IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 1

Socially-Aware Routing for Publish-Subscribe in
Delay-Tolerant Mobile Ad Hoc Networks

Paolo Costa, Cecilia Mascolo, Mirco Musolesi, and Gian Pietro Picco

Abstract—Applications involving the dissemination of informa-
tion directly relevant to humans (e.g., service advertising, news
spreading, environmental alerts) often rely on publish-subscribe,
in which the network delivers a published message only to the
nodes whose subscribed interests match it. In principle, publish-
subscribe is particularly useful in mobile environments, since it
minimizes the coupling among communication parties.

However, to the best of our knowledge, none of the (few)
works that tackled publish-subscribe in mobile environments
has yet addressed intermittently-connected human networks.
Socially-related people tend to be co-located quite regularly. This
characteristic can be exploited to drive forwarding decisions in
the interest-based routing layer supporting the publish-subscribe
network, yielding not only improved performance but also the
ability to overcome high rates of mobility and long-lasting
disconnections.

In this paper we propose SocialCast, a routing framework for
publish-subscribe that exploits predictions based on metrics of
social interaction (e.g., patterns of movements among commu-
nities) to identify the best information carriers. We highlight
the principles underlying our protocol, illustrate its operation,
and evaluate its performance using a mobility model based on
a social network validated with real human mobility traces. The
evaluation shows that prediction of colocation and node mobility
allow for maintaining a very high and steady event delivery
with low overhead and latency, despite the variation in density,
number of replicas per message or speed.

Index Terms—

I. INTRODUCTION

ODERN communication technologies foster applica-

tion scenarios where humans exchange information
not only through natural means (e.g., verbally), but also
through the mediation of computer networks. E-mail is the
most evident example of this shift. However, pervasive and
ubiquitous computing scenarios are pushing situations where
it is the recipient (not the sender) of the information who
determines whether and how to seize data flowing in the
network. Thus, for instance, services can be freely advertised
without a priori knowledge about who is going to exploit
them: it is up to a given application (or user) to bind to a
service based on its description. News and advertisements

Manuscript received June 17, 2007; revised January 10, 2008.

Paolo Costa is with the Department of Computer Science, Vrjie University,
The Netherlands (e-mail: costa@cs.vu.nl).

Cecilia Mascolo is with the Computer Laboratory, University of Cambridge,
UK (e-mail: cecilia.mascolo@cl.cam.ac.uk).

Mirco Musolesi is with the Institute of Security Technology Studies,
Dartmouth College, USA (e-mail: musolesi@cs.dartmouth.edu).

Gian Pietro Picco is with the Dipartimento di Ingegneria e
Scienza dell’Informazione, University of Trento, Italy (e-mail:
gianpietro.picco@unitn.it).

Digital Object Identifier 10.1109/JSAC.2008.0806xx.

can be issued without specifying the recipients but only by
declaring the type of the message content.

The design of the programming and networking infrastruc-
ture enabling these new forms of computer-mediated com-
munication is still a topic of active research. However, the
publish-subscribe paradigm recently emerged as a particularly
promising solution. In such a paradigm, the information pro-
ducers and consumers are sharply decoupled, as they are fully
agnostic of each other. The information producer or publisher
(e.g., the service advertiser) simply injects a message in
the network. Routing protocols no longer revolve around
node identifiers, since these are not specified in the message.
Instead, the network delivers the message to the interested
subscribers (e.g., the components interested in services of a
given type) based on some characteristic of the message, such
as its topic or even its very content.

Thanks to its decoupling properties, publish-subscribe is in-
herently suited to dynamic environments where the set of com-
municating parties changes over time and may be disconnected
at the time the message is originated [1]. These most notably
include mobile delay tolerant systems. However, dealing with
the network challenges posed by publish-subscribe makes its
practical realisation in this kind of networks difficult. As a
result, few approaches exist [2], [3], surveyed in Section VI
Moreover, in these approaches, the social angle is never taken
into consideration. Information needs are ultimately driven
by users, which in a mobile environment exhibit patterns of
movement dictated by their social behaviour. These typically
lead to intermittently connected networks, where, however,
connectivity can be ensured precisely by relying on the social
ties of users. Users that belong to the same “group” (e.g.,
co-workers, friends, fans of a sport team) may move far apart
from each other and experience long periods of disconnection,
but are very likely to eventually meet again. This fact can be
leveraged to opportunistically deliver messages related with
the group’s main interest. Section II defines precisely our
assumptions about the kind of systems we consider. To give an
example, messages containing advertisements of rugby events
can be disseminated from host to host by exploiting the social
contacts of the fellow people (i.e., people interested in rugby
might all be interested in advertisements of rugby events and
are bound to meet quite regularly).

In this paper we introduce SocialCast, a routing protocol
expressly devised to support publish-subscribe in intermit-
tently connected human networks. In a nutshell, SocialCast
complements the information about the receivers’ interests,
necessary to routing information, with data about the social
ties of people and their consequent predicted movements. The

0733-8716/08/$25.00 © 2008 IEEE

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 2

dissemination of these interests and social information, as well
as its use for message forwarding and buffering, is described
in Section III. In SocialCast, Kalman filter forecasting tech-
niques [4] are used to predict the future evolution of the
movement based on previous observations on some attributes
characterising social behaviour (e.g., connectivity changes,
colocation), as we illustrate in Section IV. These predictions
are used to estimate which hosts are potentially good message
carriers, i.e., may enable indirect connectivity by moving
into connected portions of the network containing subscribers.
SocialCast exploits forecasting techniques to identify the best
carriers which are also used in CAR [5]. However, CAR
is a unicast delay tolerant routing protocol and it does not
support group communication. Section V demonstrates the
effectiveness of our approach by presenting an evaluation
through simulation over a realistic social mobility model [6]
validated against real traces [7]. Section VII contains brief
concluding remarks, including options for future work.

II. SYSTEM MODEL AND ASSUMPTIONS

We assume a network composed of /N nodes. For simplicity
of treatment we assume they all have the same capabilities, in
particular to store messages in a buffer of maximum size [.
Nodes are mobile and interconnected by wireless links. The
mobility of a node is determined by the user carrying it.

A user, and therefore a node, may act as an information
publisher or subscriber!. Publishers and subscribers are in
general not aware of each other. A node subscription identifies
the node’s interest (e.g., “Rugby” or “Computer Science”).
We assume that each user in the system has at least one
interest. When a message is published (e.g., “Six Nations
Results™), it is tagged with the related interest. The goal of
our protocol is to deliver the message to the nodes with at
least one interest matching the one in the message. As such,
delivery is driven by the message content. In this work we
base matching on interests specified as message topics, but
we conjecture that extensions allowing for more sophisticated
and direct matching against the message content can be easily
integrated in our approach.

Key to this work is the assumption that users with common
interests tend to meet with each other more often than with
other users [8]. This can be observed in practice in our
everyday life. Examples are people interested in information
concerning the department where they work, or friends sharing
the same sport interest. In other words, we assume that the
mobility of users is driven by their social behaviour that, in
turn, is determined by their common interests.

Apart from the aforementioned social behaviour, nodes
can move with arbitrary (not necessarily random) directions
and speeds, and in doing so they may cause an arbitrary
number of network partitions. Furthermore, for what concerns
communication we rely solely on the basic ability of a node to
communicate within its 1-hop neighbourhood, by broadcasting
a message to all the neighbours or unicasting it to a specified
one.

'A node can be, at the same time, a publisher and a subscriber.

III. ROUTING IN SocialCast

In this section, we describe the main characteristics of our
routing protocol. This relies on the notion of wutility for the
selection of message carriers in order to enable store-and-
forward communication. The utility of a node n with respect
to interest ¢ represents how good of a carrier n is for messages
matching ¢. The utility values in SocialCast are linked to
movement patterns and colocation with other hosts: as the
basic assumption is that hosts which have same interest spend
time co-located, the SocialCast routing aims at exploiting as
carrier for messages hosts which have been co-located often
with the interested subscribers. The calculation of utilities are
described in detail in the next section.

