
Media Sharing based on Colocation Prediction
in Urban Transport

Liam McNamara
Dept. of Computer Science
University College London
London, WC1E 6BT, UK

l.mcnamara@cs.ucl.ac.uk

Cecilia Mascolo
Computer Laboratory

University of Cambridge
Cambridge, CB3 0FD, UK
cm542@cl.cam.ac.uk

Licia Capra
Dept. of Computer Science
University College London
London, WC1E 6BT, UK
l.capra@cs.ucl.ac.uk

ABSTRACT
People living in urban areas spend a considerable amount of
time on public transport, for example, commuting to/from
work. During these periods, opportunities for inter-personal
networking present themselves, as many members of the
public now carry electronic devices equipped with Bluetooth
or other wireless technology. Using these devices, individu-
als can share content (e.g., music, news and video clips) with
fellow travellers that are on the same train or bus. Trans-
ferring media content takes time; in order to maximise the
chances of successful downloads, users should identify neigh-
bours that possess desirable content and who will travel with
them for long-enough periods. In this paper, we propose a
user-centric prediction scheme that collects historical coloca-
tion information to determine the best content sources. The
scheme works on the assumption that people have a high
degree of regularity in their movements. We first validate
this assumption on a real dataset, that consists of traces of
people moving in a large city’s mass transit system. We then
demonstrate experimentally on these traces that our predic-
tion scheme significantly improves communication efficiency,
when compared to a memory(history)-less source selection
scheme.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munications

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Bluetooth, P2P, Transport, Media

1. INTRODUCTION
The amount of time that people living in urban areas

spend travelling to/from work is significant. A study from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’08, September 14–19, 2008, San Francisco, California, USA.
Copyright 2008 ACM 978-1-60558-096-8/08/09 ...$5.00.

the University of the West of England has reported that,
in 2006, the average commuter living in big cities in the
United Kingdom (e.g., Liverpool, London and Manchester)
spent 139 hours a year travelling to and from work, with
this figure increasing to a whole month per year for London-
ers [15]. The prohibitive cost of personal transport, and the
increasing length of distances being travelled, has made pub-
lic transport (e.g., bus, train, subway) the preferred means of
travel by many commuters, with the London tube alone car-
rying an average of 3.4 million people every weekday. This
kind of travel often exhibits routine patterns and the ex-
pression familiar strangers [19] has been coined to designate
fellow passengers that are periodically met.

During these journeys, most commuters carry electronic
devices, often equipped with short-range wireless network
interfaces (e.g., WiFi and Bluetooth), which are increasingly
being left switched on [7]. The presence of these networked
devices, routinely in contact, sometimes for prolonged peri-
ods, offers new possibilities for research in automated con-
tent (e.g., news, video clips, music files) sharing and dis-
tribution. Short-range device-to-device transfers have many
advantages over infrastructure based solutions. They do not
require network coverage, so can be performed anywhere,
even underground; the avoidance of a middle-man also pre-
cludes censorship and snooping. Use of a cellular network
ISP for filesharing may be costly and could lead to similar
problems that large, wired ISPs have with network capac-
ity, possibly even worse due to the use of a shared medium.
However, when using wireless neighbours, a challenge arises
in terms of whom to select as a content source, given that a
local source may not be colocated with us long enough for
downloads to complete.

In this paper, we propose a new content source selection
scheme for single-hop, peer-to-peer based content sharing on
public transport. Our aim is to identify, among colocated
peers that have relevant content, the one that has the highest
chance to remain colocated long enough for data transfers to
complete, thus minimising resource waste due to incomplete
transfers and interference. We do so by making each device
record colocation information about fellow commuters met
during their journeys, infer colocation patterns from the his-
torical data, then automatically and dynamically select the
best content source, based on these patterns.

More precisely, let us take a peer A’s perspective. Ini-
tially, every peer is a complete stranger to A; our scheme
records, in a single anonymous profile on A’s device, the ag-
gregate mean colocation length of all encounters occurred
thus far in a given time slot (e.g., for each hour of the day).



Once that same peer has been encountered often enough,
it is promoted to familiar stranger status: for each familiar
stranger B, A maintains a personalised record, recording the
mean colocation length with B only, again for each time slot.
This personalised information is used to infer colocation pat-
terns and make more accurate predictions of B’s colocation
duration. The length of a time slot can either be fixed (e.g.,
one hour) or customised to cover logically meaningful time
periods (e.g., morning rush hour or lunchtime); customised
slot periods could be dynamically learnt by a device simply
observing its colocation patterns.

When issuing a request to find content, a user’s device
will first filter out, from the set of devices currently in reach,
those not possessing any content that matches A’s interests.
The remaining devices will then be ranked according to their
predicted remaining colocation duration, and the peer that
is most likely to be available long enough for a transfer to
complete is selected as the source.

In devising our approach to content sharing, we have made
the assumption that some commuters tend to meet regularly
in their daily travel, and that their colocation patterns can
be roughly predicted. People’s regularity of movement, and
repetition of journeys to the same place, is demonstrated
convincingly by González et al [8]. We have validated this as-
sumption on movement logs of commuters travelling within
a major city’s subway. In particular, we have used transport
movement data, collected on two subway lines over a period
of one month. We will report the results of this analysis,
together with a performance evaluation of our approach, in
Section 5.

