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ABSTRACT
Internet of Things (IoT) systems provide large amounts of data on all
aspects of human behavior. Machine learning techniques, especially
deep neural networks (DNN), have shown promise in making sense
of this data at a large scale. Also, the research community has
worked to reduce the computational and resource demands of DNN
to compute on low-resourced microcontrollers (MCUs). However,
most of the current work in embedded deep learning focuses on
solving a single task efficiently, while the multi-tasking nature
and applications of IoT devices demand systems that can handle a
diverse range of tasks (such as activity, gesture, voice, and context
recognition) with input from a variety of sensors, simultaneously.

In this paper, we propose YONO, a product quantization (PQ)
based approach that compresses multiple heterogeneous models
and enables in-memory model execution and model switching for
dissimilar multi-task learning on MCUs. We first adopt PQ to learn
codebooks that store weights of different models. Also, we propose
a novel network optimization and heuristics to maximize the com-
pression rate and minimize the accuracy loss. Then, we develop
an online component of YONO for efficient model execution and
switching between multiple tasks on an MCU at run time without
relying on an external storage device.

YONO shows remarkable performance as it can compress multi-
ple heterogeneous models with negligible or no loss of accuracy up
to 12.37×. Furthermore, YONO’s online component enables an effi-
cient execution (latency of 16-159 ms and energy consumption of
3.8-37.9 mJ per operation) and reduces model loading/switching la-
tency and energy consumption by 93.3-94.5% and 93.9-95.0%, respec-
tively, compared to external storage access. Interestingly, YONO can
compress various architectures trained with datasets that were not
shown during YONO’s offline codebook learning phase showing the
generalizability of our method. To summarize, YONO shows great
potential and opens further doors to enable multi-task learning
systems on extremely resource-constrained devices.

CCS CONCEPTS
• Computer systems organization→ Embedded and cyber-
physical systems.
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1 INTRODUCTION
With the rise of mobile, wearable devices, and the Internet of Things
(IoT), the proliferation of sensory type data has fostered the adop-
tion of deep neural networks (DNN) in the modeling of a variety
of mobile sensing applications [41]; researchers use DNN trained

on sensory data in mobile sensing tasks such as human activity
recognition [22, 77], gesture recognition [14], tracking and local-
ization [29], mental health and wellbeing [53], and audio sensing
applications [61]. While machine learning (ML) models are be-
coming more efficient on resource-constrained IoT devices [12],
most existing on-device systems, designed for microcontroller units
(MCUs), are targeted at one specific application [5, 16, 86]. Con-
versely, multi-application systems capable of directly supporting a
wide range of applications on-device could be more versatile and
useful in practice. Specifically, we envisage a system powered by
MCUs that can recognize users’ voice commands, activities and
gestures, identify everyday objects and people, and understand
the surrounding environments: this has the potential to boost the
utilization of IoT devices in practice (e.g., help visually impaired
individuals understand their environments [1]).

However, realizing such multi-tasking system faces three ma-
jor challenges. First, multiple dissimilar tasks based on different
modalities of incoming data (e.g., voice recognition (audio), activity
recognition (accelerometer signals), object classification (image))
need to co-exist in the same framework. As discussed in [44], con-
ventional multi-task learning (MTL) approaches cannot address
multiple heterogeneous networks effectively. Second, IoT devices
based on MCUs are extremely resource-constrained [15, 36]. For
example, “high-end" MCUs (e.g., STMF767ZI) have only 512 KB
Static Random-Access Memory (SRAM) for intermediate data and 2
MB on-chip embedded flash (eFlash) memory for program storage.
Finally, in real-world deployment scenarios, context switching of
different ML tasks at run-time could incur overheads on memory-
constrained MTL systems as demonstrated in [44], where some
models must reside in external storage devices due to the limited
on-chip memory space. As on-chip memory operations are faster
than external disk accesses, frequent model loading/swap between
different tasks based on external storage increase the overall latency,
exacerbating the usability and responsiveness of the system.

To solve these challenges, one of the common techniques em-
ployed is to compress individual models separately using prun-
ing [25, 85] and quantization [28]. However, model compression
techniques are limited since extensive and iterative finetuning is
required to ensure high performance after compressing a model.
Also, since models are trained independently, they cannot benefit
from potential knowledge transfer between different tasks. In the
literature, researchers proposed MTL-based approaches to achieve
robustness and generalization of multiple tasks, while increasing
the compression rate of the model by sharing network structures.
However, sharing/compressing multiple heterogeneous networks has
not been fully examined. Furthermore, prior work [44] attempts
to solve the MTL of multiple heterogeneous networks by sharing
weights of multiple models via virtualization. However, this method
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is complex, and the compression ratio is constrained to 8.08× (see
§4.2 for detail), thereby limiting the type of IoT devices on which it
can operate. Further, since only a simplified LeNet architecture is
evaluated on an MCU, the system could not achieve high accuracy
to be useful in practice (e.g., 59.26% on the CIFAR-10 dataset [35]).

This Work. To address the challenges and limitations of previ-
ous approaches, we propose YONO (You Only Need One pair of
codebooks), that adopts Product Quantization (PQ) [30] to maxi-
mize compression rate and on-chip memory operations to minimize
external disk accesses for heterogeneous multi-task learning. PQ,
originally proposed in the database community, aims to decompose
the original high-dimensional space into the Cartesian product of a
finite number of low-dimensional subspaces that are independently
quantized. A model’s weight matrix of any layer can be converted
to codeword indexes corresponding to the subvectors of the weight
matrix via a codebook.

Inspired by successful applications of PQ on approximate near-
est neighbor search out of billions of vectors in the database com-
munity [17, 30, 31] and single layer compression in an individual
model [20, 56, 73, 74, 80], we jointly apply PQ on multiple models
instead of on a layer of a model. We find just one pair of codebooks
that are generalizable and thus can be shared across many dissimi-
lar tasks. We then propose a novel optimization process based on
alternating PQ and finetuning steps to mirror the performance of
the original models. Further, we introduce heuristics to consider
the weight differences between the layers of the original model and
the reconstructed layers from the codebooks to maximize the com-
pression rate and accuracy. Finally, we develop an efficient model
execution and switching framework to operate multiple heteroge-
neous models targeted for different tasks, reducing the overhead of
context switching (i.e., model swap between tasks) at run-time.