Routing in SocialCast consists of three phases: interest
dissemination, carrier selection, and message dissemination.
The distinction in phases is only for illustration purposes, as
in practice each phase is executed one after the other. The
whole sequence is repeated periodically after T units, without
requiring synchronisation across nodes. Figure 2 contains the
pseudo-code for the routing protocol while Figure 1 contains
the necessary variable definitions.

During Interest Dissemination, each node broadcasts a
control message containing the list of its interests to its 1-hop
neighbours, along with the corresponding list of utility values
as indicated in the pseudocode of Figure 2. These are first
locally re-computed based on the current node context before
dissemination (Figure 2, function updateOwnUtilities). This
information is stored in the routing tables of the neighbours,
and is key in determining message forwarding decisions. In
this phase, the identifiers of the last A messages received
are also piggybacked on the utility message (Figure 2, re-
ceived[n]).

During Carrier Selection, the utility of the local node, U, is
recomputed for all interests 7. This utility U; is compared, for
each interest 7, against the highest among those communicated
by neighbours, say U, ; as reported by a neighbour n. If
U, > U; + ¢, this means that, for interest 4, n is a better
carrier than the local node (line 3). € is an hysteresis threshold
which forbids that the message is bounced back and forward
between hosts with similar fluctuating utilities. Otherwise, the
local node is still the best carrier for messages tagged with <.

During Message Dissemination, the content of the buffer
is re-evaluated against the new subscriptions and utilities,
and messages are forwarded to the interested nodes (line 5)
and/or the best carrier (line 8). A copy of messages matching
an interest ¢ is immediately sent to all neighbours whose
subscriptions contain ¢. Note how this ensures that nearby
interested nodes receive messages, but does not imply that
these also become a carrier for messages. In other words,
messages are delivered to the above application layer but not
inserted in the nodes’ buffer. Indeed, carrier role (and buffer
insertion) are determined by the outcome of the previous
phase. If the local node is still the best carrier, no action needs
be taken. Otherwise, a/l messages tagged with ¢ are removed
from the local node’s buffer (line 9) and sent to n, the best
carrier, where they are inserted in its buffer (line 5 of receipt
of DATA message). An issue arises if n is also a subscriber for
¢. In this case, the matching messages can be properly flagged

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 3

to inform the receiving carrier n that they must be inserted in
its buffer instead of being simply delivered to the application.

To avoid unnecessary traffic, a message is forwarded only
if the recipient has not previously received that message.
This can be easily verified by checking the list of the last A
messages piggybacked during the message delivery phase (line
4). Moreover, to prevent messages from remaining forever
in the system, we rely on a time-to-live (TTL) based on
hop counts. Clearly, other solutions are also possible. For
instance, in some applications it could be useful to have the
publisher explicitly specify an expiration time, (e.g., a concert
advertisement is useful only before the time it starts).

Finally, Message Publishing consists simply of inserting
the published message into the local buffer. The message
will then be taken care and forwarded to the interested
subscribers as well as “moved” to a better carrier, if and when
encountered, according to the routing protocol we described
thus far. In other words, SocialCast works based on whatever
the content of the buffer is, regardless of how such content got
inserted. Moreover, to ensure high delivery, a publish operation
actually inserts -y copies of the message. Each copy is routed
independently, i.e., whenever a better carrier is encountered
only one copy is removed from the local buffer and sent to the
new carrier, to ensure that the copies are spread over time and
space across the system. Note that the publisher is the only
node that duplicates messages, and does so only at publish
time. Therefore, at any time the network contains at most vy
copies of the message. This approach to message distribution
is shared by other approaches such as Spray&Wait [9].

IV. COMPUTING UTILITIES FROM SOCIAL PATTERNS AND
MOBILITY

In this section, we illustrate the definition of the utilities
used to select message carriers. We argue that social patterns
and mobility can be used to measure the suitability of a host
as message carrier for subscribers to a given interest.

First of all, we define an attribute as a scalar representation
of a dimension of the problem that affects the utility of a
host as a potential message carrier. The utility is in general
a function of multiple attributes representing the different
dimensions of the problem (mobility, colocation, battery level,
etc.). The primary utility attribute we leverage is the probabil-
ity of a user to be co-located with another sharing the same
interest. In this case, co-location enables direct delivery of
messages matching the shared interest. This aspect is captured
by the probability of subscriber co-location. However, as in
real life, a person meeting many people has more options
to disseminate information. Therefore, we also exploit the
change degree of connectivity as another utility attribute to
base forwarding decision upon. A node has a high change
degree of connectivity if it frequently changes its neighbour
set (e.g., because it is moving, or is static in a very dynamic
area).

Knowledge about the current values of these social at-
tributes is helpful, but only to a limited extent. In fact, what
really matters are the values that the attributes are likely to
assume in the future. We compute these predicted values using
forecasting techniques based on the Kalman filter [10]. These

techniques do not require the storage of the entire past history
of the system and are computationally lightweight, making
them suitable for a resource-scarce mobile setting. We exploit
the fact that colocation patterns with subscribers to a certain
topic ¢ are not random, but they are based on the social
network that link all the individuals carrying the devices.

Kalman filters are a technique for discrete signal processing
that provides optimal estimates of the current state of a
dynamic system described by a state vector. The state is
updated using periodic observations of the system, if available,
by a set of prediction recursive equations. Our prediction
problem can be expressed as a state space model: a time series
of observed values is used to represent the evolution of the
attributes taken into consideration, from which we can derive
a prediction model based on an inner state described by a set
of vectors. Formally, given the current input observed value Y
and the current state X, a predictor based on Kalman filters
is able to provide an estimate for the next value of the time
series Yyy1. R

Yir1 = f(Xe, Ye)

We assume that the lag between two subsequent samples Yy
and Y;4 of the time series is equal to 7. Trend and seasonal
components [4] could be added as well. The prediction is re-
evaluated periodically according to the (configurable) value of
7. We use a Kalman filter predictor for each attribute. The filter
takes as input the current value at time t of the time series
representing a particular attribute and returns the estimated
value of the time series at time ¢ 4+ 7 as output.

A summary of the forecasting model is presented in the
appendix of this article and a comprehensive presentation
of these techniques can be found in [5]. However, it is
fundamental to present how a host computes the input values
to the Kalman filter, i.e., the value of the utility at time ¢, for
which the filter computes the predicted value at time ¢ + 7.

The colocation of h with a subscriber for interest ¢ is

Ucot, , (t) = {

A value of 1 indicates that A has been co-located with
subscribers for ¢ at time ¢.
The change degree of connectivity of a host & is

_ In(t =) Un®)| — [n(t — 1) N n(t)]
Ucdey, (t) - |n(t — 7') U n(t)|

where n(t) is h’s neighbour set at time ¢. If [n(t—7)Un(t)| =
0 (i.e., the node was isolated in both the previous and current
instants of time), Ueqc, (t) is set to 0. The formula yields the
number of hosts that became neighbours or disappeared in
the time interval [t — 7, ¢], normalised by the total number of
hosts met in the same time interval. A high value means that
h recently changed a large number of its neighbours.

