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Abstract
The ubiquity of sensor-rich and computationally powerful
smartphones makes them an ideal platform for conducting
social and behavioural research. However, building sensor
data collection tools remains arduous and challenging: it
requires an understanding of the varying sensor
programming interfaces as well as the research issues
related to building sensor-sampling systems. To alleviate
this problem and facilitate the development of social
sensing and data collection applications, we are developing
a set of open-source smartphone libraries to collect, store
and transfer, and query sensor data. Furthermore, we
have also developed a library that can trigger notifications
based on time or sensor events to assist experience
sampling methods. This paper presents these libraries’
architecture, initial feedback from developers using it, and
a sensing application that we built using them to study
daily affect.
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Introduction
The smartphone is increasingly being viewed as one of the
protagonists of future interdisciplinary research that
crosses between the information and social sciences [9].
Smartphone applications promise researchers access to
large populations of participants who can contribute both
sensor, application interaction, and survey response data
as they go about their daily lives: this opportunity has led
psychologists to hail smartphones as more transformative
to their field than desktop computers and brain imaging
technology [11]. Beyond data collection, smartphones are
now being researched as tools that can implement and
test behaviour change theories [5] and, ultimately, promise
to become a central mediating point between people and
their therapists [7].

While smartphones will undoubtedly permeate throughout
interdisciplinary research, their widespread adoption by
researchers is still hindered by the technical challenges of
building sensing applications. Designing applications that
appropriately balance between energy efficiency, data
collection, storage, and transmission continues to be both
a non-trivial task as well as an item on the sensor-research
community’s agenda [12].

To address this concern, we have developed a number of
independent, open-source Android libraries that seamlessly
support (a) collecting sensor data, (b) formatting, storing
and asynchronously transmitting the data to remote
servers, and (c) configuring notifications to be triggered
based on time or sensor-data events. The libraries take a
very broad definition of “sensor” encompassing both those
that need to be actively queried for data (e.g., an
accelerometer) as well as those that give signals of social
interaction via the smartphone (e.g., making a phone
call); most notably, we have condensed collecting

smartphone sensor data down to two lines of code, and
have used well-established design patterns to implement a
consistent interface to all of these libraries.

In this paper, we describe the architecture of these
libraries, and how they may be used by researchers who
are building social or sensing applications. We also discuss
an application that was built using them to study daily
affect [8], which included collecting sensor and survey
response data and remotely reconfiguring the experiment
after it was deployed, and preliminary feedback that we
have received about the libraries by making them available
to postgraduate students. We close by discussing related
systems, applications, and future directions.

Overview and Design Patterns
In this section, we describe our high-level goals, why we
implemented separate libraries, and the design patterns
that we used across the libraries.

1. Data Collection. Currently, accessing data from
different sensors requires writing code that is
tailored and variant for each sensor, and there is
little support for continuous sensing applications,
barring a few sensors such as the accelerometer.
Our first goal was therefore to provide uniform and
easily configurable access to sensor data, supporting
both one-off and continuous sensing scenarios.

2. Data Management. To encapsulate the ideas of
formatting, storing, querying, and transmitting data,
we built a data manager that acts as a data sink for
sensor-enhanced applications. While the manager
directly supports formatting sensor data, it can also
store and transmit any data that is identified with
an appropriate tag. Since applications may collect



large amounts of data, the manager can also be
reconfigured to transmit data asynchronously.

3. Triggering Interaction. Building applications that
do more than collect data may require notifying the
user about appropriate events. For example, studies
of daily life may trigger notifications randomly [2] or
based on sensor-events [6]. Our final goal was
therefore to provide a uniform, consistent, and
configurable means of adding triggers to any
application.

We opted to implement these requirements as three
separate libraries in order to make them lightweight and
minimise inter-dependencies. Therefore, for example, an
Experience Sampling Method (ESM) application that does
not require sensor data from the device does not require
importing the data collection and management libraries,
whereas an application that focuses purely on the sensing
aspect will not need to import triggering methods.

Since a key aspect of designing these libraries was to
facilitate using them, by making them as consistent as
possible, we decided to use the following design patterns:

1. Singleton Managers. To enforce uniformity,
control global state (e.g., configuration parameters),
and allow threads to service more than one data
request, our libraries use a central singleton that
mediates all interaction with the library.

2. Publish-Subscribe Interaction. Tasks that require
background processing were designed as a
publish-subscribe message passing system, where
applications only need to subscribe to the relevant
component and react when data or events are

pushed to them. Doing so allowed us to both
separate each library’s function from the application
that requires it, as well as reduce the amount of
computation that each library needs to do in those
cases where multiple subscribers need the same
functionalities.