YONO is comprised of two components. The first component
is an offline phase in which a shared PQ codebook is learned and
multiple models are incorporated. We implement the offline phase
of our system on a server. The second component is an online phase
in which multiple heterogeneous models are deployed on an ex-
tremely resource-constrained device (MCUs). To evaluate YONO,
we first evaluated four image datasets and one audio dataset used
in state-of-the-art prior work on heterogeneous MTL [44] for a fair
comparison. We show that YONO achieves high accuracy of 93.7%
on average across the five datasets, which is a 15.4% improvement
over [44] due to our usage of the optimized network architecture
(see §4.2 for detail) and is very close to the accuracy of the un-
compressed models (0.4% loss in accuracy). Further, to evaluate
the scalability of YONO to other modalities, we include data from
modalities such as accelerometer signals from Inertial Movement
Units (IMU) for human activity recognition (HAR) and surface elec-
tromyography (sEMG) signals for gesture recognition (GR). We
then demonstrate that YONO effectively retains the accuracy of
the uncompressed models across all the employed datasets of four
different modalities (Image, Audio, IMU, sEMG). Next, to evaluate
the generalizability of the learned codebooks of YONO, we apply
YONO to compress new models trained on unseen datasets during
the codebook learning in the offline phase. Surprisingly, YONO can
maintain the accuracy of the uncompressed models and achieve a
12.37× compression ratio (53.1% higher than [44]). Finally, we eval-
uate the online component of YONO on the largest model and the

smallest model to show the upper bound and lower bound results,
respectively. We employ an MCU, STM32H747XI (see Section 3
for details), and demonstrate that YONO enables an efficient in-
memory execution (latency of 16-159 ms and energy consumption
of 3.8-37.9 mJ per operation) and model loading/swap framework
for task switching (showing reductions of 93.3-94.5% in latency and
93.9-95.0% in energy consumption compared to the method using
external storage access).

2 YONO
In this section, we first present the overview of our multitasking
system, YONO (§2.1). Then, we introduce the background on PQ
and its applications on single model compression (§2.2). We then
explain how we utilize PQ to compress multiple heterogeneous
networks into a pair of codebooks. The networks can be of any
arbitrary architecture that consists of fully connected layers and
convolutional layers. After that, we present our novel network op-
timization process to ensure the performance of the compressed
networks remain close to original models (§2.4). On top of that,
based on an observation (detailed in §2.5), we further propose op-
timization heuristics to maximize the performance gain with a
minimal loss of the compression rate when using PQ-based com-
pression. Finally, we describe our in-memory execution and model
swapping framework on MCUs (§2.6).

2.1 Overview
In this subsection, we describe the overview of YONO that learns
codebooks to represent the weights of multiple heterogeneous neu-
ral networks as well as enable on-chip memory operations on
resource-constrained devices. In particular, YONO is composed
of two components: (1) an offline phase where YONO learns a pair
of codebooks on pretrained neural networks using PQ (will be
explained in detail in §2.2) and (2) an online phase where YONO
enables on-chip execution such as model execution and model load-
ing/swapping. Note that we assume that the overall size of multiple
neural networks is larger than the operational limit of the on-chip
eFlash memory and SRAM of the targeted IoT devices. For example,
in Section 4, we employ seven different models with a total size
of 3.84 MB and evaluate our framework on MCU (STM32H747XI),
which strictly has only 512 KB of SRAM and 1 MB of eFlash.

2.2 Product Quantization and Compressing
Single Neural Network

We now provide an introduction to PQ and how it is used to com-
press a single model. PQ can be considered a special case of vector
quantization (VQ) [21], in which it attempts to find the nearest
codeword, c, to encode a given vector, w. Suppose we are given a
codebook, C, that contains a set of representative codewords, we
can reconstruct/approximate the given vector w by using c and
its associated index in the codebook. Thus, given a vector w ∈ R𝑑
to be encoded, the encoding problem of VQ can be formulated as
follows.

argmin
𝑏

∥w − C𝑏∥2 (1)
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Codebook: C1, C2 
Index: B1, B2, ..., Bn

C1 C2

T1 (CNN) T2 (FC) Tn(CNN)
 
...
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...
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Pair of concatenated weight 
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Figure 1: Overview of the offline component of YONO. The offline module employs PQ to learn a pair of codebooks and identify
indices to represent multiple heterogeneous neural networks. This module incorporates our novel optimization process and
heuristics to minimize the accuracy loss compared to the original models.

where C is a 𝑑-by-𝐾 matrix containing 𝐾 codewords of length 𝑑 ,
and 𝑏 is called a code (i.e., index of codebook pointing to a code-
word, c, nearest to the given vector, w). ∥·∥ is a 𝑙2 norm. Solving
Equation 1 is equivalent to searching the nearest codeword. Be-
sides, the codebook, C, is learned by running the standard k-means
clustering over all the given vectors [30].

The PQ is a particular case of VQ when the learned codebook is
the Cartesian product of sub-codebooks. Given that there are two
sub-codebooks, the encoding problem of PQ is as follows.

argmin
𝑏

∥w − C𝑏∥2 ,

𝑠 .𝑡 . C = C1 × C2
(2)

where C1 and C2 are two sub-codebooks of 𝑑
2 -by-𝐾 matrices. Since

any codeword of C is now the concatenation of a codeword of C1
and a codeword of C2, PQ can have 𝐾2 different combinations of
codewords. If a vector is divided into𝑀 partitions, then PQ can have
𝐾𝑀 combinations of codewords. The number of sub-codebooks,𝑀 ,
can be any number between 1 and the length of the given vector, 𝑑
(e.g., 1, 2, . . . , 𝑑). When𝑀 is set to 1, it is VQ. When𝑀 is set to 𝑑 , it
is equivalent to the scalar k-means algorithm.

We now describe how the encoding problem of PQ can be applied
to compress a neural network. It is because instead of storing weight
matrixW of any layer in neural networks explicitly, we can learn
an encoding B(W) that needs much less storage space. Using the
found encoding B and a learned codebook C based on PQ, we can
reconstruct Ŵ which approximates the original weight matrixW
of the layer. If we can find Ŵ close enough toW, the reconstructed
layer of a neural network will perform normally as demonstrated in
prior works using PQ to compress a single neural network [20, 73].

2.3 Compressing Multiple Heterogeneous
Networks

As described in §2.2, PQ is typically used to compress a single
model in machine learning literature [56, 74]. In prior works, each
layer is replaced by one small-sized codebook (e.g., K=256, D=8,
M=1), and a high compression rate and little performance loss are
achieved in large computer vision models with more than 10 M

parameters (e.g., ResNet50 [26]). However, in small-sized models
that are specially designed to be used on MCUs (i.e., the number of
parameters is at most around 500K-1M), the same approach (having
a codebook for each layer) no longer provides a high compression
rate due to the overhead of storing many codebooks. Therefore,
in our system, we propose to apply PQ to one or multiple neural
networks while only sharing a pair of the learned codebooks to
maximize the compression ratio. We will explain how we ensure
high performance of the compressed models in the next subsections
(§2.4 and §2.5).

As in Figure 1, we first concatenate weights of all the models
of different tasks (i.e., 𝑇1,𝑇2, ...,𝑇𝑛). Then, we construct two weight
matrices,𝑊1 and𝑊2, so that YONO takes into account spatial infor-
mation of convolutional layer kernels as in other prior works [73].
For one weight matrix,𝑊1, we combine convolutional layers with
a kernel size of 3 × 3. Then, in the other weight matrix,𝑊2, we
concatenate convolutional layers with kernel size 1 × 1 and fully-
connected layers. Then these concatenated weight matrices,𝑊1
and𝑊2, are given as an input to learn codebooks, 𝐶1 and 𝐶2, for
different kernel sizes, respectively. Note that we also observed that
neglecting such information in learning codebooks leads to worse
performance. In our system design, we select kernel sizes of 3 × 3
and 1 × 1 as those are widely used kernel sizes in many of the
optimized network architectures [27, 54, 67]. Also, since FC layers
are essentially the same as point-wise convolution operation (i.e.,
kernel size of 1× 1), we combine weights of FC layers together with
those of 1 × 1 kernel convolution layers. Besides, we set M to 2
throughout our evaluation so that YONO can leverage the implicit
codebook size of 𝐾𝑀 . We observed that when M is 1, the codebook
is not generalizable enough to compress multiple neural networks.
When M is set to 3, the overhead of the codebooks decreases the
compression rate without providing much accuracy benefit.