These values are fed into Kalman filter predictors, which
yield the predictions Ucop, ; and Ucqe, of these utilities at
time ¢+ 7. These are then composed into a single utility value
using results from multi-criteria decision theory [11], as

~ ~

Uh,i = Wedey, Ucdch + wcolh,i Ucolhyi

1 if h is co-located with a subscriber for 7;
0 otherwise

which represents how good of a carrier h is for messages
matching i. The weights w denote the relative importance of

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008

Variables

self: node’s own id

N set of node’s current neighbours

T: set of node’s interests

R: set of the identifiers of the last A messages received

BB: the message buffer

U[i]: node’s own utility associated to interest i

interests[n]: the set of neighbour n’s interests

received[n]: the set of message received by neighbour n
utility[n, ¢]: the utility value of neighbour n, associated to interest ¢

Messages

o DATA< i, replica, next >: a data message tagged with interest i. next identifies the neighbour to forward the message to, while replica
is a boolean flag indicating whether the message is being forwarded to a new carrier (replica = TRUE) or carried (replica = FALSE).
e CONTROL< U, I, R,n >: control message disseminated periodically by each node. It contains the utility values (U), the interests (/) and

Functions

send (m, r): send message m to recipient r
broadcast (m): send message m to all 1-hop neighbours
deliver (m): deliver message m to the application

the identifiers of the last A messages received (R) of the sender node n.

updateOwnUtilities (): update node’s own utility for interest 7 based on its mobility and its co-location

Fig. 1. Pseudo-code definitions of the SocialCast routing protocol.

Interest Dissemination
1: updateOwnUftilities ()

2: create new message c: CONTROL< U, Z, R, self>
3: broadcast (c)

Invoked on receipt of a CONTROL message from neighbour n.
receive CONTROL< U, I, R,n >

1: received[n] <— R

2: wtility[n] — U

3: interests[n] «— I

Carrier Selection

1: for all m € B do
2: m.next —_L

m.next «<— n

Message Delivery

1: for all m € B do
m.replica <— FALSE
for all z € NV do

send (m, x)
m.replica < TRUE
if m.next #_L then

send (m, m.next)

B «— B\ {m}

R R ARl

Invoked on receipt of a DATA message from neighbour n.
receive DATA< i, replica, next >

1: if 4 € T then

2: deliver (m)

3: m.TTL +— m.TTL + 1

4: if m.replica =TRUE A m.TTL < maxTTL then
S: B — BU{m}

Message Publishing.

1: insert y instances of the published message into B

3: if 3n,ist.n € NAm.d =i Autility[n,i] > U[i] + € A m € received[n] A
(An' € N st utility[n’,i] > utility[n, i] A m & received[n’]) then

if 3i s.t. m.i =i A i € interests[xz] A m € received[z] then

Fig. 2. Pseudo-code of the SocialCast routing protocol.

each attribute. Their value depends on the application scenario
and we assess their impact in Section V.

Our protocol relies on predictions about the future values of
the attributes. However, in some conditions predictions are not
reliable, e.g., because the time series describing a particular
attribute is random or exhibit a behaviour that cannot be
forecasted with accuracy (i.e., within a given prediction error)
using the model used. Therefore, it is important to assess
the confidence level of predictions, and modify forwarding

decisions accordingly. To assess the quality of predictions we
use the technique presented in [12], based on the analysis of
the prediction error [13]. A predictability component receives
in input both the observed value (at time ¢) of a attribute and
the predicted value (computed at ¢ — 1). The analysis over
time of the difference between these two values enables us to
determine whether the prediction model (the Kalman filter in
our case) has enough information to predict the next value of
the time series with the required accuracy.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008

Another important note is that the framework used for
prediction is general enough for inclusion of other attributes,
beyond the ones used (colocation and change degree of
connectivity), such as remaining battery power which might
be very important for sensor network applications [14].

V. EVALUATION

In this section we report about an evaluation of SocialCast
based on a social mobility model.

A. Simulation Settings

We evaluated the performance of our protocol using OM-
NeT++ [15], an open-source discrete event simulator written
in C++.

1) Mobility Model: Traditionally, mobile wireless networks
simulators assume a mobility model in which nodes move
randomly in the space. This, however, does not suit our needs:
SocialCast exploits prediction of co-location and movement,
the use of a purely random mobility model would prevent an
effective analysis of the protocol. To this end, we adopted
the Community based mobility model [6], characterised by
mobility patterns founded on social networks. The model
is based on the following observation: in mobile networks,
devices are usually carried by humans, so their movement is
necessarily based on human decisions and social behaviour.
To capture this type of behaviour, the model is based on the
social network that links these individuals. In other words, the
movements of both groups as well as single hosts is driven by
social relationships.

The key problem is the generation of a synthetic social
network with realistic characteristics in terms of clustering
and average paths between the members of communities
(i.e., clusters of nodes present in the social network). Our
approach is based on the so-called Caveman model proposed
by Watts in [16] to generate a network characterised by a
realistic clustering degree. The social network is built starting
from a certain number of fully connected graphs representing
communities living in isolation, like primitive men in caves.
According to this model, every edge of the initial network
in input is re-wired to point to a node of another cave with
a certain probability p. The re-wiring process is used to
represent random interconnections between the communities.
The result of this process is a square matrix representing the
social network with a row (and a column) for each host. The
value in position ¢, 7 describes the relationship between the
hosts 7 and j. Real values between 0 and 1 are used to describe
the intensity of the relationships among the individuals. 1
represents a very strong relationship, 0 no relationship at all.

The second step is the detection of the communities in the
synthetic social network: in order to do so, we use the Girvan-
Newman clustering algorithm [17]. The number of these
communities may be lower than the initial caves used as seeds
of the networks given the re-wiring phase. The generation of
the social network and the detection of the communities take
place during the setup phase of the simulation (i.e., at time
0).

The simulation area is divided into a grid formed by a
certain number of squares. Each group detected using the

TABLE 1
SIMULATION PARAMETERS

Simulation Environment Parameters

Default value

Simulation area 4 km x 4 km
Number of hosts 100
Hosts speed [1—6] m/s
Transmission range 250 m
Percentage of publishers 50 %
Percentage of subscribers 50 %
Publishing interval 60 s
Number of interests 10
Simulation duration 8 hours

Protocol Parameters

Default value

Weight change degree of connectivity utility (weqc) 0.25
Weight colocation utility (weo;) 0.75

Buffer size (3) 00

Number of copies () 3
Size buffer last messages IDs received (\) 100
Retransmission interval (717) 20 s

Hysteresis threshold (e) 0.2

Girvan-Newman clustering algorithm is then placed in one
of these squares. Each host then selects a goal (i.e, a way-
point like in the Random Way-Point model) inside the square
and moves towards it in a straight line. When this goal is
reached, the next goal is chosen inside the square associated
to the group of hosts that exerts the highest “social” attraction
towards it (including the current one). This group attraction
is calculated by summing the values that express the intensity
of the relationship between the hosts and the members of the
community (extracted from the matrix that describes the social
network). The hosts move towards the new goal in a straight
line as before until they reach it. Then, we have a new decision
point and the selection process of the new goal is repeated.

The model was validated against real traces provided by
Intel Research [7]; in fact, this model is able to reproduce the
distributions of inter-contacts time and contact duration that
characterise this set of traces. More specifically, the model
generates distributions that are scale-free in certain ranges of
values as observed in these traces. At the same time, it is able
to take into account the structure of the underlying human
network [16].

2) Default Parameters: In real life, people sharing similar
interests happen to be co-located more frequently among
each others than with others. This property is crucial to our
protocol as it can be exploited to perform accurate predictions
over future movements of nodes. To reproduce this behaviour
in our simulator, we map one interest to each community
of the synthetic social network described in the previous
section, such that nodes have more probability to be co-located
with other nodes having the same interests. Moreover, we
assumed that a node can subscribe to at most one interest:
since messages belonging to different interests are routed
independently, multiple interests do not bring new insights.
Finally, publishers are uniformly chosen among all the nodes
in the simulation space.

We assume that half of the nodes are subscribers and half,
possibly with some overlapping, are publishers. The number
of possible interests in the network is 10. The publishing
interval is set to 60 s. To enable proper message dissemination,
messages are published during the interval [3000 s, 3500 s]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008

07t ¥
06 | &
05 | X

Delivery Ratio
5]

04} ¥
0.3
0.2 ><

0.1 X L L L

!