The approach described in this paper focuses on max-
imising completed transfers, to ensure content can be effi-
ciently shared in these environments. It does not consider
the trustworthiness of the provider or the accuracy of con-
tent descriptions. We consider these issues to be orthogo-
nal, and thus refer readers to approaches that explicitly deal
with them, and that could be leveraged on top of our pre-
diction scheme [16, 13]. Moreover, we are purely interested
in the technical challenges faced when developing content
sharing applications for decentralized and mobile peer-to-
peer networks, and are not tackling the issue of the legality
of media transfer. The release of the Microsoft Zune player,
which automatically wraps wireless file transfers in Digital
Rights Management (DRM) restrictions, demonstrates how
our scenario can become a driver for media industry sales.
Crucially, we want to create a system that will work with
current hardware without the need for special infrastructure
support, that can be deployed in the real world now.

The paper is further organised as follows: Section 2 de-
picts a public transport scenario and sets the scene of our
work. Section 3 describes our approach, focusing on the key
aspects of the prediction scheme. The implementation of the
approach and its behaviour in an underground rail system
is covered in Section 4. The details of the public transport
traces we have used for the evaluation, the simulation set-
tings and the results are discussed in Section 5. In Section 6
we cover some related work, before concluding and outlin-
ing the future direction of our research in Sections 7 and 8
respectively.

2. SCENARIO
To exemplify our approach to content source selection,

we introduce a typical scenario where the previously made

observations hold: commuters moving through a large city
by means of a mass transport system (e.g., an underground
metropolitan railway), carrying devices (e.g., phone/PDA/
music player) that can play audio/video files and have wire-
less capability (namely, for this scenario, Bluetooth). Users
are looking for particular content categories of interest to
them, such as particular genres of music, e.g., rock or pop.

Alice is a commuter, travelling to work along her usual
route, at her usual time, upon a rapid transit system train.
She uses her phone as a music player for entertainment while
travelling. Whilst in the transport system, she is unable to
connect to the Internet as there is no network coverage (or
because the connection cost is too high). However, the large
number of other passengers travelling with her, offers means
of procuring media for her enjoyment: during periods of
peer-to-peer connectivity, devices may transfer music tracks
or video clips between each other. Alice is interested in elec-
tronica and rock genres of music and would like to acquire
more from fellow travellers. Bob is another commuter who
travels to work along the same train line, and is often on
the same train as Alice, as they both are due at work in
the city centre at 9:00AM. He enjoys listening to pop and
rock music. Carol has taken the day off from work and is
meeting her friends in the city centre for breakfast and to
do some shopping. She is on the same train, but would not
normally use this line; she is listening to her music collection
of dance and electronica. Both Carol’s and Bob’s devices are
potential sources of content for Alice, as they carry genres
of interest to Alice (in particular, rock from Bob and elec-
tronica from Carol). Alice’s device now has to select which
one to download from.

If the content size was very small and could be transferred
within a few seconds, the choice of who to download from,
among those having relevant content, would not be critical.
However, when sharing media content that requires minutes
to be transferred (e.g., high quality music files or video clips),
it becomes important to select a source that will remain
colocated long enough for the operation to complete. If the
predicted colocation duration with Bob, computed based on
previous encounters, is long enough to enable more of his
data to be shared, then Bob represents a more reliable choice
than Carol. In fact, as Carol is a complete stranger to Alice,
the length of their colocation cannot be accurately predicted
(she may be getting off in the next minute), and thus she
should not be favoured.

In this scenario, predictability of colocation time is a crit-
ical parameter upon which we base the selection of the con-
tent provider. This is due to the high churn of people on the
train, with large percentages of people leaving and boarding
the train, especially at large stations with many connecting
lines. In the next section, we present our approach to auto-
matic content source selection in urban transport, based on
a colocation prediction scheme that exploits routines in peo-
ple’s travelling, coupled with basic filtering of sources based
on common categories of interests.

3. APPROACH
The thesis underpinning our work is that users show a

high degree of regularity in their movements, repeating sim-
ilar journeys over and over again. Although the number
of unknown peers we encounter daily, while travelling on
public transport in a city, will always be very high, we
argue that a non-negligible set of passengers will be re-



encountered regularly. We will validate this assumption on
a large set of movement traces collected from two lines of
a large metropolitan subway system over a period of one
month (Section 5.1). Based on this assumption, we first de-
scribe how colocation patterns are recorded over time and
used to estimate future colocation durations (Section 3.1);
we then illustrate how these predictions are used by our con-
tent source selection process (Section 3.2) to maximise the
chance of complete downloads.

3.1 Colocation Pattern Logging
Based on the observations described above, we have de-

signed an approach to enable a user’s device to automatically
select the best provider of relevant content among the (po-
tentially large) set of co-travellers. By ‘best’ provider, we
refer to the one, among those having ‘interesting’ content
(see Section 4.1), who has the highest chance of remaining
colocated for the whole duration of a transfer. To perform
this selection, a user must be able to estimate the remaining
length of colocation with another user, and assess whether
this time would allow media content to be shared.