2.4 Network Optimization
After learning a pair of codebooks for multiple models as in §2.3,
YONO performs finetuning on the reconstructed model in order to
adjust the loss of information due to the compression (see Algo-
rithm 1). As studied in [85], weights in the first and last layer of a
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model are the most important. Thus, in the finetuning stage, we se-
lect the first and last layer of a model and finetune them (Lines 2-4).
The finetuning step largely recovers the accuracy of the original
model by re-adjusting the first and last layer of the model accord-
ing to the different weights induced by the codebooks. However,
as we will show in our evaluation in Section 4 (this incurs 2-8%
accuracy loss), a simple extension of PQ to multiple heterogeneous
neural networks with a finetuning step cannot ensure high accuracy
due to the increased weight differences between original models’
weight matrices W𝑇1,...,𝑇𝑛 and reconstructed models’ weight matri-
ces Ŵ𝑇1,...,𝑇𝑛 although it shows a high compression rate.

Therefore, we introduce an optimization process to improve the
performance of the decompressed models. As discussed in prior
works [20, 74], in general, higher weight differences (i.e., errors)
result in increased loss of accuracy. Thus, to minimize the impact
of the weight differences, we adopt to use the iterative optimization
procedure, inspired by the Expectation-Maximization (EM) algo-
rithm [13] and prior work [74]. We iteratively adjust the weight
drifts by reassigning indices on the updatedweights fromfinetuning
as the E-step (Lines 12-13) and by finetuning several selected layers
(e.g., first and last layers) as the M-step (Lines 14-17). Note that
our optimization procedure is novel in that (i) we perform network
optimization across multiple heterogeneous networks and (ii) we
do not update codewords in our learned codebooks since we want
our codebooks to be generalizable to compress unseen models and
datasets during the codebook learning procedure, different from
single model compression methods [20, 56, 73, 74]. In Section 4, we
demonstrate the generalizability of our learned codebooks and our
system on new models that are trained on new datasets that YONO
did not see in its codebook learning.

2.5 Optimization Heuristics
In addition, we further propose an optimization heuristic that can
maximize performance improvement while ensuring a high com-
pression rate. We observed that weight differences of each layer
(W and Ŵ) are not uniformly distributed. Besides, the number
of parameters in each layer is considerably different. For exam-
ple, MicroNet-KWS-M [5] (we adopt this network architecture in
our evaluation. Refer to Section 4 for detail) contains 12 convolu-
tional and FC layers. Among them, one convolutional layer has
a 4-dimensional weight matrix (W ∈ R𝐶𝑐𝑜𝑢𝑡×𝐶𝑖𝑛×𝑘×𝑘 ) with a size
of {140, 1, 3, 3} which has 1,260 parameters, whereas another con-
volutional layer in the same model can have weight matrix with
a size of {196, 112, 1, 1} which has 21,952 parameters. The latter
has 17.4 times more parameters than the former. Thus, based on
this observation, we propose our novel optimization heuristic to
select layers for finetuning that have the largest weight difference
and contain the least number of parameters (refer to Lines 22-24 in
Algorithm 1). Hence, given a network W with 𝐿 layers, we attempt
to find a layer ℓ as follows.

argmax
ℓ




Wℓ − Ŵℓ



2 /𝑁 ℓ (3)

where Wℓ − Ŵℓ is a weight difference of weight matrices of the
layer ℓ , and 𝑁 ℓ is the number of the parameters of the layer ℓ .

Algorithm 1: YONO Network optimization and heuristics
for a given task 𝑡
Input: Model weights W, model indices b, PQ codebooks C,

the number of layers 𝐿, error threshold 𝜖 , heuristics
Output: Reconstructed model weights Ŵ, model indices b̂
Data: Train data D𝑇𝑅𝐴𝐼𝑁 , Test data D𝑇𝐸𝑆𝑇

/* Perform an initial finetuning step */

1 Ŵ← C(b) // reconstruct a model via codebooks and indices

2 for ℓ = 2, ..., 𝐿 − 1 do
3 FreezeWeights(Ŵℓ )
// run network training (e.g., BackProp) with loss function

4 Finetune(Ŵ,D𝑇𝑅𝐴𝐼𝑁 )
5 𝑎𝑐𝑐_𝑜𝑟𝑖𝑔← Evaluate(W,D𝑇𝐸𝑆𝑇 ))
6 𝑎𝑐𝑐_𝑟𝑒𝑐𝑜𝑛 ← Evaluate(Ŵ,D𝑇𝐸𝑆𝑇 ))
7 if 𝑎𝑐𝑐_𝑜𝑟𝑖𝑔 − 𝜖 ≤ 𝑎𝑐𝑐_𝑟𝑒𝑐𝑜𝑛 then
8 return Ŵ, b
/* Perform a further network optimization step */

9 𝑆 ← (1, 𝐿) // finetuning layer set

10 b̂← b
11 for 𝑖 = 1, ..., 𝐿 − 2 do

// E-step: code re-assignment

12 for ℓ ∉ 𝑆 do
13 b̂ℓ ← argmin

𝑏∈b̂ℓ



ŵℓ − C𝑏


2

// M-step: model update

14 Ŵ← C(b̂)
15 for ℓ ∉ 𝑆 do
16 FreezeWeights(Ŵℓ )
17 Finetune(Ŵ,D𝑇𝑅𝐴𝐼𝑁 )
18 𝑎𝑐𝑐_𝑜𝑟𝑖𝑔← Evaluate(W,D𝑇𝐸𝑆𝑇 ))
19 𝑎𝑐𝑐_𝑟𝑒𝑐𝑜𝑛 ← Evaluate(Ŵ,D𝑇𝐸𝑆𝑇 ))
20 if 𝑎𝑐𝑐_𝑜𝑟𝑖𝑔 − 𝜖 ≤ 𝑎𝑐𝑐_𝑟𝑒𝑐𝑜𝑛 then
21 return Ŵ, b̂

22 if heuristics is OURS then
// choose a layer to finetune based on our heuristics

23 ℓ ← argmax
ℓ




Wℓ − Ŵℓ



2 /𝑁 ℓ

24 𝑆 ← (𝑆, ℓ)

In summary, through the optimization heuristics, YONO identi-
fies a layer with the highest weight difference per parameter. After
that, YONO finetunes the identified layer using our network opti-
mization process introduced in §2.4. The process continues until the
reconstructed model’s accuracy is recovered to the target accuracy
(Lines 20-21), i.e., accuracy loss is less than a given threshold 𝜖 (e.g.,
2-3% in our evaluation). The number of layers to be finetuned is less
than or equal to three in most cases. This process helps YONOmaxi-
mize the compression ratio (small storage overhead) while retaining
the accuracy of its compressed models close to their corresponding
original (uncompressed) models. Note that the finetuned layers
are then quantized into 8-bit integers in the online component of
YONO as described in the next subsection.
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Figure 2: Overview of the online component of YONO. The
online module enables fast and efficient model loading/swap
and in-memory execution.