20

25

30

35

40

45

50

4000 T T

3800 |
3600 |
3400 | -
3200 |
3000 |
2800 |
2600
2400 | .'.
2200 |

Latency (s)

EDEIDEDBDEIDEIDEDEIDDDE}DDDDBDBDDDBDEDBDEIDEIDEJ

2000 I L | I

25

30

35

40

45

50

Numbers of copies (y)

No Prediction ----x--- SocialCast &

(a) Delivery

50000 T T T T T T
45000
40000
35000
30000
25000
20000
15000
10000
5000

0 1 L L L 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Numbers of copies (y)

Network Traffic (messages)

No Prediction --->¢--- SocialCast -3

(b) Network Traffic

Fig. 3. Delivery and overhead against number of replicas.

over a total period of 28800 s (8 hours). A summary of
all the simulation parameters is presented in Table I. The
simulation area 4 km x 4 km has been chosen in order
to have a sufficiently sparse and disconnected network. The
default values of the utility weights w.4. and w,,; are those
providing the best performance in terms of delivery ratio in
our simulations.

With respect to the Community based mobility model,
in our default simulation scenario, the simulation area is
4km x 4km and is divided into a grid—20 x 20. In the
default scenarios we consider 10 initial caves with a re-wiring
probability equal to 0.1 as in [6]. The re-wiring probability
is a measure of the connectivity among individuals of differ-
ent communities (i.e., the initial caves). 0.1 means that the
probability of having a relationships between individuals of
different communities is 0.1.

Finally, we averaged results over 20 runs, using different
seeds for each scenario. We do not show the confidence
interval in the graphs, since they are very small. In fact, the
maximum standard deviation for the delivery is 0.016, whereas
for the overhead is 3,212 .

To provide more insights, we compare SocialCast with a
variant in which prediction is not used and where the next
carrier is selected on a random basis. This variant is imple-

Numbers of copies (y)

SocialCast &
SocialCast (publisher in group) --m--

Fig. 4. Latency against the number of replicas.

mented as follows. As in SocialCast, each node periodically
tries to retransmit the copies of the messages contained in
its buffer. The mechanisms are identical to SocialCast except
for the fact the node selects a random entry in the routing
table (also considering itself). Then the message is sent to the
selected node where it is stored (or is maintained in the buffer
of the node) for a subsequent retransmission. Similarly to
SocialCast, if subscribers are in the neighbourhood, messages
are forwarded to them too. This enables us to assess the
contribution of prediction.

B. Simulation Results

We now present the results of our simulations of SocialCast.
In all our experiments, we mainly concentrate on message
delivery ratio and network traffic. The former accounts for
protocol effectiveness and is defined as the ratio between
the actual number of messages delivered to the interested
subscribers and the ideal one. The network traffic, instead,
is constituted by the number of forwarded messages and
measures the efficiency of the protocol.

1) Number of Replicas: The first parameter we studied is
the number y of replicas in the system. This is a key parameter,
because it has a large impact on the network traffic. Results
in Figure 3(a) show that, through prediction, SocialCast is
able to achieve high message delivery with less replicas than
the ones needed if prediction is not used. Indeed, 5 replicas
are sufficient for SocialCast to reach more than 90% of
subscribers while without prediction three times that number
of replicas is needed to obtain similar performance. Notably,
although delivery is greatly improved in SocialCast (e.g., with
~ = 5 prediction boosts delivery from 40% up to 93%), the
network traffic is not increased (see Figure 3(b)). The reason
stems from the fact that network traffic strongly depends on
the number of replicas. Therefore, since both SocialCast and
its variant share the same -, the traffics are similar. However,
leveraging off predictions, SocialCast can select better carriers
which enable reaching more subscribers, thus achieving better
performance without increasing the traffic.

In these experiments, we conservatively assumed that pub-
lishers are uniformly chosen among all the nodes in the

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 7

B R
09 L EID X*XXXX’X’X'XXX****

. 5000
08 o o]
0.7 |

0.6 | ¥]
05 X 1

04 | ¢ X g

Delivery Ratio
2|

03 % X :
0.2 g X]
0.1 1/ :

o 1 L 1 1 L 1 L 1 L
0 5 10 15 20 25 30 35 40 45 50

TTL (hops)
No Prediction ------
(a) Delivery

SocialCast &

45000 T T T T T T

40000 | 0000000

X
e '

X
--‘i
oo

35000 F
30000 r

- -'.

20000 = E

1

10000 |- o 1

25000

15000

Network Traffic (messages)

5000 1

0 1 L L L 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

TTL (hops)

No Prediction --->¢---
(b) Network Traffic

SocialCast &

Fig. 5. Delivery and overhead against time-to-live.

simulation space. However, we also replicated these experi-
ments under a different configuration in which publishers of a
given event are selected only among the subscribers for such
event. We measured the impact on SocialCast performance;
if no prediction is used, the performance are identical to the
uniformly distributed scenario as the location of the publisher
is irrelevant in this case. As expected, we did not observe
significant differences in terms of delivery and overhead
because, even if the message is published in a random location,
our protocol is able to efficiently route it in a few hops towards
the subscribers by properly identifying the best carriers. On
the other hand, when the publishing node is also a subscriber
for the published message, the dissemination occurs much
faster because subscribers are naturally good carriers (their
co-location is very high). Hence, as depicted in Figure 4, the
average latency of SocialCast to reach a subscriber decreases
considerably.

In the interest of space, from now on we will only show
results in the uniformly distributed publishers. Similar trends
are observable for the other case.

2) Time To Live (TTL): The Time To Live of a message
(TTL) represents the dual parameter of v, as it provides
complementary information. Indeed, v controls how many
instances of the same message are around, while TTL defines

50 T T T O e e e
SocialCast
45 - No Prediction === -
40 .
35 | 8

Messages (%)

il 0@ = =
Q8. 7y 76X %Py On %) 7Sy 8 6y O) ~% X
R AN I N BN A OO IO NGO PE OO
RO AN AR AN AN A A X AR
hop count

Fig. 6. Hop count distribution.

for how far, in terms of hops, a message will be around.
Clearly, given a fixed v, by increasing the number of possible
hops, there are more chances to reach other subscribers. Unfor-
tunately, this comes at the price of a higher overhead because
the message will stay around longer. Figure 5 shows the
performance of our protocol against different values of TTL.
As expected, prediction enables decreasing the TTL because
a message is forwarded only when needed, i.e., when a better
carrier or a subscriber is encountered. Conversely, without
prediction, messages are forwarded in a random fashion and
hence more hops are needed to successfully contact the sub-
scribers. This is confirmed in Figure 5(a): 15 hops per message
are enough to SocialCast to reach more the 90% of subscribers
while the variant without prediction requires at least 35 hops
per message. Clearly, the two traffic curves show similar trends
because the TTL (as well as) directly influences the traffic.
Notably, however, the network traffic generated by SocialCast
saturates for T7I'L > 25. Indeed, when all the best carriers
and the subscribers have been reached (i.e., the delivery hits
100%), the messages are not replicated further. This happens
for a value of TT'L equal to 25. The traffic generated by the
variant without prediction, instead, increases linearly with the
TTL because it continuously forwards messages, also when
not needed. This is a result of paramount importance because
it demonstrates that our protocol does not waste resources
generating additional traffic when not needed.

This behavior is also confirmed in Figure 6 in which we
plot the distribution of the number of hops needed to reach a
subscriber, when no TTL is used. As expected, in SocialCast
the vast majority of messages are delivered to subscribers
after few hops and, notably, none required more than 31 hops.
Conversely, when no prediction is used, the number of hops
increases significantly (up to 93 hops).

