:The Condor Collector is respon-
sible for collecting and providing meta-data about the
current state of resources in the cluster – which may
be either static characteristics (e.g. OS, total memory,
etc.) or dynamic characteristics such as current avail-
ability. Meta-data queries can be issued by remote
meta-schedulers through the collector’s Web Service
interface.

• Kalman Prediction service:Alongside the above ser-
vices, we have created an additional Kalman Predic-
tion Service. This service is responsible for obtaining,
periodically, meta-data from the resource information
services, and use this meta-data to construct predic-
tions as to future resource availability.

• Meta-scheduler:We rely on the GridSAM service and
our Condor plug-in to provide meta-scheduling capa-
bilities. We have extended GridSAM with the ability to
query either resource information services or Kalman
prediction services at one or more specified sites in or-
der to determine the most suited location to which to
submit an incoming job.

The scheduling and allocation process of Condor needs
to be carefully studied in order to determine the factors that
influence the turn-around time. Condor clearly separates the
process of allocation and scheduling. Jobs submitted to a
Condor scheduler are maintained in a user specific queue of
jobs. During a regular negotiation cycle, the Condor central
manager will allocate available resources to jobs enqueued
by the various schedulers according to user priorities and
other community policies - such as fair share policies. The
scheduler, once allocated one or more resources, willclaim
these resources on behalf of the user, and maintain these
claims until it no longer requires them. It may also request
more resources from the central manager at regular inter-
vals. In an environment where numerous users will be com-
peting for available resources, and when no resources are
immediately available, the waiting time will primarily be
constituted of the estimated amount of time it will take for a
resource to be freed or released by a previous owner, or the
amount of time it may take for a user’s jobs to complete on
resources that have already been claimed by that user.

Condor does support much more complex policies that
are not in use in our Condor environment, allowing for ex-
ample preemption of claims and jobs in favour of higher
priority users. In such cases, a new single or combination
of job length indicators, adapted to the policies in place,



should be selected to perform the prediction. In this setting,
we rely on claims as the primary indicator.

The prediction service will – on a specified time inter-
val – read the current number of unclaimed resources and
use that information to update the state space model of our
predictor. This will provide an estimate of the number of
unclaimed resources that will be available at the next time
step. Where several clusters might appear to be full, the
ability to predict the number of resources that will be freed
in the next time interval, can make a considerable differ-
ence. We can, if needed, use the Kalman filter forecasting
technique to forecast availability several steps beyond the
specified time interval, by simply feeding predictions back
into the predictor. Our current implementation of the ser-
vice will enable meta-schedulers to specify the number of
steps it may wish to consider in advance, though there is of
course a trade off between accuracy of the prediction and
the time frame that we take into account.

Other parameters that may affect the accuracy of the pre-
diction, such as the periodic time interval, the amount of
time that may be required to run the predictor before it iden-
tifies utilisation patterns accurately and the degree of cor-
rection when calculating the state of the current dynamic
system of our predictor will also require fine tuning and ex-
perimentation to define an optimal level of accuracy suited
to various workloads. In particular, the latter will affect the
adaption of the time series of predicted values in presence
of fluctuations, essentially defining how the filter should re-
spond to strong variations in the readings. The setting of
these values, alongside the initial value of the state, are the
only steps required to bootstrap the filter.

As such, the meta-scheduling process works as follows:
users will submit their jobs to a host running a GridSAM
service. Upon receipt of the job description document, the
GridSAM service will query all the Kalman prediction ser-
vices at the sites specified by the user and obtain their latest
prediction for resource availability. It will select the site
that provides the highest number predicted of unclaimed re-
sources in the next time interval, and submit accordingly.

It should be noted that it is not necessary for submissions
to be restricted to specific time slots that match the periodic
time interval used by the Kalman service to construct pre-
dictions, as the prediction does not just indicate the potential
number of available resources in the near future, but also the
general trend of the time series.

3 Evaluation

3.1 Experiment Design

To evaluate our Condor-based predictive meta-
scheduling framework, we use an experimental evaluation
technique and set up a replicated experiment that compares
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predictive scheduling with scheduling based on current
resource availability (i.e., current queue lengths).

Figure 5 shows an overview of the experimental test-bed.
The test-bed comprises two Condor clusters of 23 nodes
each. Whilst this is a considerably lower count than the
UCL cluster of 1,100 nodes, these clusters are still average-
sized (the grid described in [4] only has 16 nodes per clus-
ter) and is sufficient for our evaluation.

We assume that each cluster has local users, which are
simulated using a workload generator based on the utilisa-
tion patterns observed at the UCL Condor cluster that we
have discussed above.