2.6 In-memory Execution and Model Swap
Framework on MCUs

Having established the offline component of YONO, we now turn
our attention to the online component of our system. At runtime,
the online component of YONO enables the fast and efficient in-
memory execution and model swap of multiple heterogeneous
neural networks. Figure 2 illustrates the overview of the online
component of YONO.

Data Structure for Deployment on MCUs: To begin with,
we describe the data structures that are necessary for deploying
ML models on MCUs. First, YONO requires one pair of learned
PQ codebooks, model indices, and other relevant information to
reconstruct a model. In addition, YONO needs a task executor to
run the reconstructed model in-memory and a task switcher to
swap an in-memory model to another reconstructed model.

LearnedCodebooks:As described in subsections §2.2-2.5, YONO
learns a pair of codebooks by applying PQ on multiple hetero-
geneous neural networks with our novel optimization procedure.
Since SRAM is a scarce resource on MCUs, the codebooks are stored
on eFlash. Also, because the codebooks are shared across different
models compressed by YONO and static during runtime, they are
stored on the read-only memory of eFlash.

Model Indices and Other Elements: Once a model is com-
pressed through our system, YONO generates model indices that
correspond to the weights of an original model via the learned
codebooks and other relevant elements necessary to reconstruct
the uncompressed model. For example, relevant elements include
model architecture, operators, quantization information, and so on.

Task Executor: We now present the explanation of our task ex-
ecutor. Aswe adopt TensorFlow Lite forMicrocontrollers (TFLM) [12]
to run the deployed model on MCUs, YONO also follows its model

representation and interpreter-based task execution. As model rep-
resentation on MCUs, the stored schema of data and values rep-
resent the model. The schema is designed for storage efficiency
and fast access on mobile and embedded platforms. Therefore, it
has some features that help ease the development of MCUs. For
example, operations are in a topologically sorted list instead of a
directed-acyclic graph, making conducting calculations be a sim-
ple looping through the operation list in order. In addition, YONO
adopts interpreter-based task execution by relying on TFLM. Thus,
the interpreter refers to the schema of the model representation
and loads a model. After that, the interpreter handles operations
to execute. Since YONO adopts an interpreter-based task executor
and loads a model in the main memory for execution, YONO al-
lows model switching at run time, which is not allowed with the
code-generator-based compiler method [48] because this method
requires recompilation to switch a model.

Task Switcher: When a task needs to be switched (e.g., the
target application is switched from image classification to voice
command recognition), YONO replaces the loaded model in the
memory with a new model to be executed. Using the same mem-
ory space between previous and new models, YONO can operate
multiple models within a limited memory budget of SRAM. In ad-
dition, since YONO does on-chip memory operations to perform
execution and model swap, YONO improves the response time and
end-to-end execution time of different applications. It is because
the access time to secondary storage devices is slower than that to
internal memory and primary storage. Moreover, a system relying
on external storage devices may have unpredictable overheads. For
example, disk-writes on storage devices like flash and solid-state
drives need to erase an entire block before a write operation.

Model Reconstruction: We now describe our model recon-
struction scheme. To reconstruct a model, YONO utilizes the PQ
codebooks, indices, and relevant elements, such as batch normal-
ization layer’s mean and variance, quantization information, stored
in eFlash. The overall process is as follows. First, YONO retrieves
model weights by matching indices of a model to be loaded on the
main memory and its corresponding codewords of the PQ code-
books. Secondly, YONO loads relevant elements of the model and
then writes this information and model weights to the preallocated
memory address for the model on the main memory.

In addition, each value of the learned codewords in the PQ code-
books is stored in 16-bit float instead of 32-bit float type to further
reduce the storage requirements on eFlash. In contrast, the weights
of the model loaded on the main memory and executed need to
be quantized to 8-bit integers. Thus, while loading each layer of
the model, YONO converts 16-bit floats to 8-bit integers using the
saved quantization information. Specifically, we use the quanti-
zation scheme used in [28] to minimize the information loss in
quantization. We utilize an affine mapping of integer q to real num-
ber r for constant quantization parameters 𝑆 and𝑍 , i.e., 𝑟 = 𝑆 (𝑞−𝑍 ).
𝑆 denotes the scale of an arbitrary positive real number. 𝑍 denotes
zero-point of the same type as quantized value q, corresponding to
the real value 0. As a result, the reconstructed model in the online
component is based on 8-bit integers, and thus the use of codebooks
does not affect computations of model execution.
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3 SYSTEM IMPLEMENTATION
We introduce the hardware and software implementation of YONO.

Hardware. The offline component of our system is implemented
and tested on a Linux server equipped with an Intel Xeon Gold
5218 CPU and NVIDIA Quadro RTX 8000 GPU. This component
is used to learn PQ codebooks and find indices for each model
to be compressed. Then, the online component of our system is
implemented and evaluated on an MCU, STM32H747XI, having two
cores (ARM Cortex M4 and M7) with 1 MB SRAM and 2 MB eFlash
in total. However, our implementation of YONO uses only one core
(ARM Cortex M7) since MCUs are typically equipped with one CPU
core. We restrict the usage space of SRAM and eFlash to 512 KB
and 1 MB, respectively, to enforce stricter resource constraints.

Software.We use PyTorch 1.6 (deep learning framework) and
Faiss (PQ framework) to develop and evaluate the offline component
of YONO on the Linux server. At the offline phase, we develop
YONO using Python on the server and examine the accuracy of the
models. In addition, we develop the online component of YONO
using C++ on STM32H7 series MCUs. For running neural networks
on MCUs, we rely on TFLM. Since eFlash memory of MCUs is read-
only during runtime, YONO loads the model weights on SRAM
(read-write during runtime) and swaps the models by replacing the
models’ weights using PQ codebooks and indices stored on eFlash.
The binary size of our implementation on an MCU is only 0.41 MB,
and the total size of PQ codebooks, indices, and other information
to compress the eight heterogeneous networks evaluated in §4.4 is
0.35 MB. Note that the memory requirement of the seven models
is 4.19 MB, which is 12.05× of what YONO requires and 4.19× of
what typical MCUs with 1 MB storage can support.

4 EVALUATION
We now present the results of the evaluation on our system. §4.1
describes our experimental setup. We evaluate the effectiveness
of our system in the offline phase regarding the performance (i.e.,
accuracy) and compression rate of the compressed models in an
MTL scenario. To make a comparison with prior work [44] that
tackles MTL of different neural networks, we begin with evaluating
our system with the same datasets used in [44] consisting of five
datasets for two modalities (i.e., image and audio) (§4.2). After that,
we evaluate our system to what extent it can address multiple
heterogeneous networks trained with different modalities. Thus,
we employ four different modalities of data ((1) Image, (2) Audio, (3)
IMU, (4) sEMG) by adding twomore datasets in order to demonstrate
the scalability of YONO on diverse modalities in §4.3. Further, to
demonstrate the generalizabilty of YONO’s learned codebooks, we
select two additional datasets in each of the four modalities and
evaluate our system to compress new models trained on these
datasets that YONO did not learn during its codebook learning
stage (§4.4). Finally, we present the results of our online in-memory
model execution and swap operations in §4.5.