3) Buffer Size: Beside network traffic, another key factor to
observe is represented by memory consumption. Since Social-
Cast is meant to run on handheld devices, optimising memory
is a mandatory task. To investigate this aspect, in Figure 7
we plot a snapshot of the distribution of buffer sizes after’
10,000s. Results confirm our expectations: since SocialCast

2We took snapshots also at other instants and we observed similar distri-
butions.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 8

80 T T T T T .
SocialCast
No Prediction === |
<]
[2] 4
Q
el
s]
Z 4
[oX 7 V/ 2, < &,
7, 2 6 7 [=X 7,
o O B Y%
buffer size
Fig. 7. Buffer size distribution.

is able to identify the best carriers for each message, messages
will be stored only on a small subset of nodes, thus enabling
an efficient usage of memory resources. Indeed, almost half
nodes store less than 5 message in their buffer while only the
2% of nodes hold more than 30 messages. This shows that
our protocol is able to select the best carriers and to limit
message buffering only on few specific nodes. Instead, as far
as the random protocol is concerned, as expected, the large
majority of the hosts has a buffer occupation under 10. This
means that there are no particular hosts that are selected for
their characteristics as good carriers.

4) Host Speed: We also evaluated our approach with re-
spect to the speed of nodes. Fast carriers are preferable over
slow ones because they can significantly increase message
dissemination. Rather than the node degree, it is the number
of encountered nodes per unit of time which makes the
difference. This is taken into account by the change degree of
connectivity, shown in Figure 8(c). In any case, faster nodes
ensure better performance in terms of delivery latency. In
particular, the two weights w.q4. and w.,; play a major role
in this respect because the former accounts for node mobility
(change degree of connectivity) while the latter focuses on
node co-location. To assess their impact, we performed a
number of experiments with various combinations of weights,
using different speeds. We can appreciate the impact of the
choice of the values of the weights only with respect to speed
variations. To recreate the heterogeneity typical of real sce-
narios, we set nodes’ speed in a range between 1m/s and an
upper bound S which we varied from 1 to 20m/s. Results are
provided in Figure 8. Not surprisingly, co-location is essential
to ensure proper delivery. Indeed, given the social network
underneath, if a node has been co-located with another node
with a given interest, it is highly likely that it will be co-
located again in a near future with another node sharing the
same interest. This statement is fully supported by Figure 8(a):
when co-location is not taken into account (i.e., Weo; < 0.5)
delivery drops®. On the other hand, network traffic is not
significantly impacted by weights because it mostly depends
on the value of v and TTL (see Figure 8(b)). This yields that,

3Note that we,; = = means w.q. = 1 — x since we considered only two
weights normalized in order to have a sum of weights equal to 1.

. B Fea ,B‘@L;:E'j gg
= A"*"fE A o9
et .,_,6.,“." e

o o-® L4 "G‘\o L0
o} O
9 g

o . 1

g o

o 1

[

=

©

3 |
0.4 r 1
03 F 5 X AN 1

P .X\X"'x'“%-*‘x’/ VY x“‘x—»——X"-X----x /X\‘x»«,
02 1 1 L L Il 1 1 1 Il
2 4 6 8 10 12 14 16 18 20
Speed Upper Bound S
(a) Delivery
16000
15000

m

[}

(o2}

& 14000

173

[0}

E

£ 13000

[

'_

X i

5 12000 T4 -

2 7 % X x A
11000 g o \‘Xxx X ><>
10000 1 1 1 1 L 1 1 1 1

2 4 6 8 10 12 14 16 18 20
Speed Upper Bound S
(b) Network Traffic
9000 T T T
SocialCast (w, W, =0, chc-1) o
¥ SocialCast (W, = 0 é’b Wege = 0.75) - -@-
8000 [SomalCast fw ol = 0.5, Weyo = 0.5) —am A
! SocialCast (W, = 0.75, Wy, = 0.25) @
7000 SocialCast (Wgy = 1, dec_o) A
[X
KRN Y)

5 60001 g

& 50009 NN .

k))

3 %N
4000 %

o,
3000 |
2000
1000 -
2
Speed Upper Bound S
(c) Latency
Fig. 8. Delivery and overhead against the lower bound of the speed (lower

is always 1).

while not significantly impacting on the traffic, co-location is
of paramount importance to correctly steer messages towards
subscribers.

Looking at these results, one might argue that the utility
related to the change degree of connectivity (U.q.) is of no
use, because in terms of delivery and network traffic there is no
appreciable difference between w.q. = 0.5 (corresponding to
Weor = 0.5) and w4, = 0 (corresponding to w,,; = 1). Never-

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 9

& J—
0.8 1

0.6 1

0.4 1

Delivery Ratio

0.2 .

8 10 12 14 16 18 20
Interests

SocialCast &
SocialCast (y=10) --m--

No Prediction -------
No Prediction (y=10) -

(a) Delivery

40000 T T T T T T

35000
b
30000

25000

20000

Network Traffic (messages)

10000 : i i e S S 4
8 10 12 14 16 18 20

Interests

SocialCast &~
SocialCast (y=10) --=-

No Prediction --->---
No Prediction (y=10) -

(b) Network Traffic

Fig. 9. Delivery and overhead against the number of interests.

theless, taking into account also node mobility is beneficial in
terms of latency. Indeed, as charted in Figure 8(c), the ability
to identify faster carriers allows for a faster delivery. For
instance, when the maximum speed is 6m/ s, using weq. = 0.5
instead of w.q. = 0 provides a reduction of the average
delivery latency from 4000s to less than 3000s. Clearly, when
the average speeds become higher (i.e., when S increases),
the role of U.4. becomes less evident because all nodes move
reasonably fast.

5) Interests: An important feature of our approach is the
ability to adapt to network conditions and to avoid generating
traffic when not needed. We already shown in Figure 5(b)
that SocialCast does not forward additional messages un-
less required. To further demonstrate this, we run a set of
experiments with different numbers of interests. Since in
our simulations we assumed at most one interest per node,
increasing the number of interests yields a lower number of
recipients per message. The aim is to show that our protocol
is able to autonomously tune the traffic generated according
to the popularity of the interest, which, of course, is unknown
to the publisher.

Charts in Figure 9 support this claim. While delivery is al-
ways well above 80%, SocialCast, in the default configuration
(y = 3), has considerably smaller overhead, 11,000 instead

1% T % =
0.8 |]
il
T 06 8
o
2
[
2
T 04 g
a
0.2 | E
0 1 1 1 1 1
1000 1500 2000 2500 3000 3500 400C
Area Side

No Prediction ----x--- SocialCast -3~

(a) Delivery

46000 g—— : L
44000 | e, 1

2 42000 | 1

(2] .,

[} Y

% 40000 |- - 1

g

E 38000 | . 1

Q

T 36000 | = 1

= :

K.~ ",

£ 34000 | 1

2 .

S 32000 | gt
30000 | |
28000 1 1 i 1 il

1000 1500 2000 2500 3000 3500 400C
Area Side

No Prediction ------ SocialCast &

(b) Network Traffic

Fig. 10. Delivery and overhead against side length.

of 15,000, when the number of interests increases from 7
to 20. Note that this difference is not caused by the smaller
number of messages forwarded to subscribers but, instead, it
is a consequence of the fact that the fewer the subscribers
are the fewer nodes have been co-located with them and,
hence, the fewer good carriers will be around. This can be
proved by looking at the performance when no prediction is
used: the generated traffic remains constant because, without
prediction, the protocol has no indications about when (an to
which neighbour) a node needs to forward a buffered message.

Looking at the chart in Figure 9(a), one might wonder why
delivery increases with the number of interests. The reason
lies in the number of interested nodes per message: the fewer
interests there are, the more nodes must receive the message.
Hence, v = 3 is not sufficient to contact all the interested
nodes. Indeed, increasing « to 10 enables contacting all the
interested nodes®. Conversely, when the number of interest
increases (i.e., when the number of recipients per message
decreases), v = 3 is enough to achieve full delivery. It is
interesting to note, however, that even with v = 10, we have
the same decreasing trend in the network traffic, confirming
what we argued above.