It is important to define our experimental space: Kalman
prediction is of most benefit where clear and distinct pat-
terns of use may emerge for each resource. As we have
seen in Section 2, job submissions will present such pat-
terns. In scenarios where multiple users submit indepen-
dently, the combined collection of workloads will result in
a new pattern. Based on the multiple experiments that we
have conducted using various combinations of usage pat-
terns observed in our pool, we have always obtained some
level of improvement using prediction. However, where all
resources present near identical patterns of use we can, of
course, expect little or no improvement over the use of cur-
rent resource availability, primarily as there would be no
real benefit to choosing one resource over another: jobs sub-
mitted to either site would take on average an equal amount
of time. The closer the usage patterns, the less gain there is
to be had from using prediction.

In order to corroborate these claims, we detail two of
the experiments we have performed that represent two ex-
tremes. The first one uses very different workloads that have
been discussed in Section 2. We expect the Kalman filter
prediction to perform very well in this experiment. The
second one uses near identical workloads on both clusters
and we expect to see no significant improvement but want
to validate with the inclusion of this example that there are
no disadvantages from using Kalman filter prediction.

For the first experiment, we have specifically chosen lo-
cal workloads that mimic Sally and Dino due to the very
different utilisation patterns that both present. By extrapo-
lating job length distributions from our logs, the workload



generator mimics the patterns of these users using sleeper
jobs aiming to occupy the resources for varying periods of
time. Though the workloads have been adapted proportion-
ally to the size of our new clusters, they will retain the same
characteristics:
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Figure 6. Real vs. Predicted Availability.

• Sally: Sally’s workloads are submitted according to a
workflow process, which will submit large collections
of short jobs organised in various subsets. A descrip-
tion of the scientific objectives of the process and the
computations actually performed is outside the scope
of the paper – we refer the reader to [9]. It is sufficient
to know that in a first stage a small collection of jobs
will launch the process. The length of these may vary
from a minute to several hours. Each completion will
immediately trigger a further 200 submissions of jobs,
which are characterised by very short execution times
(between one and five minutes). The total process in a
single session can reach a maximum of 7200 job sub-
missions. The result is a pattern similar to what is il-
lustrated on the right-hand side of Figure 6. For our
purpose, we have only selected a particular subset of
the workflow suited to our test-bed environment, with
a more manageable number of simultaneous submis-
sions (up to 30).

• Dino: In contrast, Dino will submit collections of long
running jobs. Though the number of simultaneous
submissions is considerably smaller than Sally’s, the
length of the jobs can exceed 20 hours. Upon com-
pletion of individual job instances, a new job might
be submitted to further refine the produced data. The
resulting pattern can be seen on the left-hand side of
Figure 6. Again for the purpose of our experiment, we
have selected a subset of Dino’s workflow where the
execution length is more manageable on our test-bed,
with individual jobs last between 40 and 60 minutes.

3.2 Prediction Quality

Figure 6 shows a comparison between the real and pre-
dicted resource availability on the two clusters. Table 1 rep-
resents the overall level of accuracy of the prediction ob-
tained at each site. As a starting value for the Kalman filter

we use an initial reading of the state of the pool on begin-
ning the experiment. Upon computing predictions, we also
calculate the confidence interval of the predicted value. This
interval can be used as an early indicator of the validity of
the prediction.

The actual level of accuracy that we obtained can be rep-
resented by the standard deviation of the error of the pre-
diction. As expected, the accuracy of the prediction was
greater when dealing with Dino’s workload than Sally’s due
to the high variability of the latter. The average of the error
is around 0 in both cases, implying that the filter is not over
nor under-estimating the future utilisation of the clusters.

Kalman Predictor on Cluster A on Cluster B
Periodic time interval [mn] 4 4
Avg. prediction error 0.0206 -0.02511
Std. deviation 2.922 5.5
Avg. confidence interval 0.607 0.607

Table 1. Scheduling Quality.

3.3 Improvement of Scheduling Quality

In order to demonstrate that knowledge of future avail-
ability can improve meta-scheduling performance consid-
erably compared to using current utilisation indicators, we
have set up two GridSAM nodes which will submit jobs on
a regular time interval to the clusters. One of these nodes,
GridSAM node A, in Figure 5, will rely on information ob-
tained from the Kalman prediction service at each site to
determine which resource will have lower future utilisation.
In contrast, GridSAM node B will base its selection solely
on current utilisation data obtained from the resource infor-
mation services at each site.

The jobs submitted by GridSAM nodes A and B, have
the sole purpose to allow us to measure the amount of time
they will remain enqueued before a resource is freed. In
order to ensure that A and B encounter the same exact envi-
ronment when scheduling these jobs, these will be made to
operate simultaneously and with the same time intervals for
job submission. These jobs will run exactly for 10 seconds,
once allocated a resource and their overall impact on the site
workloads will be negligible. For a hundred submissions,
the time of submission and completion of a GridSAM job
will be recorded, and these figures will then be used to de-
termine which meta-scheduler provided us with the highest
overall throughput.