One technique to measure this value dynamically is to
keep a running mean: for example, each user could log all
her/his previous encounters, recording the mean colocation
duration with every other peer, and use these values as a pre-
diction of the length of the current encounter. However, this
is an overly simplistic metric which ignores the seasonal vari-
ability of movements; for instance, a colocation beginning in
the morning of a weekday (e.g., on a daily commute to work)
may last much longer than one starting in the evening (e.g.,
on a trip to a local supermarket). We argue that keeping a
single running mean of colocation duration for every pair of
users is not sufficient, as important information about their
movement patterns and seasonality is lost.

A more advanced scheme, which we have adopted in our
approach, is to keep a temporally varying mean, that changes
according to the time at which the colocation began. More
specifically, our solution keeps a separate mean for each
TIME SLICE during a given TIME PERIOD. This detailed
profile of another peer’s colocation pattern is kept in the
form of a personalised profile for each peer that we have
deemed as familiar strangers, that is, those that have been
met often enough in previous journeys. If the number of
previous samples during a given TIME SLICE is not suf-
ficient (in our experiments, less than three) to confidently
determine a temporally-specific mean, then the average colo-
cation mean, computed across all of this peer’s personal pro-
file’s time slices, is used. For all other unfamiliar peers, a
single anonymous profile is used instead (i.e., one profile for
the full set of peers), containing, in each time slice, the mean
length of all encounters occurred thus far with every host in
that slice. The selection of values for TIME PERIOD and
TIME SLICE are domain specific aspects and universal val-
ues do not exist that will hold in all situations. A plausible
choice for our human movement scenario would be a one-day
period, with a one-hour slice. Rather than hardcoding them,
these values could be dynamically learnt from a domain’s
colocation structure, using techniques similar to the ones
discussed in [6]. In this work, we have used two schemes:
a basic one-day/one-hour structure, and a more advanced
one, emerging from the data traces we have of people mov-
ing on public transport, with variable-length time slices (see
Section 5).

Recording and processing personalised colocation statis-
tics incurs a small amount of storage and processor usage;
this amount scales linearly with each additional familiar
stranger host that is tracked. If a device is particularly lim-
ited in storage, a resource conservative policy can be used to
limit the size of this set (e.g., by requiring more frequent en-
counters for a host to reach familiarity level). Note that this
colocation pattern logging is service-agnostic, and can be
implemented as a standalone component, with the informa-
tion it gathers being leveraged by multiple services running
on a device. For example, with a Bluetooth network, such
a component would simply make each device regularly en-
ter the inquiry substate to discover neighbours; discoverable
Bluetooth devices periodically enter the inquiry scan sub-
state and respond to device discovery requests with a Fre-
quency Hop Synchronisation packet (FHS), containing their
relevant device ID.

3.2 Content Source Selection
We now describe the steps of our content source selection

protocol. At a given time slot s (uniquely determined by
the current time), user A is looking for a source from where
to download content files with a genre in its interest set GA.
The following steps are performed:

1. A filters out, from the list of hosts in reach, uninter-
esting peers, that is, those peers who do not have any
content of interest for A. We will discuss in Section 4.1
how this pre-filtering takes place.

2. For each of the hosts left in A’s list H, a prediction is
made of the length of the colocation with A, based on
the scheme described previously.

3. The predicted remainder of the current colocation time,
for each host in H, is computed (this simply requires
logging the start point of each colocation instance).

4. Hosts are ranked in decreasing order of remaining pre-
dicted colocation time.

5. Finally, A connects to the top ranked host h, to obtain
a summary of relevant files available for download; in
our experiments, we have set the size of the summary
(SUM SIZE) to 50 (any value above 20 caused negli-
gible variations). If the summary contains at least one
desirable file (e.g., a rock music file that A does not
already have), and the expected remaining colocation
time is longer than the estimated download time t, the
transfer begins. A host will not include a file in the
summary if it was included in a previous summary,
sent during the current pair’s colocation; this avoids
re-advertising files and allows a host to know when no
more interesting files are available.

A more formalised expression of this scheme is shown in
Algorithm 1. In order to decide whether to start the down-
load (Step 5), A must estimate the time t it will take for the
download to complete, based on the content size and current
connection speed. Both these pieces of information can be
obtained/estimated during the transfer negotiation phase1,

1Note that file matching is only performed upon the se-
lected host, to avoid the need for active participation of
every neighbour.



Algorithm 1 Content Source Selection.

Parameters: list H of hosts in reach and their coloca-
tion start time start[h]; current time slot s; matrix M
of personalised profiles for familiar strangers (i.e., M [h, s]
= mean colocation duration with host h for time slice s,
M [h, ∅] = mean of all h’s colocations); vector V storing
the anonymous profile; list GX of genres of interest to X;
expected transfer time ttr for chosen content.
Returns: host h from where to start the download.
{Step (1) - Pre-filtering based on interest}
for all h ∈ H do

if GA ∩Gh = ∅ then
H = H \ {h}

end if
end for
{Steps (2,3) - Computation of colocation predictions}
for all h ∈ H do

if host h is familiar stranger then
if M [h, s] populated then

score[h]= M [h, s] - (tnow - start[h])
else

score[h]= M [h, ∅] - (tnow - start[h])
end if

else
score[h]=V [s] - (tnow - start[h])