4As shown in Figure 5(a), increasing T'TL instead of ~ would have
achieved the same result.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 10

6) Density: Finally, the last parameter we investigated is
the area density. Clearly, in a dense area the number of
forwarded messages will be higher than in a sparse one
because multiple routes will be available. Hence, to enable
a fair comparison among the different scenarios, we run our
experiments without imposing any TTL to remove any bias.
Interestingly, since messages can propagate for ever, both
protocols, with and without prediction, achieve full delivery
(as shown in Figure 10). Nevertheless, SocialCast outperforms
the variant with no prediction because, although the forwarded
messages are not limited, it is able to decrease the network
traffic when not needed, i.e., when the network becomes sparse
and it is crucial to identify the good carriers.

All the aforementioned results confirm the suitability of So-
cialCast for our scenarios and demonstrate the improvements
introduced by our prediction mechanisms. Indeed, thanks to
prediction, SocialCast performs more accurate selection and
provides a more efficient usage of resources, both in terms
of network traffic and memory. In addition, the ability to
predict over the co-location and the node mobility allows
for maintaining a very high and steady event delivery with
a reasonably low traffic and latency.

VI. RELATED WORK

To our knowledge, there is very little work addressing the
use of publish-subscribe paradigms for delay-tolerant network-
ing. Most research projects about routing in Delay Tolerant
Networks (DTN) [18] have focused on unicast [5], [19] and
on opportunistic infrastructure-less dissemination [7], [20]. In
[21], Lindgren et al. propose a probabilistic routing approach
to enable asynchronous communication among intermittently
connected groups of hosts. The calculation of the delivery
probabilities is based, somewhat simplistically, on the period
of time of colocation of two hosts and not on a forecasted
colocation probability. Zhao et al. in [22] discuss the so-
called Message Ferrying approach for message delivery in
mobile ad hoc networks. The authors propose a proactive
solution based on the exploitation of highly mobile nodes
called ferries. These nodes move according to pre-defined
routes, carrying messages between disconnected portions of
the network. Our approach does not assume the a priori
knowledge of the movement of the potential carriers, but it
is able to infer it by evaluating the history of colocation with
the other hosts. The Context-aware Adaptive Routing (CAR)
protocol is presented in [5]. The approach has quite a refined
model of prediction over time series which has inspired the
forecasting-based techniques adopted in this work. However,
CAR deals exclusively with unicasting and its forwarding
model is based on addresses and not on interests. Recently,
the key issue of the selection of message carriers has been
addressed in [23] by formulating it as a resource allocation
problem.

Approaches based on the replication of messages on all
hosts have also been presented, such as epidemic-style tech-
niques [24] that exploit a virus-spreading metaphor to indicate
the dissemination of information to all. The problem of
broadcasting in delay tolerant networks has also been studied
in [3], where an analysis with different mobility models is pre-
sented. Solutions which exploit a more constrained number of

message copies have exploited erasure coding techniques [25]
to improve performance in terms of delivery ratio given a
certain degree of redundancy in the system [26], [27].

While broadcasting has attracted a lot of the researchers
interest, the work presented in [2] concentrates on DTN multi-
cast routing and temporal issues for delay tolerant networking,
trying to account for temporal group membership. More
recently, Yoneki et al. in [28] discuss the design of a publish-
subscribe communication overlay based on the distributed de-
tection of social groups by means of centrality measures [29].
This system relies on the detection of communities for event
notification, whereas our approach is based on contacts be-
tween pairs of hosts only. In other words, it assumes a previous
knowledge of all the social ties between all the individuals
carrying the devices and the emerging community structures
before starting the communication process.

In terms of opportunistic unicast networking in human net-
works, social ties have been exploited to support communica-
tion in Pocket-Switched Networks: for example, LABEL [30]
exploits clustering algorithms to group nodes in communities
by evaluating their colocation patterns. Messages sent to a cer-
tain recipient are forwarded to hosts of the same community,
since these have a higher probability of getting in reach of the
recipient in the future. However, the model requires that every
node of the network is statically “tagged”, i.e., associated to
a certain community. Another example of unicast routing in
intermittently connected mobile ad hoc networks founded on
social network concepts is SOLAR [31] that exploits macro-
mobility patterns between groups of nodes that are detected
using machine learning techniques. More recently in [32] the
authors use social network analysis to extract communities
ties among the individuals carrying the devices. This a priori
knowledge of the structure of the underlying social network
is then used as a basis of the routing decisions. SocialCast
instead implements a one-to-many communication paradigm
and is based on colocation and movement patterns rather than
on an explicit analysis of the emergent clustering of hosts into
communities.

Solutions to support communication by means of a pub-
lish/subscribe paradigm have been proposed for large-scale
wired networks. Most of these approaches target fixed net-
works of brokers, with some notable exceptions (e.g., [33])
supporting also client mobility. These solutions, however,
are clearly not suitable to our scenario, in which no fixed
infrastructure can be assumed. In the close area of MANETS,
there has been a consistent body of work concerning multicast
communication. However, results are not directly reusable
given the peculiarity posed by content-based routing, which
instead has been addressed by very few works in litera-
ture. Content Based Multicast (CBM) [34] and STEAM [35]
provide a notion of spatial scope which defines the area
messages are propagated within. In particular, CBM allows
publishers to specify the direction and the distance a message
is spread. Similarly, STEAM limits the message propagation
to a proximity area, inside which messages are broadcast
and locally matched against subscriptions. With respect to
these approaches, our protocol enjoys wider applicability,
as messages are delivered throughout the network, based
on node interests, regardless of their locations. Autonomous

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 11

Gossip [36] shares an idea similar to ours, by pushing mes-
sages towards potential receivers in a content-based fashion,
according to node “similarities”. However, the authors neither
give details on how this notion of similarity is actually
computed and disseminated, nor provide quantitative analysis
on the performance of their protocol. Another closely related
approach is discussed in [37], where nodes keep track of
the last time they have been in range of others with the
same interests. This information is used to select the best
forwarders to deliver a message. This prediction mechanism
is more primitive and coarse-grained than ours, therefore
implying more inaccurate message forwarding. Moreover, the
approach assumes a very simple mobility model and offers
no support for disconnected operation. In [38], an approach
to publish-subscribe for MANETs based on a combination
of probabilistic and deterministic information dissemination
techniques is presented: SocialCast instead uses a prediction
based mechanism to drive the spreading, combined with store-
and-forward to cope with intermittently connected networks.

Finally, we believe that SocialCast can be an example of
protocol supporting new abstractions for modern communica-
tion systems inspired by the publish/subscribe paradigm like
those proposed in [1].

VII. CONCLUSIONS AND FUTURE WORK

This paper presented SocialCast, a interest-based routing
protocol to support delay tolerant communication in human
networks. The approach assumes that socially bound hosts are
likely to be co-located regularly: these colocation patterns are
then used to efficiently route the messages from publishers
to interested subscribers. The social ties selection is made by
taking into account predictions about contextual parameters
(e.g., colocation and mobility patterns), based on previous
observations. We have evaluated our approach in realistic
scenarios with disconnections to demonstrate the advantages
of the prediction and store and forward strategies in terms
of message delivery, delay and overhead. We would like to
be able to test the performance of SocialCast with a higher
number of interests: this implies the re-engineering of the
mobility framework of our simulator. We also plan to perform
an analytical evaluation of the protocol. The key issue is
to characterise network connectivity given the fact that the
underlying connectivity graph is time-variant dependent on
the mobility model.