3. Key-Value Configuration. All of the libraries’
configuration settings can be set and retrieved as
key-value pairs, regardless of their type. Moreover,
when non-critical configuration parameters are not
explicitly set, the libraries fall back on a set of
default values.

Given these three design decisions, we now describe each
library’s unique features.

Sensing Library
As introduced above, we took a very broad definition of
“sensor,” taking it to mean any signal that can be
unobtrusively captured from the smartphone device. We
decomposed the available sensors into two generic groups:

• Pull Sensors: this set includes all sensors that the
Android OS does not capture data from until
requested to do so by an application. They
currently include the accelerometer, location (both
coarse, from the nearest cell-tower, and fine, from
the GPS), and microphone amplitude levels. They
further support querying for Wi-Fi, Bluetooth, and
active application scan results, as well as querying
the SMS and call logs.

• Push Sensors. The Android OS publishes data
about particular events that applications can
receive: this set of sensors receives this information



public class AccelerometerDataSampler

{

public ArrayList<float[]> getAccelerometerData(long ws)

{

ESSensorManager sm = ESSensorManager.getSensorManager(context);

sm.setSensorConfig(SensorUtils.SENSOR_TYPE_ACCELEROMETER, PullSensorConfig.SENSE_WINDOW_LENGTH_MILLIS, ws);

AccelerometerData aData = (AccelerometerData) sm.getDataFromSensor(SensorUtils.SENSOR_TYPE_ACCELEROMETER);

return aData.getSensorReadings();

}

}

Figure 1: An example code to configure and then capture data from the phone’s accelerometer sensor using the sensor library. The
equivalent code that directly samples from the Android OS would be approximately 30 lines of code. Querying from data from a
different sensor would only require changing the getDataFromSensor() parameter and return type.

on behalf of an application, and includes: the
battery (energy levels), connection state (whether
the phone is connected to a Wi-Fi or mobile network
and if it is in roaming mode), the proximity sensor
(near/far events), screen on/off events, phone calls
starting/ending, and SMS sent/received events.

All pull sensors share the fact that continuously sampling
from them would entail looping between querying from
the sensor (either for a configurable number of cycles or a
pre-defined time) and sleeping; continuously polling push
sensors cannot be restricted in this way. Most sensors
require a particular permission to be added to the
application, which users must agree to when installing the
app. Naturally, the sensing library cannot and does not
capture data from those sensors that the application has
not requested permission for.

All control of sensors data collection is done via the
ESSensorManager singleton; the full library is available

online1. This instance manages all the sensing threads
and starts, stops, and modifies them as required by the
application: this ensures that data is only collected when
it is required. The singleton supports two kinds of data
collection. The first is one-off sampling, which is
implemented as a blocking call, and reduces collecting
sensor data to two lines of code (Figure 1). For example,
a sample of data with the default configuration can be
retrieved by getting the singleton
getSensorManager(...) and then requesting data with
getDataFromSensor().

The second is the publish-subscribe model: subscriptions
are given a unique identifier which can then be used to
pause and unsubscribe them. When collecting data in this
way, application developers need to implement two
methods. The first is onDataSensed(...), which
implements what do to with the data when it has been
pushed to the application; the second is
onCrossingLowBatteryThreshold(...). Most
crucially, this latter method directly exposes and, in doing

1https://github.com/nlathia/SensorManager

https://github.com/nlathia/SensorManager


so, guides the application developer to implement actions
that should be taken when the battery is low.

Once sensor data has been captured it is processed. In its
most basic, this step converts the data into objects that
are passed on to any subscription. However, while doing
so, the library also anonymises the data: it puts all
telephone numbers through a one-way hash and only
returns features of SMS messages (e.g., whether it was
sent or received, and how many words it contained).
While this may not be suitable for researchers who need
non-private data, we set the default to anonymised data.

Finally, researchers may be interested in sampling sensor
data more intelligently. Recent research has shown [10]
that non-static configuration parameters can be used to
maintain data collection quality while saving energy. The
sensing library therefore implements the methods
proposed in [13], and we aim to extend it to support
future research into diverse sensor sampling strategies.

Data Manager Library
The second library, the ESDataManager2, implements all
aspects related to formatting, storing, and transmitting
the data. In particular, this library differentiates between
three kinds of data: sensor data, application error data
(e.g., exception messages), and extra data of the form
(tag, data). Under the hood, the library maintains a
structured file system where data of different types are
written to files as lines of JSON-formatted data. The
manager stores all this data on the phone’s USB storage
(or SD card). The three key functions of this library are as
follows:

• Data Formatting. We opted to format sensor data

2https://github.com/nlathia/SensorDataManager

as JavaScript Object Notation (or JSON)
documents. This allowed for the flexibility of storing
a variety of different sensors in a uniform,
extensible, and open format.