4.1 Experimental Setup
4.1.1 Task. Our target application scenarios are based on dealing
with dissimilar multitask learning. For example, those applications
are image classification, keyword spotting, human activity recogni-
tion, and gesture recognition.

4.1.2 Evaluation Protocol. Following prior works [62, 75], 10% of
data is used as the test set and the remaining as the training set. In
addition, to evaluate the effectiveness of the offline phase compo-
nent of our system, we report the accuracy and compression rate of
the compressed models using our system. We also use compressed
model’s error rate (i.e., accuracy loss) compared to the original
model. Then, to evaluate the efficiency of the online phase compo-
nent of our system, we report the execution time and load/swap
time of the models on MCU.

4.1.3 Baseline Systems. To evaluate the effectiveness of our work,
YONO, we include various baselines in our experiments as follows.

NWV: Neural Weight Virtualization (NWV) [44] is the state-of-
the-art heterogeneous MTL system that treats weights of neural
networks as consecutive memory locations which can be virtualized
and shared by multiple models. Note that we use reported results
of [44] on an MCU, which relies on simplified LeNet architecture.

Scalar Quantization (Int8): This baseline compresses a single
model by quantizing 32-bit floats into low-precision fixed-point
representation (e.g., 8-bit) [28, 34]. As in [34], we employ both post-
training quantization and quantization-aware training schemes.
We then report the results of the best-performing scheme in our
evaluation. Besides, we only include 8-bit quantization as sub-
byte datatypes (e.g., 4-bit or 2-bit) are not natively supported by
MCUs [5]. We leave sub-byte quantization as future work.

PQ-S: This baseline uses PQ to compress a single model to a
pair of the shared codebooks across layers in the model. As this
baseline does not share the codebooks across multiple models, this
can serve as a baseline for the single model compression and as the
lower bound in compression ratio among the PQ variants.

PQ-M: This baseline uses PQ to compress multiple heteroge-
neous models to a pair of the shared codebooks but does not apply
our optimization process and heuristics as described in Section 2.
We include this to conduct an ablation study to evaluate the impact
of the proposed optimization in our system.

PQ-MOpt: This baseline uses PQ to compress multiple heteroge-
neous models to a pair of the shared codebooks and also apply the
optimization process without the heuristics described in Section 2.
We include this to conduct an ablation study to evaluate the impact
of the heuristics in our system.

Uncompressed (Original): An original model before compres-
sion. It is pretrained with available training data and serves as the
upper bound in terms of the accuracy metric.

4.2 Performance
Following [44], we start by evaluating YONO in MTL scenarios on
two modalities: images and audio signals which are widely used
data modalities in mobile sensing applications.

Datasets.Weemploy the same datasets used in the priorwork [44]
to make a fair comparison. First, four image datasets are employed,
namely MNIST [42], CIFAR-10 [35], SVHN [59], and GTSRB [70]
associated with classifying objects of handwritten digits (grayscale),
generic objects, numbers (RGB), and road signs, respectively. Then,
one audio dataset of Google Speech Commands V2 (GSC) [78] for
keyword spotting is used.

Model Architecture.We adopt optimized neural network ar-
chitectures, designed to be used in the resource-constrained setting,
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Table 1: Summary of datasets, model architectures, mobile
applications used in §4.2 and §4.3.

Modality Dataset Architecture Mobile Application

Image

MNIST LeNet Digit recognition
CIFAR-10 MicroNet-AD Object recognition
SVHN MicroNet-AD Digit recognition
GTSRB MicroNet-AD Road sign recognition

Audio GSC MicroNet-KWS Keyword spotting

IMU HHAR MicroNet-AD Activity recognition

sEMG Ninapro DB2 Lightweight CNN Gesture recognition

such as variants of MicroNet [5], simplified LeNet used in [44].
For MNIST, we use the simplified LeNet as it is used in [44] and
the accuracy of such LeNet variant is very high at 98%. For other
datasets (CIFAR-10, SVHN, GTSRB, GSC), we use variants of Mi-
croNet architecture to construct pretrained models. To identify a
high-performing and yet lightweightmodel to operate on embedded
and mobile devices, we conduct a hyper-parameter search based on
different variants of MicroNet (e.g., small, medium, large models),
lightweight convolutional neural network (CNN) architectures [38],
the number of convolutional filters. A basic convolutional layer
consists of 3 × 3 convolution, batch normalization, and Rectified
Linear Unit (ReLU). Then, as our final model architectures, we use
MicroNet-KWS-M for GSC and MicroNet-AD-M (with the reduced
number of convolutional filters {192}) for CIFAR-10, SVHN, GT-
SRB. Throughout model training for all of the datasets, ADAM
optimizer [33] and learning rate of 0.001 are used. The datasets,
architectures, and applications are summarized in Table 1.

Accuracy.We show the accuracy results here. Figure 3 shows
the accuracy of each baseline so that we can analyze the impact of
our proposed techniques in our system. To begin with, the uncom-
pressed (original) model serves as a performance upper bound. 8-bit
quantization and PQ-S achieve high accuracy close to that of the
original model, showing a small average error rate of 0.9% and 2.8%,
respectively, between each of the five models after compression and
their corresponding original models. However, in the case of the
CIFAR-10 dataset, PQ-S shows high error rates of 6.3% on average.
This result indicates that the specialized codebooks which target
only one model can help retain the performance of the original
model in general but sometimes fail to retain it, as shown in the
case of CIFAR-10. Besides, PQ-M shows an accuracy loss of 4.3%
on average. For CIFAR-10, it shows a high error rate of 9.0%. In
addition, although our proposed EM-based iterative network opti-
mization procedure can help in improving the accuracy, PQ-MOpt
still shows a substantial accuracy drop of 4.3% on average. This
result indicates that compressing multiple neural networks based
on only one pair of codebooks is very challenging. However, YONO
shows that its accuracy drop is minimal (i.e., an average error rate
of 0.4%). Interestingly, in the case of GSC, YONO outperforms the
accuracy of the original model by 1.2% where YONO benefits from
sharing weights via PQ codebooks.

This result indicates that YONO can effectively retain the ac-
curacy of original models as observed in the prior work on multi-
ple MTL systems [44] and other techniques focusing on a single
model compression [25, 28, 74]. Further, it is an interesting result
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Figure 3: The inference accuracy of the heterogeneous MTL
systems trained with five datasets of two modalities. Re-
ported results are averaged over five trials, and standard-
deviation intervals are depicted.

Table 2: The compression efficiency of the heterogeneous
MTL systems trained with five datasets of two modalities.

NWV [44] Int8 PQ-S PQ-M PQ-MOpt YONO Original

Ratio 8.08× 3.04× 9.47× 12.07× 12.07× 11.57× 1×
Size 0.13 MB 0.96 MB 0.31 MB 0.24 MB 0.24 MB 0.25 MB 2.91 MB

because YONO can retain the accuracy of multiple heterogeneous
models, which is more challenging given that simply performing
MTL would lead to the accuracy drop as shown in the prior work,
NWV [44]. Also, note that differently from [44] which used LeNet,
we used optimized network architectures such as MicroNet and
lightweight CNN that can execute on resource-constrained MCUs
(refer to §4.5) and obtain very high accuracy. To name a few, the
pretrained models in our work achieve 90.05%, 94.48%, 90.74% on
CIFAR-10, SVHN, GSC compared to 59.26%, 85.74%, 78.38% reported
in [44], respectively.