We plan to implement SocialCast on the Haggle plat-
form [39] as a Forwarding Algorithm. Up to our knowledge
this will be the first available protocol to support one-to-many
communication for this framework. We also plan to refine the
subscription model, allowing for more refined content repre-
sentation, and to design filtering mechanisms based on it. The
integration of temporal validity constraints in the subscription
semantics is among our current research directions. However,
we observe that these aspects are orthogonal to the forwarding
mechanisms presented in this article. Future work will also
address the dynamic adaptation of the number of replicas
to network conditions, as well as the inclusion of additional
contextual information in our predictions as encompassed by
the general framework we described in Section IV. This will

enable further improvements, as well as the deployment of our
technique to related fields, e.g., wireless sensor networks.

ACKNOWLEDGMENT

The work is partially supported by projects EPSRC CREAM
and ESF MINEMA. Mirco Musolesi is supported from a
research program in the Institute for Security Technology
Studies at Dartmouth College, under award 60NANB6D6130
from the U.S. Department of Commerce. The statements,
findings, conclusions, and recommendations are those of the
authors and do not necessarily reflect the views of the National
Institute of Standards and Technology (NIST) or the U.S.
Department of Commerce.

APPENDIX

In this appendix we present the forecasting model used for
the prediction of context information in our protocol.

A state space model for a time series Y; consists of two
equations. The first one called the observation equation is the
following

Yt = GtXt-l-Wt t= 1,2,...

with W, defined as’
W, =WN(0, R;)

This equation defines the w-dimensional observation {Y;} as
a linear function of a v-dimensional state variables {X;} and
a noise term. The second one is the state equation defined as
follows

Xt+1 :FtXt+Vt t:1,2,

with V; defined as
Vt = WN(07 Qt)

This equation determines the state X;y; at time ¢ + 1 in
terms of the previous state X; and a noise term. Let w as
the dimension of Y; and v as the dimension of X;, {G;} is a
sequence of w x v matrices and {F;} is a sequence of v X v
matrices. We assume that {V;} is uncorrelated with {W;},
even if a more general form of the state space model allows
for correlation between these two variables. Analytically, we
can rewrite this condition as follows

E(W,VI)=0 Vs,t

We also assume that the initial state X; is uncorrelated with
all of the noise terms {V;} and {W,}.

With the notation of P;(X) we refer to the best linear
predictor (in the sense of minimum mean-square error) of X
in terms of Y at the time ¢. P;(X) is defined as follows

P(X) = [P(X)) P(x,) 1"

where

Pt(XZ) = P(X”Y(),Yl, ...,Yt)

SWN stands for White Noise, which is a sequence of uncorrelated random
variables Xy, each with the same mean and variance o2. Therefore, it is
also an example of stationary time series. More specifically, the notation
WN (0, {R:¢}) indicates white noise with zero mean and variance Rj.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 12

P(X;|Yo,Y1,...,Y:) indicates the best predictor of X; given
Yo, ..., Y:. We can also observe that P;(X) has the following
form

P(X)=AoYo+ ... + A Y,

since it is a linear function of Yy,...,Y;. It is possible to
prove [4] for the state space model discussed in the previous
section that the one-step predictor

)A(t = Pa(Xy)
and their error covariance matrices
O = E[(X; — Xo)(Xe — Xo)T]
are determined by these initial conditions
X; = P(X1|Yo)
0 = B[(X; — X1) (X1 - Xy)7]
and these recursive equations
Xip1 = F Xy + 0,07 1Y, — GiXy)
Q1 = FUFEL +Q — 0,A;7'07

where
A, = GG + R,

@t = FtQtG;;F

As estimation model, we use a basic state space model
composed of the following two scalar equations

Yi=X;+W; t=1,2,..
with
Wi =WN(0,Qy)
and
Xip =X, +Vi t=1,2,...
with
Vi = WN(0, Ry)

With respect to the Kalman filter prediction, we can consider
a mono-dimensional system with

Therefore, we can derive the recursive equations of the
Kalman filter for the prediction of the values of this series.
Given the previous observed value Y; and the predicted value
at time ¢, X, the recursive equation for the determination of
the predicted value at time ¢ + 1 is

. . Q, .
Xip1=X4+——YV1 — X
t+1 t Qt+Rt(t t)
with
Q =+ Q 9?
t+1 = 3¢ t O+ R,
Since in this case
Q; = 0y
we can also write
Q2
Q =0 + -t
t+1 ¢t + Q¢ O, + R,

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

M. Demmer, K. Fall, T. Koponen, and S. Shenker, “Towards a Mod-
ern Communications APL” in Proc. 6" Workshop on Hot Topics in
Networks (HotNets-VI), Atlanta, GA, November 2007.

W. Zhao, M. Ammar, and E. Zegura, “Multicasting in delay tolerant
networks: semantic models and routing algorithms,” in Proc. 2005 ACM
SIGCOMM workshop on Delay-tolerant networking (WDTN’05). New
York, NY, USA: ACM Press, 2005, pp. 268-275.

G. Karlsson, V. Lenders, and M. May, “Delay-tolerant broadcast-
ing,” in Proc. 2006 SIGCOMM workshop on Challenged networks
(CHANTS’06). New York, NY, USA: ACM Press, 2006, pp. 197-204.
P. J. Brockwell and R. A. Davis, Introduction to Time Series and
Forecasting. Springer, 1996.

M. Musolesi, S. Hailes, and C. Mascolo, “Adaptive Routing for Intermit-
tently Connected Mobile Ad Hoc Networks,” in Proc. 6th International
Symposium on a World of Wireless, Mobile, and Multimedia Networks
(WoWMoM’05). Taormina, Italy. 1EEE press, June 2005.

M. Musolesi and C. Mascolo, “Designing mobility models based on
social network theory,” ACM SIGMOBILE Mobile Computing and
Communication Review, vol. 11, no. 3, July 2007.

A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of Human Mobility on the Design of Opportunistic Forwarding
Algorithms,” in Proceedings of INFOCOM’06, April 2006.

M. Mcpherson, “Birds of a feather: Homophily in social networks,”
Annual Review of Sociology, vol. 27, no. 1, pp. 415-444, 2001.
[Online]. Available: http://arjournals.annualreviews.org/doi/abs/10.1146/
annurev.soc.27.1.415

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an
efficient routing scheme for intermittently connected mobile networks,”
in Proc. WDTN'05. New York, NY, USA: ACM Press, 2005, pp.
252-259.

R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Trans. ASME J. Basic Engineering, March 1960.

R. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preference
and Value Tradeoffs. Wiley, 1976.

M. Musolesi and C. Mascolo, “Evaluating context information pre-
dictability for autonomic communication,” in Proc. 2nd IEEE Workshop
on Autonomic Communications and Computing (ACC’06). Co-located
with 7th IEEE Int. Symp. WoWMoM’06. Niagara Falls, NY: IEEE
Computer Society Press, June 2006.

C. Chatfield, The Analysis of Time Series An Introduction.
and Hall, 2004.

B. Pasztor, M. Musolesi, and C. Mascolo, “Opportunistic Mobile Sensor
Data Collection with SCAR,” in Proc. 4th IEEE International Confer-
ence on Mobile Ad-hoc and Sensor Systems (MASS'07). Pisa, Italy:
IEEE Press, October 2007.

A. Varga, “The OMNeT++ discrete event simulation system,” in Proc.
ESM’2001, Prague, 2001.

D. J. Watts, Small Worlds The Dynamics of Networks between Order
and Randomness, ser. Princeton Studies on Complexity. Princeton
University Press, 1999.

M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, February 2004.

K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proceedings of SIGCOMM’ 03, August 2003.

S. Jain, K. Fall, and R. Patra, “Routing in a Delay Tolerant Network,”
in Proceedings of SIGCOMM’04. ACM Press, 2004, pp. 145-158.

J. Su, A. Goel, and E. de Lara, “An Empirical Evaluation of the Student-
Net Delay Tolerant Network,” in Proc. MOBIQUITOUS’ 06, San Jose,
California, July 2006.

A. Lindgren, A. Doria, and O. Schelen, “Probabilistic Routing in
Intermittently Connected Networks,” Mobile Computing and Commu-
nications Review, vol. 7, no. 3, July 03.