end if
end for
{Steps (4,5) - Rank peers and return chosen source}
sortDecreasing(H, score)
getFileSummary(H[top],GA)
if score[top] > ttr * ATTEMPT THRESH then

h = H[top] {Select host with longest predicted remain-
ing colocation}

else
h = null {Do not transfer, likely to fail}

end if
return h

giving the approximation t = content size/E(speed). Down-
loads will not be initiated if the expectation of success is too
low. More precisely, t ∗ ATTEMPT THRESH needs to
be smaller than the expected remaining colocation, with the
threshold parameter ATTEMPT THRESH being set to 1
in our experiments. This value allows a device to account
for the unpredictable nature of the actual time taken by a
transfer, and the duration of actual colocation: with values
higher than 1, the device takes less risks, starting content
transfers only when remaining colocation is estimated to be
substantially longer than t. Conversely, values lower than
1 will start downloads even if the prediction technique sug-
gests they will not succeed. The experimental value of 1 was
chosen to directly measure the efficacy of colocation predic-
tions.

With reference to the scenario described in Section 2, let
us assume that Bob’s mean colocation duration with Alice
in the time period 8-9AM is 20 minutes, and that they have
already been colocated for 8 minutes. Bob’s predicted depar-
ture time will be 12 minutes away. Let us also assume that
the mean of all other host’s colocations with Alice, during
this time slice, is 10 minutes. As Carol is unknown to Alice,
her colocation duration will be predicted using the anony-
mous statistics, that is, 10 minutes. If Carol has already
been colocated with Alice for 5 minutes, her predicted re-
maining time will be 5 minutes, causing Bob to be selected as
the connection partner, as he offers the best chances of com-
pleting the transfer of media content. A connection would

be established with Bob, and a file discovery performed, ask-
ing for files of type rock (Step 5). Bob’s sharing application
responds with a shortlist of rock files that he is able/willing
to share; only a subset is advertised, as sharing whole library
lists would become time consuming.

4. IMPLEMENTATION
This section details our development of a prototype appli-

cation, covering the method of device discovery (Section 4.1),
a high level view of the application’s behaviour (Section 4.2),
and finally some testing figures, Section 4.3. We imple-
mented our system for Symbian S60 phones, utilising less
than 2KLOC for the PyS60 v1.4.3 Python interpreter [18].
Our testbed comprised of Nokia N70s running S60 Plat-
form Second Edition - Feature Pack 2, equipped with Blue-
tooth radio interfaces. We also installed some 2GB MMC-
Mobile flash cards, to supplement the relatively small on-
board memory, allowing the storage of large media libraries.

Python was chosen to facilitate rapid development and
easy porting to another platform. It also avoids the restric-
tions of the Java security model, such as requiring applica-
tions’ signing to allow sensitive operations without user con-
firmation. We utilised code from the Personal Distributed
Information Store (PDIS) project at the Helsinki Institute
for Information Technology. Their custom-built discovery
code allows Bluetooth device discovery without requiring
user intervention, contrary to the standard PyS60 discov-
ery. The application can be minimised to run in the back-
ground, to release the phone to perform other tasks, while
files are shared, allowing a user to start the program and
forget about it.

4.1 Bluetooth Service and Content Matching
In this section, we detail our content matching mechanism

and its operation over Bluetooth. Bluetooth offers device
and service discovery mechanisms as part of its specifica-
tion [3]. A service is described by a Service Record, which
consists of a list of Service Attributes. Some of these at-
tributes are predefined: most importantly, the ServiceClas-
sID, a Universally Unique Identifier (UUID) number which
enables efficient identification of the services that a device
supports (in our scenario, the music sharing functionality).
Our protocol can make use of further arbitrary attributes
to communicate, as part of the Bluetooth Service Discovery
Protocol (SDP), the category of content (i.e., genres) that a
device makes available for sharing.

More precisely, each genre is encoded as the MD5 digest of
the genre’s plain text name, obtaining a 128bit value to be
used as a service attribute’s value within a service record.
Each genre of interest is hashed to a separate service at-
tribute and added to the service record. Hashes need only
be computed when a device changes interests, and thus does
not represent any significant computational overhead. The
hashing allows category names of arbitrary length to be in-
cluded in service records, and adds some obfuscation of a
host’s interests, as it would be time consuming to compute
a lookup table of genre names (this could be improved by us-
ing a salt of the Bluetooth address) However, hosts looking
for particular genre types will only have to hash the small
number of their interests.

During a Bluetooth discovery phase, service records of
peers in reach are obtained by performing a
SDP ServiceSearchAttributeRequest transaction. Received



Action Duration (s)
Startup 2
Device discovery 10
File negotiation 1
5MB transfer (quiet) 117.9
5MB transfer (busy) 186.9
Copy 5MB to memory card 2

Table 1: Action timings

service records can be efficiently checked for matching in-
terests; hash collisions are extremely unlikely, especially as
genre names are typically short. This step allows the search-
ing host to know the categories of files that are likely to be
available on a peer device, without having to communicate
with the server application and manually searching the li-
brary. If the interests advertised by a peer do not match
any genre of interest to the querying device, the peer will
simply be ignored. The pre-defined ServiceAvailability at-
tribute allows notification of whether the service is already
busy sourcing to a different host, thus enabling further fil-
tering of hosts already engaged in other transactions.