We do make several assumptions as to the nature of the
environment and jobs. First of all, data related issues, such
as data transfer and network bandwidth are not taken into
account. We will assume that the bandwidth required for
data transfers is negligible and that it is unnecessary to use
predicted bandwidth availability as a criteria for selection.



We also assume a homogeneous environment, where execu-
tion times for the same job will be equal regardless of the
performance of the selected resource as our focus here is on
reducing waiting times. In terms of policies, we assume that
there is no pre-emption and priority is always in favour of
the incoming GridSAM job. This implies that the maximum
amount of time a job will have to wait is the amount of time
that it will take for Dino or Sally to release a resource. It
should also be noted that when a GridSAM service identi-
fies an equal number of available resources, it will randomly
select the target site.

The results obtained from our experiment are covered in
Table 2. The GridSAM node that used Kalman filter predic-
tion to determine where to submit to obtained on average a
135% improvement in job turn-around times over the meta-
scheduler that relied solely on current utilisation meta-data,
which is considerable.

Kalman Resource
Filter Availability

Avg. job length [sec] 139.33 328.4
No. jobs submitted 100 100
Submission interval [min] 4 4
Experiment duration [h] 6.7 6.7
No. jobs submitted to A (Dino) 4 16
Avg. length of jobs on A (Dino) 620 1522
No. jobs submitted to B (Sally) 96 84
Avg. length of jobs on B (Sally) 125 108.9

Table 2. Experiment results

The main reason for the difference observed is the over-
all choice of resources. Jobs submitted to the cluster run-
ning Dino’s workload (Cluster A) took considerably longer
than those submitted to Cluster B due to the lengthy running
times of Dino’s jobs. However, because GridSAM node B
had no knowledge of future resource availability, it failed to
perceive that fact and submitted several jobs to that particu-
lar cluster at inappropriate times.

3.4 Control experiment
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Figure 7. Real vs. Predicted Availability

As we have seen above, the use of Kalman filter pre-
diction considerably improves the throughput of the meta-
scheduler when there are clearly distinguishable patterns

that can be forecast by the prediction service. However,
as previously mentioned, we can expect that in scenarios
where resources present similar patterns of use, little or no
improvement will be made over the simple use of current
availability, due to the minimal gain to be made in selecting
one resource over another.

To illustrate this point, we detail here a control experi-
ment, where we have adjusted Dino’s workload in order to
reduce the large gap in waiting times between each pool of
resources. The result can be observed in Figure 7. Though
there is still a difference between both patterns, this differ-
ence is no longer as marked as in our previous experiment.
Dino’s workloads are limited to jobs with a range of 15 to
20 minutes with larger pauses between re-submissions.

Kalman Resource
Filter Availability

Avg. job length [sec] 167.53 226.3
No. jobs submitted 92 92
Submission interval [min] 4 4
Experiment duration [h] 6.1 6.1
No. jobs submitted to A (Dino) 39 52
Avg. length of jobs on A (Dino) 236.18 312.67
No. jobs submitted to B (Sally) 52 39
Avg. length of jobs on B (Sally) 119.2 116.76

Table 3. Control Experiment Results

As we can see from Table 3, we do still obtain an im-
provement of 35% when using Kalman prediction, though
this improvement is not quite as significant as that obtained
in the previous experiment. This is primarily due to the fact
that waiting times on Cluster A (Dino) are not as long as
our previous experiment – even though jobs submitted to
that resource do take slightly longer. It is also interesting to
note that when the GridSAM node with prediction capabil-
ities did select that cluster, it did so less often than the node
without prediction capabilities and at seemingly more ap-
propriate times, since the average length of its jobs on that
cluster is considerably lower. The fact that there is negli-
gible overhead associated with the Kalman prediction – as
the state maintained by the filters is minimal and the past
history does not have to be maintained – implies that even
when the improvement is only moderate, we can only ben-
efit from the use of this technique.

4 Discussion and Related Work

Different approaches to meta-scheduling across organ-
isational boundaries have been explored in the literature.
Client side job-scheduling tools such as Condor-G [21], or
the Community Scheduler Framework (CSF) [14], provide
means of scheduling the submission of jobs to one or more
grid resources – and remote job monitoring capabilities.



They do not or provide very basic resource selection mech-
anisms: Condor-G can for example perform basic match-
making using user defined grid resource characteristics and
a ’by the numbers’ load-balancing technique that will en-
sure that only a specific number of submissions to a grid
resource can occur simultaneously. Alternatively, the Ez-
Grid broker [20] has the ability to take into account static
and current dynamic parameters alongside policy informa-
tion such as authentication and authorization policies. The
EzGrid broker does not, however, attempt any form of pre-
diction to determine the correctness of their observations.