W. Zhao, M. Ammar, and E. Zegura, “A Message Ferrying Approach
for Data Delivery in Sparse Mobile Ad Hoc Networks,” in Proc.
MobiHoc 04, May 2004.

A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN
Routing as a Resource Allocation Problem,” in Proc. SIGCOMM’07,
August 2007.

A. Vahdat and D. Becker, “Epidemic routing for Partially Connected
Ad Hoc Networks,” Department of Computer Science, Duke University,
Tech. Rep. CS-2000-06, 2000.

J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A
digital fountain approach to reliable distribution of bulk data,”
in Proc. SIGCOMM’'98, 1998, pp. 56-67. [Online]. Available:
citeseer.ist.psu.edu/byers98digital.html

Chapman

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 5, JUNE 2008 13

[26] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based

routing for opportunistic networks,” in Proceedings of the 2005 ACM

SIGCOMM Workshop on Delay Tolerant Networking (WDTN’05). New

York, NY, USA: ACM Press, 2005, pp. 229-236.

S. Jain, M. Demmer, R. Patra, and K. Fall, “Using redundancy to cope

with failures in a delay tolerant network,” in Proc. SIGCOMM’05. New

York, NY, USA: ACM Press, 2005, pp. 109-120.

E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A socio-aware overlay

for publish/subscribe communication in delay tolerant networks,” in

Proceedings of the 10th ACM Symposium on Modeling, analysis, and

simulation of wireless and mobile systems (MSWiM ’07). New York,

NY, USA: ACM, 2007, pp. 225-234.

P. Hui, E. Yoneki, S.-Y. Chan, and J. Crowcroft, “Distributed commu-

nity detection in delay tolerant networks,” in Proc. ACM SIGCOMM

MobiArch’07, August 2007.

[30] P. Hui and J. Crowcroft, “How small lables create big improvements,”
in Proc. IEEE ICMAN’07, March 2007.

[31] J. Ghosh, S. J. Philip, and C. Qiao, “Sociological Orbit aware Location

Approximation and Routing (SOLAR) in MANET,” Elsevier Ad Hoc

Networks Journal, vol. 5, no. 2, pp. 189-209, March 2007.

E. M. Daly and M. Haahr, “Social network analysis for routing in

disconnected delay-tolerant MANETS,” in Proceedings of the 8th ACM

International Symposium on Mobile ad hoc networking and computing

(MobiHoc’07). New York, NY, USA: ACM Press, 2007, pp. 32—40.

I. Burcea, H.-A. Jacobsen, E. de Lara, V. Muthusamy, and M. Petrovic,

“Disconnected Operation in Publish/Subscribe Middleware,” in Pro-

ceedings of the 5'" IEEE International Conference on Mobile Data

Management (MDM’04), Los Alamitos, CA, USA, 2004.

H. Zhou and S. Singh, “Content based multicast (CBM) in ad hoc

networks,” in Proc. MobiHoc’ 00, August 2000.

[35] R. Meier and V. Cahill, “STEAM: Event-Based Middleware
for Wireless Ad Hoc Networks,” in Proc. 15t International
Workshop on Distributed Event-Based Systems, Jul. 2002. [Online].
Available: http://computer.org/proceedings/icdcsw/1588/15880639abs.
htm, http://citeseer.nj.nec.com/550381.html

[36] A. Datta, S. Quarteroni, and K. Aberer, “Autonomous Gossiping: A self-

organizing epidemic algorithm for selective information dissemination

in mobile ad-hoc networks,” in Proc. International Conference on

Semantics of a Networked World, June 2004.

R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca, and L. Querzoni,

“Content-based routing in highly dynamic mobile ad hoc networks,” J.

Pervasive Computing and Communication, vol. 1, no. 4, 2005.

P. Costa and G. P. Picco, “Semi-probabilistic Content-Based Publish-

Subscribe,” in Proc. 25" IEEE International Conference on Distributed

Computing Systems (ICDCS’05), Columbus (Ohio, USA), June 2005.

[39] J. Su, J. Scott, P. Hui, E. Upton, M. H. Lim, C. Diot, J. Crowcroft,
A. Goel, and E. de Lara, “Haggle: Clean-Slate Networking for Mobile
Devices,” Tech. Rep. UCAM-CL-TR-680, January 2007.

[27]

[28]

[29]

[32]

[33]

[34]

(371

[38]

Paolo Costa is currently a Postdoctoral Researcher
with the Department of Computer Science, Vrije
Universiteit, Amsterdam. He holds an MSc (2002)
and a Ph.D. (2006) degree in Computer Engineering
from the Politecnico di Milano, Italy. His research
interests include large scale distributed systems,
wireless sensor networks, vehicular information dis-
semination, and gossip-based protocols. Further de-
tails are available at http://www.cs.vu.nl/~costa.

Cecilia Mascolo is an EPSRC Advanced Research
Fellow and a University Lecturer in the Computer
Laboratory, University of Cambridge. Prior to this,
she was with the Department of Computer Sci-
ence, University College London. She holds an MSc
(1995) and a Ph.D. (2001) in Computer Science
from University of Bologna (Italy). She has been
a visiting fellow in Washington University in St.
Louis in 1998. She has published extensively in
the areas of opportunistic mobile network routing,
realistic mobility models exploiting social theory,
mobile sensor networks, middleware for pervasive and context- aware systems.
Dr. Mascolo is currently working on EPSRC, EU and industry funded projects
on opportunistic routing for mobile and sensor networks and embedded
systems middleware, with applications in wildlife monitoring, emergency
rescue operations and vehicular information dissemination. Dr. Mascolo has
served as a Technical Programme Committee member in many middleware,
software engineering, mobile system, delay tolerant network ACM and IEEE
conferences and workshops. More details of her profile are available at
http://www.cl.cam.ac.uk/~cm542.

r—-'ll[l‘

Mirco Musolesi is a Postdoctoral Researcher at
the Department of Computer Science, Dartmouth
College, NH, USA. He is a Fellow of the Institute
of Security Technology Studies at Dartmouth. Previ-
ously, he has been a Research Fellow at University
College London, University College London (2005-
2007). He also spent a research period at INRIA
Rocquencourt, France in 2003. He holds a PhD in
Computer Science from University College London,
United Kingdom (2007) and a MSc in Electronic
Engineering from the University of Bologna, Italy
(2002). His research interests include delay tolerant networking, mobile
networking and systems, wireless sensor systems, mobility modeling and
social network based systems. More information about his profile and his
research work can be found at http://www.cs.dartmouth.edu/~musolesi.

Gian Pietro Picco is an Associate Professor
in the Dipartimento di Ingegneria e Scienza
dell’Informazione (DISI) at University of Trento,
Italy. Previously, he has been on the faculty of
Washington University in St. Louis, MO, USA
(1998-1999) and Politecnico di Milano, Italy (1999-
2006). He holds a Ph.D. from Politecnico di Torino,
Italy (1998). The goal of his current research is to
ease the development of modern distributed systems
through the design and implementation of appropri-
ate programming abstractions and of communication
protocols efficiently supporting them. His work spans the research fields
of software engineering, middleware, and networking, and is oriented in
particular towards wireless sensor networks, mobile computing, and large-
scale distributed systems. More information at http://disi.unitn.it/~ picco.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.50000
 0.50000
 0.50000
 0.50000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.12500
 0.12500
 0.12500
 0.12500
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF004300610064006d007500730020004d00650064006900610057006f0072006b0073002000730065007400740069006e00670073002000760065007200730069006f006e00200043004d0057005f0041006300720036005f00560032002e002000200041006c006c002000730065007400740069006e0067007300200070006f00730074006500640020006f006e0020007700770077002e006300610064006d00750073006d00650064006900610077006f0072006b0073002e0063006f006d002e00200020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 783.000]
>> setpagedevice