Compression Efficiency. Table 2 shows the overall efficiency
in compressing heterogeneous networks trained with five datasets
of two modalities. First, the combined storage overhead of the
five uncompressed models is 2.91 MB which is three times the
capacity of our target MCU’s storage, which is 1 MB at maximum.
However, considering that to perform an inference on MCUs, it is
required to have a space for program codes of TFLM, input and
output peripherals, input and output buffers, and other variables,
etc., the space used to store models needs to be below the storage
size of 1 MB. Thus, it is impossible to put those five models on
an MCU and run multitask applications using the uncompressed
models. 8-bit quantization shows the lowest compression rate of
3.04× among all the evaluated methods, and its storage size (0.96
MB) is just below the limit of our employed MCU. Then, PQ-S
shows a moderate compression rate of 9.47× and decreases the
required storage size down to 0.31 MB and thus can reside on an
MCU. Other baseline systems, PQ-M and PQ-MOpt, show a high
compression rate of 12.07× and reduce the storage requirement
to 0.24 MB. This is because PQ-M and PQ-MOpt share the same
codebooks across the different applications. However, the savings
in storage come at the expense of loss of accuracy, as seen in the
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Figure 4: The inference accuracy of the heterogeneous MTL
systems trained with seven datasets of four modalities. Re-
ported results are averaged over five trials, and standard-
deviation intervals are depicted.

accuracy results discussed before. In contrast, YONO achieves the
best of both worlds, demonstrating a high compression rate close to
PQ-M and PQ-MOpt and negligible accuracy loss compared to the
uncompressed models. YONO obtains a 11.57× compression rate
and decreases the storage overhead to 0.25 MB, showing a higher
compression rate than NWV [44].

Overall, the results indicate that YONO can enable running multi-
task applications on MCUs while retaining high accuracy and low
storage footprints.

4.3 Scalability
In this subsection, we apply YONO on seven datasets consisting
of four different data modalities ((1) Image, (2) Audio, (3) IMU, (4)
sEMG) to investigate to what extent our system can effectively
compress multiple networks trained on different data modalities
without losing its accuracy and compressive power. We select IMU
and sEMG as additional modalities because they are also widely
used in mobile sensing applications [14, 72].

Datasets. On top of the five datasets used in the previous subsec-
tion, we add two datasets of two additional modalities: HHAR [72]
and Ninapro DB2 [3], corresponding to activity recognition (based
on IMU) and gesture recognition (based on sEMG), respectively.
The HHAR and Ninapro DB2 datasets are some of the most widely
used HAR and sEMG datasets, respectively.

Model Architecture. To identify the right model architecture
for each dataset, we adopt to use the optimized neural architectures
and also conduct a hyper-parameter search as described in §4.2.
Then, we select the model which shows the best performance. As
a result, we use MicroNet-AD for HHAR and lightweight CNN
architecture for Ninapro DB2 (see Table 1 for detail).

Accuracy. Figure 4 presents the accuracy results of the seven
datasets of four modalities so that we examine the scalability of
YONO to various modalities of data. Overall, the accuracy of re-
constructed models from baseline systems and YONO is slightly
improved since the error rates on the new datasets are smaller than
those of the other five datasets. Also, accuracy results of baseline

Table 3: The compression efficiency of the heterogeneous
MTL systems trained with seven datasets of four modalities.

Int8 PQ-S PQ-M PQ-MOpt YONO Original

Ratio 2.96× 9.27× 12.29× 12.29× 11.77× 1×
Size 1.27 MB 0.41 MB 0.31 MB 0.31 MB 0.32 MB 3.76 MB

systems and YONO reach similar observations as in §4.2. 8-bit quan-
tization shows a small average error rate of 2.0% but a relatively
high accuracy variance for HHAR. Also, PQ-S achieves high ac-
curacy close to that of the uncompressed models with small error
rates of 3.0% on average, whereas it shows high error in CIFAR-10.
Then, the PQ-M and PQ-MOpt systems present an average error
rate of 4.2% and 4.0% respectively, indicating that our proposed
EM-based iterative network optimization procedure help improve
the accuracy but still falls short of achieving the original model’s
accuracy. Also, in this setting, YONO performs the best and shows
an negligible accuracy loss of 0.5% on average.

Compression Efficiency. Table 3 shows the overall efficiency
in compressing heterogeneous models trained with seven datasets
of four modalities. Similar to the compression results in §4.2, the
total size of the seven uncompressed models (3.76 MB) is larger
than the storage budget for our target MCU. In the case of 8-bit
quantization, the required storage size of the seven compressed
models is 1.27 MB, larger than our storage budget of 1 MB. This
result indicates that 8-bit quantization is not suitable for operating
many heterogeneous neural networks simultaneously on our target
MCU. However, YONO requires at most 0.32 MB. Since our system
can effectively compress multiple heterogeneous models (showing
11.77× compression ratio), the incurred storage requirement is
minimal. For example, when two additional models (for HHAR and
Ninapro DB2) are included in an MTL system, YONO incurs only
0.07 MB additional overhead, whereas the original models’ storage
size increases by 0.85 MB.

To summarize, our results show that YONO is scalable as it can
accommodate many applications utilizing different input modalities
while achieving high performance and small storage overhead.

4.4 Generalizability
We now investigate the generalizability of our multitasking system
on new models/datasets and different network architectures un-
seen during the codebook learning phase of the offline component.
Specifically, we evaluate whether YONO can achieve high accuracy
on the unseen models from new datasets using the same code-
books that are learned previously (§4.3). This can be particularly
useful since the learned codebooks of YONO can still be utilized to
compress unseen models in different network architectures from
new datasets without learning new codebooks again whenever a
user wants to incorporate a new task/dataset into the system. Also,
note that since the codebooks are not modified, the reported re-
sults in §4.3 are not affected, ensuring high accuracy on previous
datasets. Then, in §4.4, we select two new datasets in each of the
four modalities for a robust evaluation.

Datasets. In total, we add eight new datasets: two image datasets
(1) FashionMNIST [81], (2) STL-10 [9], and two audio datasets (3)
EmotionSense [62], (4) UrbanSound [66], and two HAR datasets
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Table 4: Summary of datasets, model architectures, mobile
applications used in §4.4.

Modality Dataset Architecture Mobile Application

Image FashionMNIST DS-CNN Object recognition
STL-10 DS-CNN Object recognition

Audio EmotionSense Lightweight CNN Emotion recognition
UrbanSound DS-CNN Sound classification

IMU PAMAP2 MicroNet-AD Activity recognition
Skoda MicroNet-AD Activity recognition

sEMG Ninapro DB3 Lightweight CNN Gesture recognition
Ninapro DB6 MicroNet-AD Gesture recognition

(5) PAMAP2 [64], (6) Skoda [71], and lastly two sEMG datasets
(7) Ninapro DB3 [3] and (8) Ninapro DB6 [60]. These are widely
used real-world application datasets corresponding to classification
problem as follows: (1) ten fashion items, (2) ten generic objects,
(3) five emotions, (4) ten environmental sounds, (5) 12 activities, (6)
ten activities, (7) ten gestures of amputees, (8) seven gestures of
ordinary people, respectively.