Other approaches such as [5] have relied on economic
incentives and models to provide brokering capabilities in a
grid infrastructure. The focus, however, has been on maxi-
mizing economical efficiency in an environment where it is
assumed that resources can guarantee a particular quality of
service. We, on the other hand, assume a potentially vari-
able quality of service due to multiple users sharing under-
lying resources, and make meta-scheduling decisions based
on predictions of the level of service that will be obtained.

The specific use of predictions in grid and distributed
environments has been explored by multiple researchers,
though not necessarily for meta-scheduling purposes. In [8]
the authors present a comparison between different clas-
sic linear models for time series forecasting used to predict
load on a single Unix machine. However, the parameters
of these models need to be selected by the user according
to the characteristics of the particular time series of values
that is taken into consideration. This process may be long
and time-consuming since the user must first choose the
model to use and then tune all the parameters for the specific
time series. The use of state space models forecasting tech-
niques does not require this setup phase; the model that we
have envisaged can be applied to various deployment sce-
narios characterised by different utilisation patterns. More-
over, forecasting techniques are applied only to evaluate the
load of a single machine and not in the context of cross-
organisational scheduling in grid environments.

Similarly, auto-regressive methods, as explored in a grid
setting by the Network Weather Services [23], also require
a training phase to tune the parameters. These services can
alternatively rely on mean and median based approaches to
prediction, which would also require a training phase. The
fact that historical data does not have to be maintained for
our approach results in a lightweight method – whose ap-
plicability to global scheduling was demonstrated in an ex-
perimental manner.

Smith et al. in [19] use a classification method based on
the similarity of sets of past workload traces. The authors
classify each application using genetic algorithm searches
to define good templates for workloads set of templates.
Then they calculate the average running time for each type
of template. The queue waiting times are predicted using

these estimations. This technique is applied to improve the
scheduling performance in a local environment. However,
this approach cannot adapt dynamically to new patterns,
since it is based on a finite set of templates derived from the
previous workload history. It requires a possibly large set
of observations for different types of applications to achieve
valid estimations for each possible template from as statis-
tical point of view. In an environment as dynamic as the
grid, it is quite difficult to categorise the wide range of ap-
plications and users in advance, specifically when we do not
have control over the environment.

An alternative predictive technique for scheduling of re-
sources in parallel systems is presented in [24] based on the
prediction of the future CPU loads. The approach is essen-
tially based on the variance of the loads, assuming that the
jobs have the same characteristics and this is not generally
true in a Grid setting. In fact, according to our experience,
as described in Section 3, different utilisation patterns can
be observed. Moreover, a method purely based only on load
variance can lead to very inaccurate estimations, especially
in presence of high fluctuations [6].

5 Conclusions and Future Directions

We believe our findings have a number of implications
for grid scheduling. Using an experimental approach based
on existing workloads in a grid environment, we have
shown that grid meta-schedulers and portals will be able to
add real value to job submission by identifying the clusters
that will allow users to obtain results more rapidly – en-
couraging the adoption of predictive scheduling and bring-
ing the vision of the grid a step closer to reality. Further-
more, resource owners are now able to predict the time it
will take before they are able to start executing a job rel-
atively precisely, without any significant overhead. This
paves the way for quality of service aware grid scheduling
as resource owners are able to undertake quality of service
guarantees without having to over-provision to the same ex-
tent as without such prediction. It also further facilitates the
simultaneous use of resources across sites in settings where
direct co-allocation through advance reservation is not di-
rectly supported.

By identifying the monitored resource parameters to sat-
isfy a wide range of underlying resource management sys-
tems, and relying on potential combinations of parameters –
for example by using a utility function – we can design
flexible prediction mechanisms suited to heterogeneous grid
and distributed environments a heterogeneous grid environ-
ment. We can also further refine our forecasting approach
by adopting trend and seasonal components [3], which will
most likely increase the accuracy of the prediction where
periodic patterns are observed.

The use of predictions is an important building block for



a larger grid federation framework. In order to be able to ag-
gregate resources effectively across organisations one must
take into account the decentralised nature of the grid envi-
ronment. The autonomous operation of individual resource
management systems relied upon in a grid environment is
pushing for the identification of novel approaches to com-
pensate for the lack of direct control over resources and the
potentially divergent behaviour of the underlying systems.
As we have demonstrated, by relying on Kalman filter pre-
diction techniques, we can considerably improve the use of
resources in a global, and possibly autonomous, grid in-
frastructure.
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