With reference to the scenario from Section 2, Alice would
perform a service discovery on both Bob and Carol, who re-
spond with their service records, which include their encoded
genre service attributes, as well as the ServiceAvailability
attribute (set to either 0x00 if available, or 0xFF if busy).
Alice then has enough information to select her source. The
whole searching process is done using the Bluetooth SDP
layer only, without interaction from Bob or Carol’s music
application, thus exploiting Bluetooth features to efficiently
respond to genre searches.

4.2 Operation
Upon startup the application searches the predetermined

directory (E:/Music) for MP3 files, and reads each file’s
ID3 meta-tag to build an internal meta-library. A list of
all genres that a device contains is used as the interest list.
An RFCOMM port is bound to by the server thread of
the application, to listen for peer requests. The discovering
thread then begins to periodically discover all neighbouring
devices, recording their Bluetooth addresses, and updating
the colocation profiles. The client thread regularly selects
the best neighbour and attempts to initiate a download of
content matching a category from the interest list. Files are
downloaded to the fast internal phone memory and, upon
completion, moved to the memory card’s music folder for
long term storage.

4.3 Prototype Performance
We tested our prototype on an actual mass transit train,

both at busy and quiet times. Table 1 shows the time it
takes to perform some of the basic actions of our system;
these values were used to inform the parameterisation of
the simulations. The difference between the time taken to
transfer a 5MB file, when on busy trains and when near
empty trains, was significant, increasing transfer time by
nearly 50%. If many fellow passengers were engaged in data
transfers, the time taken would increase even more.

When using small unbranded memory cards, data writ-
ing took non-negligible time, though once the larger, higher
quality, ones were installed, this became a relatively constant
2 second overhead. This shows the exact behaviour of real

devices is dependent upon all hardware elements present.
However, these timings seem to be reasonable values for the
modelling of modern generation smartphones. The proto-
type demonstrates the feasibility of running a system such
as ours on a phone released in the last few years.

5. EVALUATION
In this section we report on the performance evaluation of

our content source selection protocol. We begin the discus-
sion with an analysis of the dataset used (Section 5.1), to
prove that the assumption we made about regularity of peo-
ple’s movement on public transport does hold. Section 5.2
then describes how we generated content libraries and dis-
tributed user interests, following realistic data models. We
then illustrate the protocol variants we are comparing (Sec-
tion 5.3), and the simulation settings we used (Section 5.4),
before moving on to discuss the actual results of the simu-
lations (Section 5.5). These tests were conducted with OM-
NeT++ [23], an open-source discrete event simulator writ-
ten in C++.

5.1 Dataset
Despite the availability of some wireless traces of people

using public transport, mainly from the Crawdad reposi-
tory at Dartmouth [5], we wanted to perform large scale
simulation of a city and its inhabitants. The movement
traces used in this study were collected anonymously from
a large metropolitan mass transit system over the course
of one month. The use of Radio Frequency Identification
(RFID) cards for electronic payment has been introducted
in many city’s transport networks over the course of the last
few years, including Hong Kong’s Octopus, Japan’s Suica,
London’s Oyster and Washington, DC’s SmarTrip. They
are small electronic devices that can communicate wirelessly
over short distances and store data. This technology allows
easy payment and faster movement through ticket check-
points; more importantly to our work, it enables the moni-
toring of passenger’s movement in the system. We obtained
data from two busy lines, each containing around 1 million
journeys over the duration of the sample. These lines run
through the centre of the city, and are used by commuters,
shoppers and tourists.

All data was completely anonymised before processing,
and contained fields user id, day, entry time, entry station,
exit time and exit station, with times being accurate to one
minute. Only journeys that begin and end on the same lines
are included. Journeys that are not complete (i.e., those
missing an entry or an exit detection) are also not included.

5.1.1 Journey attributes
We begin our analysis of the dataset by studying the

changing nature of journeys through the day (Figure 1). The
‘volume’ of passengers is shown as the percentage of people
travelling at that period, with respect to the number of peo-
ple travelling during a whole day. For each time of the day,
we also show the mean length of journeys that begin at that
time, and the standard deviation of journey durations. All
plots use the same x-axis of time of day, and the two y-axis
scales represent percentage on the left-hand side (for vol-
ume) and minutes on the right-hand side (for duration and
standard deviation). There is an obvious bimodal nature to
the volume of journeys due to the morning and evening rush
hours, peaking at 500 minutes (8:20AM) and 1100 minutes



 0

 5

 10

 15

 20

 25

 30

 200  400  600  800  1000  1200  1400
 8

 10

 12

 14

 16

 18

 20

 22

 24

 26
P

as
se

ng
er

 v
ol

um
e 

%

M
in

ut
es

Time of day (minutes)

Volume
Mean journey length

Journey stdev

Figure 1: Volume and duration of journeys.

(5:30PM) respectively. The evening rush hour lasts longer
and finishes gradually, probably due to people finishing work
at a wider variety of times, and people travelling to go out
for the night. The journey durations also vary throughout
the day, with longer journeys in the morning, assumedly
from more journeys being made between the suburbs and
the city centre; the nighttime drop is caused by the subway
closing. Throughout the day there is a large variance in the
mean durations, highlighting the need of distinguishing long
colocation duration passengers from the short ones.