• Data Queries. Given that data is stored in files,
querying it could have potentially required a linear
traversal of all stored data. To alleviate this, we use
both the structure of the file system as well as a
unified file-naming policy to indicate when sensor
data was created. The only query function we
currently support is to retrieve data from a given
sensor that is more recent than a given query time
stamp.

• Transfer Policy. Sensor-enhanced applications may
collect increasingly large amounts of data from their
users. We implemented three initial policies for data
transfer. The first two are, simply: do not transfer
(data is only stored on the phone), and transfer
immediately. However, since researchers may not
need real-time access to what they collect, and
transmitting data over 3G connections may bear a
cost on participating users, we included a means for
asynchronous data transfer. More specifically, all
files older than a given, configurable, time span are
transferred to an upload directory and compressed.
The library then waits for the phone to connect to
Wi-Fi and transmits the data; should a Wi-Fi
connection not appear in another configurable
timespan (by default, above 30 hours), then data is
transmitted by any connection available.

This initial implementation does not supporting a full
range of queries, transfer policies, or data formats. The
library is also currently mainly suited for those

https://github.com/nlathia/SensorDataManager


applications which will transfer the data remotely at some
point: a clear future direction includes augmenting it with
storage policies for applications that will not do so (i.e.,
dealing with storage limits). However, it is a first step
towards abstracting away from requiring researchers to
repeatedly implement these functions, or indeed requiring
them to manually transfer data to/from participants’
smartphones.

Trigger Library
Finally, the trigger library3 allows application developers to
add tailored alarms to their application. The triggers are
grouped into two broad categories:

• Time-Based. The Android OS currently supports
one-off and interval-based alarms: this library builds
on these to support a wider variety of clock-based
alarms that can be used in social research
applications. In particular, it allows an application
to subscribe to an alarm that is instructed to fire N
times, selected randomly with particular conditions
(i.e., time between and daily bounds on alarms).

• Sensor-Based. The trigger manager builds above
the sensor library (which directly collects sensor
data) for applications that only seek for alarms to
be fired in a more configurable way: (a) the data is
passed through a binary classifier (e.g., for triggers
that fire only when accelerometer data is
non-stationary), (b) the alarm may be fired at a
given interval and with a given probability (e.g.,
50% of the time a user hangs up the phone, fire this
alarm), and (c) the alarm may be configured to fire
after a particular delay, or when the binary
classifier’s state has changed (e.g., 5 minutes after

3https://github.com/nlathia/TriggerManager

non-stationary data, or when the user is stationary
again).

We added a number of further configurable constraints on
the application’s ability to notify the user to complete
surveys. For example, survey notifications were not
allowed to be sent within two hours of the previous
notification. Most importantly, however, is that all
triggers must comply with a set of user preferences, which
users could edit via the application’s menu. These settings
include the maximum number of surveys that can be
triggered in one day, and the times when users were
available to respond (by default, set to 08:00-22:00).

Putting it Together: Emotion Sense
We used the above libraries to build Emotion Sense4, an
Android application that merges the experience sampling
method with smartphone sensor data collection, and gives
users feedback about how their reported mood compares
to the sensor data that their phone can collect about their
behaviours. The application uses the sensor library to
collect data from the full spectrum of available sensors,
asynchronously transfers the formatted data to our servers
with the data manager library, and gives the user
notifications to complete surveys using the trigger library.

The version of Emotion Sense used in [8] also
reconfigured the sensor parameters, surveys and triggers
by checking with remote configuration files stored in our
server, to allow the app’s behaviour to automatically
update without the user’s involvement. Specifically, the
application periodically downloads the configuration files
of the ongoing experiment from the remote server and
updates each of the previous components. The main
advantage of using such a service is that a variety of ESM

4http://emotionsense.org/
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protocols can be tested by remotely updating the surveys
and triggers without the user’s involvement.

Preliminary Feedback
To gather some preliminary feedback about the design of
the ESSensorManager, the sensing library was offered as
an optional tool that postgraduate students in a part-time
mobile sensing course could use for their final project.
These students are, for the most part, studying alongside
their careers and so have substantial experience with
software development and the Java programming
language. The course itself included introductory material
on Android programming, and material on mobile and
wireless communication, RFID/NFC and location sensing:
the students were exposed to the internal functions of
these technologies and not just the APIs.

The project entailed building an Android application that
samples audio data from the environment, measures the
noise pressure, and posts the results alongside location
data to COSM (now Xively5), an online database that
links sensor data to the Web. The sensing library was
offered as an optional tool: 12 of the 16 project
submissions opted to use it. Further, a feedback survey
was offered; we received 7 complete responses. This
survey is part of ongoing work to evaluate the quality of
the library; in this section, we briefly recount the reported
experiences, and how this reflects on the design of the
sensing library.