Model Architecture. To demonstrate that YONO can effectively
address new network architectures that were not shown during
the offline codebook learning phase, we include another widely
used architecture, DS-CNN [86], in our work. Then, we follow the
same hyper-parameter search process as described in §4.2. Table 4
summarizes the identified network architectures for each dataset
and its associated mobile application.

Accuracy. Note that we exclude PQ-S as it needs to learn PQ
codebooks on a given dataset and then perform network finetuning
on the given dataset. However, in this scenario, the system needs
to adapt to new (unseen) datasets. This point makes the scenario
particularly challenging since an MTL system needs to incorporate
unseen datasets and network architectures. Nonetheless, an MTL
system that can address this challenge could become very useful in
practice since it is adaptable.

To begin with, Figure 5 shows the accuracy results on the eight
unseen datasets with diverse network architectures. 8-bit quanti-
zation presents a moderate error rate of 2.5% similar to the results
in §4.2 and §4.3 as the current evaluation setup does not make a
difference for the single model compression approach. Conversely,
PQ-M shows a substantial accuracy drop (9.4%) compared to the
original model, which is worse than the previous two scenarios
where it obtained error rates of 4.3% and 4.2%. In fact, on one dataset
(Ninapro DB6), PQ-M shows a 33.0% error rate. Although PQ-MOpt
improves upon PQ-M, the amount of improvement is small. PQ-
MOpt shows a 8.4% accuracy drop on average compared to the
original model. Also, for Ninapro DB6, the accuracy of PQ-MOpt
shows a sharp decrease of 28.1% compared to the original model,
demonstrating the difficulty of this scenario. Surprisingly, however,
YONO does not experience a considerable accuracy loss. It shows
only 0.6% accuracy loss on average. Besides, YONO shows a low
variance of accuracy loss across the employed datasets. In fact,
YONO even improves upon the accuracy of uncompressed models
for some datasets such as EmotionSense, Skoda, and Ninapro DB6.
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Figure 5: The inference accuracy of the heterogeneous MTL
systems applied to unseen datasets of four modalities. Re-
ported results are averaged over five trials, and standard-
deviation intervals are depicted.

Table 5: The compression efficiency of the heterogeneous
MTL systems applied to unseen datasets of four modalities.

Int8 PQ-M PQ-MOpt YONO Original

Ratio 2.80× 13.60× 13.60× 12.37× 1×
Size 1.47 MB 0.30 MB 0.30 MB 0.33 MB 4.11 MB

These results highlights that YONO is capable of retaining the ac-
curacy of original models even in the most challenging scenario of
incorporating unseen datasets and architectures.

Compression Efficiency. The compression results for hetero-
geneous models with eight unseen datasets are shown in Table 5.
The size of the uncompressed models is the largest, 4.11 MB, in this
setup compared to §4.2 and §4.3. YONO shows an impressive com-
pression ratio of 12.37× and require storage size of 0.33 MB after
compressing eight heterogeneous networks. It is worth noting that
we included a new network architecture that YONO did not learn
during its offline codebook learning phase. Yet, YONO successfully
compress different architectures with an even higher compression
rate (11.57× in §4.2 and 11.77× in §4.3) without loss of accuracy on
all the unseen datasets.

In summary, the results here hint that YONO can effectively com-
press different heterogeneous models trained on unseen datasets with-
out losing accuracy and demonstrate the generalizability of YONO’s
codebooks and the effectiveness of the proposed network optimization
and optimization heuristics.

4.5 Evaluation on In-Memory Execution and
Model Swapping Framework on MCUs

We finally examine the run-time performance of the online com-
ponent of YONO, the in-memory execution and model swapping
framework, introduced in §2.6. In specific, we evaluate the latency
and energy consumption of model execution and model swap-
ping of YONO on an MCU. Also, we include an alternative ap-
proach to YONO as a baseline that relies on an external SD card
as a secondary storage device for storing heterogeneous networks
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Figure 6: The model execution and loading/switching time
of YONO and the baseline.
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Figure 7: The energy consumption of model execution and
loading/switching of YONO and the baseline.

and on in-memory execution similar to YONO. We employ the
same datasets used in the previous subsections. In Figures 6 and
7, we report the results of upper bound (i.e., slowest or the most
energy-consuming) and lower bound (i.e., fastest or the least energy-
consuming) to show the range of latency and energy consumption
of YONO and the baseline based on the identified network architec-
tures trained on the datasets in §4.2-§4.4 (see Tables 1 and 4). We
use a MicroNet-AD model based on CIFAR-10 as upper bound and
a lightweight CNN model based on Ninapro DB2 as lower bound.
Although results for other models and datasets are omitted, they
reside within the reported latency and energy consumption as in
Figures 6 and 7.

Latency. We measure the latency of the model execution and
model loading/swap by usingMBed Timer API, as shown in Figure 6.
In terms of execution time, both YONO and the baseline show a
swift execution time (16-160 ms per inference) that can be useful
in practice, and there is no meaningful latency difference between
them since both rely on in-memory execution. However, for model
loading/swap time, YONO accelerates the model switching. YONO
reduces model loading/swap time by 93.3% (370 ms vs. 24.9 ms) in a
MicroNet-AD model based on CIFAR-10 and 94.5% (51.0 ms vs. 2.8
ms) in a lightweight CNN model based on Ninapro DB2 compared
to the baseline. Note that we did not conduct a direct comparison
on-device with the prior work [44] since its source code is not
shared and the used MCUs for experiments are not the same.

Energy Consumption.We measure the energy consumption
of model execution and loading/swap on the MCU using YONO and
the baseline, as shown in Figure 7. We use the Tenma 72-7720 digital

multimeter to measure the power consumption and then compute
the energy consumption over time taken for each operation (i.e., in-
ference and model loading). Similar to the latency result, the energy
consumption for executing models does not show the difference as
explained above. However, for the model loading/swap task, YONO
decreases energy consumption by at minimum 93.9% (82.7 mJ vs.
5.1 mJ in a MicroNet-AD model on CIFAR-10) and at maximum
95.0% (11.4 mJ vs. 0.6 mJ in a lightweight CNN model on Ninapro
DB2) compared to the baseline.

To summarize, the results demonstrate that YONO enables fast
(low latency) and efficient (low energy footprints) model execution
and loading/swap on an extremely resource-limited IoT device, MCU.

5 DISCUSSION
Impact on Heterogeneous MTL Systems. YONO represents the
first framework that can compress multiple heterogeneous models
and be applicable to unseen datasets. Also, YONO ensures negligi-
ble or no loss of accuracy in compressing many different models
(architecture) on multiple datasets. This is achieved by only one
pair of PQ-based codebooks, our novel optimization procedure, and
heuristics. Thus, we envisage that YONO could become a practical
system to deploy heterogeneousMTL systems on various embedded
devices and platforms in many real-world applications in the fu-
ture. We leave the wide deployment and performance evaluation of
YONO on other embedded platforms under real-world application
scenarios as future work.