5.1.2 User attributes
We studied the frequency with which individuals travel in

the trace. A very similar distribution appears for both train
lines: the vast majority of travellers use the train only a few
times during the sample, with around 70% of users being
unique (i.e., they are seen in the system only once). Most
importantly for us, a substantial subset of people frequently
commute in and out of the city, and are seen between 20-40
times over the duration of the sample.

To gain a more precise idea of how regular passenger travel
times are, we have analysed the occurrence of journeys over
the time of day. The most regular user behaviour would
involve travelling at the same time every day, and the least
regular would never travel at a similar time on any day. We
define a regularity metric for a particular user’s journey as
the number of their other journeys that occurred within 10
minutes of its entry time. A user’s overall regularity measure
is then defined as their average journey regularity. Figure 2
depicts the number of users with a given regularity value; the
three curves show the regularity results for all users, users
that travel more than five times and users that travel more
than 10 times in the sample. The number of users obtaining
low regularity scores decreases significantly as the minimum
number of journey threshold is increased, while the number
of high scoring users stays constant. This confirms that the
more frequently travelling hosts are also the ones having
more regular journey times.

5.1.3 Passenger colocation
The data set only records when/where people entered and

exited the subway system, and not who they were colocated

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

N
um

be
r 

of
 p

as
se

ng
er

s

Regularity metric

All users
Users traveling > 5

Users traveling > 10

Figure 2: Passenger journey regularity.

Algorithm 2 Same train algorithm.

for each journey i do
for each other journey j do

path=overlappedStations(i,j)
T1=timeAtStation(pathstart,i)
T2=timeAtStation(pathstart,j)
if abs(T1 − T2)≤TRAIN THRESH then

if ientry station == jentry station then
Cstart=max(ibegin,jbegin)+STNENTRY

else
Cstart=max(T1,T2)

end if
T3=timeAtStation(pathend,i)
T4=timeAtStation(pathend,j)
Cend = min(T3,T4)
recordColocation(i,j,C,path)

end if
end for

end for

with in terms of wireless device ranges. Therefore we had
to process the traces to extract meaningful colocation in-
formation to perform the content sharing experiments. The
colocation time between a pair of users was estimated by
making some simplifying assumptions. Each pair of jour-
neys, travelling on the same line and in the same direction,
is analysed to see if they overlap in time and space. In par-
ticular, we looked at a journey’s exit time, together with
the official train journey times, to calculate when/how long
the pair was on the same section of the line. If the users
were traversing the same station within TRAIN THRESH
of each other, they are deemed to have been on the same
train. This assumes people leave the system soon after
their train arrives at their final stop. Algorithm 2 gives
a formalised version of the processing used. The function
timeAtStation() estimates the time a passenger i was at a
given station during their journey as: exit time (iexit time),
minus the time it takes to leave the station (STNEXIT), mi-
nus the travel time between the exit station (iexit station) and
the station in question, according to the timetabled journey
times. STNEXIT and STNENTRY are both assumed to
be 1 minute, TRAIN THRESH is the mean period between
consecutive trains for that hour of the day.



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30

P
er

ce
nt

ag
e 

of
 jo

ur
ne

ys

Contact duraction (minutes)

Generated trace

Figure 3: Contact times.

We consider Bluetooth connectivity range to be the speci-
fication rating of 10 meters for Class 2 devices. Its relatively
short range means that even passengers on-board the same
subway train will not necessarily be in range. Our test-
ing (Section 4.3) found connectivity to be possible between
adjoining carriages, and also over 10 meters if the carriages
were not busy. We elected to distribute hosts uniformly ran-
domly throughout the trains, a simplification for analysis.

Karagiannis et al [12] have showed that wireless traces of-
ten exhibit similar unifying features. As the generated colo-
cation dataset is only derived from real movement traces,
and not collected from actual radio devices, we have vali-
dated it possesses suitable features. The metrics of contact
duration and inter-contact times are shown in Figure 3 and
4. The contact duration distribution follows an approxi-
mately exponential decay, with two key differing features.
The pronounced spike, at 15 minutes, in the contact dura-
tions, is caused by the underlying distribution of stations
and the journeys that people make between them, with the
most popular journeys lasting around 12-15 minutes. Also,
the proportionally low occurrence of short contacts is due
to people walking rather than taking public transport for
short journeys. The intercontact time shows a very clear
exponential decay, with λ being approximately 0.165 for pe-
riods below 20 days (the data set is not long enough to give
reliable data after this period). This matches with Kara-
giannis’ observation of exponential decay in the tails of the
intercontact CCDF.

5.2 Content Generation
In order to simulate a music sharing system, the tastes

and libraries of users must be respectively assigned and pop-
ulated. We make the assumption that users are interested in
a set of genres, and would like to receive more music of those
types (provided they do not already own that specific file);
moreover, we assume that, within the one month simulation
time we have, users do not change their interests.