Three respondents did not use the library. They reported
having a low level of familiarity with Android
programming (on average 2.6 out of 5—where 5 is “very
experienced”).The two reported reasons for not using the
library were: (a) lack of experience, and (b) a lack of

5http://en.wikipedia.org/wiki/Xively

support for the Android emulator. For the former reason,
learning to use the library was viewed as an additional
burden on top of learning about the other APIs required
for the project. The four respondents who did use the
library reported slightly higher levels of familiarity with
Android programming (3.25 out of 5). They further rated
how easy it was to include the library in their app
(4.75/5), using the library’s API (4.5/5), and the overall
usability (4.25/5). While, overall, the experiences were
positive, this indicates that the libraries remain tailored to
those developers who have experience with Android
programming.

We also asked both groups to rate their impression about
the amount of code they had to write. The average
ratings from those using the library was marginally smaller
than those who did not use it (2.75 vs. 3). We note that
since the students only had to implement one version of
their application, either with or without the library, these
ratings for code length may not be representative. From
the perspective of those marking the projects (note: not
the developers of the ESSensorManager), those
applications using the library had substantially less sensor
sampling code than those that did not and, more
importantly, their code appeared to be of higher quality, in
terms of being designed to handle potential error
exceptions that the library can throw when sensing errors
are encountered.

Finally, those who used the library were asked if they
would like any additional features to be added to them.
The requests ranged from adding further data processing
(e.g., audio spectrum filters), explicit support, simulated
data, or error handling when developers try to use the
library with the (currently unsupported) emulator,
providing more example code, and further documentation

http://en.wikipedia.org/wiki/Xively


on formatting the data.

Related Projects
There are a limited number of related open-source
smartphone sensing frameworks for computational social
sciences. Most prominently, the Funf Open Sensing
Framework6 [1] is a sensing and data processing
framework for smartphones. Similar to our libraries, it also
supports collection, uploading, and configuration of a
range of signals (called “probes”) from smartphones.
However, there are a number of differences between our
libraries and Funf. For example, our sensor libraries
implement an adaptive sensing scheme [13] to efficiently
query data from the phone’s pull sensors, as well as the
poll model which Funf is based on, with configurable
static duty-cycling intervals. Further, our sensor library
supports a low battery threshold notification that provides
an opportunity to the applications to act sensibly when
the battery level is critical. In addition, our libraries
support more sensors: microphone, proximity, connection
state. Finally, funf does not support a trigger framework
to enable notifications, where as the proposed framework
supports it through the trigger library.

MyExperience [4] is a prominent and widely known
experience sampling tool for smartphones. They too
provide libraries7 for collecting objective and subjective
data from users through smartphones. The libraries are
only supported on Microsoft Windows Mobile devices.
Our proposed libraries, instead, are designed for the
Android platform, which currently has much larger user
base than that of the Windows Mobile platform. Further,
the proposed framework supports more features than
MyExperience such as adaptive sensing, data

6http://funf.org/
7http://myexperience.sourceforge.net/

management, and also more sensors: proximity,
microphone, Bluetooth, etc. Some other open sensing
frameworks include the Mobile Sensing Platform
(MSP)8 [3] and PACO9: we leave a full comparison of our
system to others as future work.

Conclusions and Future Directions
This paper has introduced the architecture and use of
three Android smartphone libraries that have been
designed to support social science research applications.
The development and evaluation of the libraries is
ongoing: using them in a postgraduate course has given
initial feedback into their usability and features.
Furthermore, we have used the library to build Emotion
Sense: a sensor-enhanced experience sampling application
which allows users to compare their reported mood to
their smartphone’s sensor data.

Our goals in developing these libraries have been to
facilitate the design and implementation of new
sensor-enhanced research applications. By open-sourcing
the libraries, we also hope that they will be useful tools for
smartphone sensor researchers who may like to contribute
their own methods to the research community; naturally,
this includes discussing what functionalities may best serve
varying research communities. For example, the sensor
library does not currently support conditionally querying
sensors (e.g., sensing location only after the accelerometer
has sensed movement); these functionalities remain in the
application-level domain. Moreover, the libraries continue
to offer raw sensor data, rather than allowing
programmers to directly code with inferences (about
contexts or activities) on the data. Indeed, finding an
appropriate intersection of needs shared between computer

8http://seattle.intel-research.net/MSP/
9http://code.google.com/p/paco/
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and social scientists, to guide future developments for
these libraries, requires further discussion and research.

The libraries are now being used to develop a further 4
different applications by researchers in various institutions.
In particular, these libraries are being used as part of the
UBHave project which aims to merge smartphone sensing
and behavioural interventions [7, 14].
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