Application Scenario. Let us consider an example of a real-
world application. Given an intelligent authentication system for
a smart home, the system would need to detect tenants’ identifi-
cation based on images and voice (image classification and voice
recognition). Then, the system could take voice commands as in-
puts from the identified tenant (e.g., keyword spotting). This simple
application scenario already needs three different models, which
could satisfy the necessity of a heterogeneous MTL system, YONO.

Generalizability of YONO. In Section 4, we have demonstrated
that YONO can incorporate heterogeneous models and datasets
(four different modalities) consisting of 15 datasets (i.e., seven
datasets for learning codebooks in §4.3 and the other eight unseen
datasets in §4.4), which shows that YONO is a generalizable frame-
work. Other datasets and network architectures (e.g., LSTMs [22]
and CNNs with large-sized kernels like 5x5 or 7x7) that can be
employed and tested on YONO are left as future work.

Limitation. To enable model switching during the runtime, we
design YONO to load the model in the main memory instead of
the storage of an MCU. However, since SRAM is a limited on-chip
resource and typically smaller than eFlash, our design choice may
limit the applicability of YONO, especially for low-end MCUs with
smaller SRAM sizes such as 128 KB. Therefore, it would be worth-
while to further investigate memory-efficient ways to reduce the
required main memory space for model execution while enabling
the model switching at run time. Better usage of FlatBuffer seri-
alization format to hold model weights can be interesting future
work since the weights of a model takes the majority of the space.
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6 RELATEDWORK
Multitask Learning. Multi-task learning allows learning corre-
lated tasks such that accuracy of both or one of the tasks is improved
by exploiting the similarities and differences across tasks [7]. Com-
mon approaches include common feature learning [50, 58], low-
rank parameter search [24, 57], task clustering [23, 32], and task
relation learning [43, 51]. These works achieve limited compres-
sion by sharing the first few network layers. However, their main
goal is to increase the robustness and generalization of multiple
task learners. Thus, keeping multiple heterogeneous DNN models
into the extremely limited memory of embedded devices, along
with managing and executing these models (achieving different
tasks) efficiently at run-time, are challenging to the aforementioned
works. Comparing this, YONO allows to run multiple DNN models
efficiently while remaining within the limited resource constraints
on embedded devices.

Besides, NWV [44] was introduced to compress multiple het-
erogeneous models of different network architectures and tasks.
NWV also minimizes the context switching overhead by retaining
all shared weights on the memory. However, NWV’s compression
ratio is constrained to 8.08×, limiting the multi-tasking IoT system
with a small memory footprint to operate many tasks in real-time.
Also, the work only employs a simplified LeNet architecture in the
experiments of IoT use cases, and thus the accuracy of the system
is limited. Conversely, YONO not only increases compression rates
but compresses even the highly optimized models (e.g., MicroNet,
DS-CNN), while achieving high accuracy that is useful in practice.

Mobile and Embedded Sensing Applications. Deep learn-
ing is increasingly being applied in mobile and embedded systems
as it achieves state-of-the-art performances on many sensing ap-
plications such as computer vision applications [15], audio sens-
ing [40], activity recognition [72], gesture recognition [3]. First
of all, there exist many vision applications, to name a few, tiny
image classification [35, 59], traffic sign recognition [70]. Besides,
audio sensing application is also one of the foundational mobile
sensing applications [37, 65] that much research has focused on
to deliver behavioral insights to users. The audio sensing tasks
include Emotion Recognition (ER) [62], Speaker Identification [52],
Environmental Sound Classification (ESC) [75], and Conversation
Analysis [45], and Keyword Spotting (KWS) [86]. Next, one of the
most widely studied mobile sensing application is HAR [22, 77],
where the aim is to determine various human activities automati-
cally using body-worn IMU (Inertial Movement Units) sensors. In
application frequently used in mobile sensing is to recognize hand
gestures (e.g., fist and open palm) using sEMG (surface Electromyo-
graphy) signals generated during muscle contractions [6, 14]. sEMG
signal is used for medical [84], rehabilitation [79], human-computer
interactions [39, 69], upper-limb prostheses control [68], and au-
thentication [8].

Model Compression. Many researchers focus on developing a
method to improve efficiency without sacrificing the model’s accu-
racy due to a large burden of training deep network architecture and
its data [80]. First of all, many researchers have focused on design-
ing and hand-drafting more efficient network architectures, namely,
SqueezeNets [19], ShuffleNets [54], and MobileNets [27, 67], and

MicroNet [5]. In particular, we employ MicroNet as one of our back-
bone network architectures since it shows impressive performance
and efficiency on tiny IoT systems such as MCUs.

In addition, another thread of research is weight pruning meth-
ods that leverage the inherent redundancy in the weights of neural
networks [25, 47, 49, 55, 82, 85]. Furthermore, quantization of model
weights and activiations has been an active area of research. Many
prior works quantize the weights and activations from 32-bit float
to 8-bit integer [28], ternary values (2-bit) [46, 88], binary values
(1-bit) [2, 10, 11, 63], and mixed precision [76, 83]. Also, weight clus-
tering methods are proposed to group weights into several clusters
to compress a model.

Moreover, researchers studied techniques that quantize an array
of scalars of the weights to compress a model or a particular layer.
Some works extended a sparse coding [87] to learn a compact repre-
sentation that covers the feature space of weights of a model [4, 18].
Also, many researchers examined vector quantization-based meth-
ods [80]. For example, Gong et al. [20] conducted an empirical study
to compare binarized networks, scalar quantization using k-means
(i.e., weight clustering), Product Quantization (PQ) [30]. Several
recent works apply PQ to compress a deep neural network with
more than 11 million parameters [56, 73, 74]. Albeit its impressive
results, all the prior works only focused on utilizing PQ to a single
and bulky model at a scale of millions of parameters, lacking the
understanding of how the method can be used to deal with hetero-
geneous MTL applications and compress tiny models that should
fit into the extremely limited memory budget of MCUs (less than
512 KB). Thus, for the first time in this work, we develop YONO,
a PQ-based model compression framework that operates hetero-
geneous models on tiny IoT devices. We propose a novel network
optimization procedure and heuristics to achieve high accuracy
close to the uncompressed models. Also, YONO enables fast and
efficient model execution and swapping on an MCU.

7 CONCLUSIONS
We have presented an efficient MTL system, YONO, that com-
presses multiple heterogeneous models through PQ codebooks, our
novel network optimization and heuristics. First, we implemented
YONO’s offline component on a server and its online component
on a critically resource-constrained MCU. Then, we demonstrated
its effectiveness and efficiency. YONO compresses multiple hetero-
geneous models up to 12.37× with minimal or near to no accuracy
loss. Interestingly, YONO can successfully compress models trained
with datasets unseen during its offline codebook learning phase.
Finally, YONO’s online component enables an efficient in-memory
model execution and loading/swap with low latency and energy
footprints on an MCU. We envision that methods developed for
YONO and our research findings could pave the way to deploy prac-
tical heterogeneous multi-task deep learning systems on various
embedded devices in the near future.
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