Previous studies have recognised files in peer-to-peer sys-
tems to follow a generalised-Zipf distribution [21]. To verify
these observations, particularly in the scenario of digital mu-
sic libraries, we have collected data from Last.fm [1]. Last.fm
is a large (21 million users) “social music” website that cre-

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20  25  30  35

In
te

rc
on

ta
ct

 ti
m

e 
C

C
D

F

Time (days)

Generated trace
Exponential decay

Figure 4: Intercontact time CCDF.

ates profiles of musical tastes by tracking what songs users
listen to more often. Users are also encouraged to attach
tags to artists, thus creating a folksonomy of music classifica-
tion. Using the Audioscrobbler Web Services, we performed
a breadth-first crawl of 500,000 users, together with their top
50 most played artists. For each artist, we also crawled its
50 most frequently associated tags. By ranking tags in order
of their frequency across the whole crawl, we were capable of
ranking music categories in terms of popularity (e.g., rock
being more popular than electronica); moreover, when fo-
cusing on a particular category, we were able to rank artist
popularity (e.g., Red Hot Chili Peppers being more popular,
within rock, than Metallica). The same artist may appear
under different genres, as they can be tagged in many dif-
ferent ways. Note also that some tags used do not refer
to standard musical classifications (e.g., seen live, awesome,
etc.). Users will inevitably tag files with non-standard ter-
minology, and these tags will simply be leveraged by our
approach.

We used this information both to associate music tastes
to users, and to create music libraries accordingly. Each
user is assigned a set of interests, that is, a subset of all
the file categories; the precise number of interests per user
is a parameter in our simulations, and it has been varied
according to the observed interest distribution within indi-
viduals’ libraries. The probability of a genre being selected
as a user’s interest is proportional to its popularity within
the Last.fm dataset. To generate a particular user’s library,
a genre is first (uniformly randomly) selected from the user’s
interest list; an artist is then chosen according to its popu-
larity within the chosen genre, and a music file created. If
that file already exists in the library, another file is chosen.
The process continues until the library is populated, with
the initial library size being a simulation parameter. We
assume content to be already categorised at the beginning
of our simulation, and that reclassification (i.e., changing a
file’s genre from ‘rock’ to ‘indie’) does not occur (i.e., files
are not mislabeled).

5.3 Protocol Variants
We compare three methods of content source selection, in

order to validate the usefulness of our proposal.



• Random (RANDOM) - The content source is cho-
sen at random from a peer’s current neighbours, pro-
vided that there exists a non-empty overlap in inter-
ests. Due to Bluetooth’s discovery procedure, this is
actually the same as employing a first-come first-served
selection mechanism [20]. Random selection provides a
lower-bound on our expected performance of a source
selection technique. Note that this is not the same as
truly random selection, as hosts with disjoint musical
tastes or busy ones are still pruned.

• Colocation prediction (PREDICTION) - The ap-
proach described in Section 3 is used: peers with shared
interests are ranked in decreasing order of expected
colocation, and the peer at the top, who is not al-
ready sourcing a download, is chosen. The download
begins only if the expected remaining colocation is at
least t ∗ATTEMPT THRESH, with t being the es-
timated download time, and the threshold parameter
ATTEMPT THRESH set to 1 in all experiments.

• Oracle (ORACLE) - An oracle with perfect knowl-
edge of future colocation durations informs a host about
exactly how long its neighbours will remain colocated
(though network speed variations are not known). The
host thus knows, and always selects, to download a
file from the neighbour with shared interests and with
the longest remaining colocation time. Despite this
not being an implementable decentralized algorithm,
it provides an upper-bound to the performance of any
selection technique.

These protocols differ only on the actual selection stage, with
all other file acquisition steps being the same.

5.4 Simulation parameters
To ensure the simulations modeled reality as closely as

possible, the timing and behaviour of our prototype was used
to inform the selection of the simulation parameters. The
full list of parameters used, together with an explanation
of how we set them, is provided below. Note that there
is no learning phase employed, the simulations are begun
from a cold start, thus giving a pessimistic evaluation of our
prediction based scheme. Performance is likely to improve
upon the results presented here, once patterns have been
learned.

• Node number - We have studied the effect of increas-
ing the number of hosts (from 100 to 3000) on our per-
formance metrics, and we have observed no significant
changes once 2000 are being simulated. In all experi-
ments, we have thus simulated 2000 nodes running our
prediction protocol, as this number does approximate
the real system. We chose to individually model the
most frequently travelling passengers, as they stand to
benefit the most from our system.

• File size - We are assuming compressed music/video
files are being shared, with a three-minute CD quality
encoded MP3 file being around 5 MB in size. File sizes
are chosen from a normal distribution with a mean of
5 MB and standard deviation of 1 MB. The mean was
also varied in the range [3, 10] MB, to represent content
from small music files up to larger video clips.

• Transfer rate - Indicative experiments we ran on un-
derground trains showed a large range in the achievable
Bluetooth data rate, from 100kb/s to over 400kb/s;
Bluetooth version v1.1 specification highest symmet-
ric transfer mode DH5 (no FEC) is rated at 433.92
kb/s. In our simulations, the value for this param-
eter was a range of 100, increasing in increments of
50; from [100, 200] to [300, 400], and also [433, 433] to
show a perfect network, giving a full range of possible
network conditions. Real life achievable speed changes
based on how busy the train is (human bodies inter-
fere with Bluetooth’s 2.4 GHz microwave frequencies),
and other environmental factors, such as the vehicle
dimensions. Also, other active Bluetooth devices in
the area will interfere with the communication signal,
thus varying the achievable connection speed.

• Time slice - Given that we are dealing with human
movement, the time period has been fixed to one day.
The duration of slots, used to group colocations into
means, has been chosen to be a fine-grained 1 hour
(thus 24 slots in a given period). We have also run
experiments with a coarse-grained, more informed do-
main specific division, with the minute slices being
<400, 400-600, 600-1080, >1000; representing early
morning, rush-hour, day time and evening, respectively.
These groups were chosen with reference to the jour-
ney duration distribution (Figure 1); at run-time, they
can be dynamically learned using a lightweight tech-
nique such as the one described in [6]. Using fewer
slots requires less state being maintained about each
familiar stranger.

• User interests - Each user possesses N different in-
terests selected from the set of all genres. N is se-
lected from a uniformly random distribution in the
range [5:15]. This was chosen to reflect the fact the ma-
jority of Last.fm user’s libraries were classifiable with
a small set of categories.

• Initial library size - The size of the initial library
directly impacts file diversity across the system, with
large libraries giving a greater selection of files that
could match a user’s interest, yet also increasing the
likelihood of a user already having a given file. We are
aiming to cater for people wanting to find content to
entertain themselves, and thus may not already own a
large media collection. Each hosts initial library size
is thus set as a uniformly random variable in the range
[10:30].

All results shown in the next section were obtained with
the ATTEMPT THRESH parameter set to 1. We have run
experiments with other values; as expected, when the pa-
rameter approaches 0 (i.e., start the download no matter
how long the predicted colocation is), a behaviour similar to
RANDOM is achieved. For higher values, more downloads
complete successfully, thus increasing efficiency, but false
negatives (i.e., unattempted downloads that would have been
successful) rise too, reducing the amount of files gained. In
the interest of space, we limit our discussion to the value 1,
thus being able to directly assess the accuracy of our pre-
diction engine.

When two peers lose their colocation while performing a
transfer, a failure of communication is registered and a short



wait is forced (of uniformly random [50, 100] second dura-
tion) before selecting a different download source. This is
to represent the time it would take to register the break in
connection, and for a new discovery procedure to be per-
formed. Note that failures are most likely to occur when the
train is at a station, and it would thus be wise to wait for
all departing people to leave and for any new passengers to
board.

Hosts will have to perform regular discovery procedures to
detect the colocated neighbours. Data transfer rates are thus
reduced to cater for the overhead of performing discovery of
length 5.12 seconds every 2 minutes. The estimated transfer
value that hosts use when selected, E(speed), is taken as the
average value of the range of the transfer rate parameter
being used.

When a file transfer completes, rather than performing a
new search and selection, another download will be immedi-
ately attempted between the same hosts (unless the thresh-
old mechanism indicates it will probably fail). This will
reduce the possibility of finding the best source available at
some points in time, but it will in turn cut the overhead
involved in re-running the discovery protocol, allowing for
more file transfers to occur during each ‘session’ with a se-
lected source; moreover, if a source has one appropriate file,
it is likely that they will have more.

Though we do not model wireless propagation effects,
many Bluetooth transfers occurring in an enclosed space will
impact the achievable transfer speeds. Bluetooth uses Fre-
quency Hopping Spread Spectrum (FHSS) to mitigate in-
terference between physically proximate piconets, changing
the transmission frequency every 625µ seconds. The higher
the number of active transfers occurring in the immediate
area, the greater the likelihood a slot from a neighbouring
piconet is transmitted in the same frequency, colliding and
corrupting a transmission’s slot. We are only considering
the data communication, and ignore the effects of capture
and signal attenuation. To realistically model throughput
reduction due to collisions, we use the analysis presented by
Liu [22], assuming all packets are DH5, thus dynamically re-
ducing the throughput of a transfer according to the number
of neighbours currently sending data.

5.5 Results
This section analyses the performance results of our ap-

proach, with respect to the different source selection tech-
niques outlined before. We have studied how the simulation
parameters affect the network, and measured the following
metrics:

• Transfer success rate - In the range [0:100], it de-
notes the percentage of initiated transfers that com-
pleted. Failed transfers benefit no-one, wasting en-
ergy, time and causing extra network contention. It is
a measure of the prediction technique accuracy.

• Library increase - The mean number of new files
gained by each host at the end of the simulation period
gives a measure of the utility gained by the users of the
system.

• Efficiency - The efficiency of the protocol is defined
as the ratio of useful data traffic (from complete files)
that is received out of the total amount of data traf-
fic received. In the range [0:1], it denotes whether the

 0

 20

 40

 60

 80

 100

 150  200  250  300  350  400  450

S
uc

es
sf

ul
 r

eq
ue

st
 %

Mean transfer speed (kb/s)

Oracle
Prediction

CG Prediction
Random

Figure 5: Transfer speed effect.

data distribution network was perfect, 1, or a com-
plete failure, 0. The transfer success rate metric
does not factor the difference between a failure early
in the download, or just before completion. The effi-
ciency shows how much utility (i.e., complete file data
procured) is gained for the work expended transferring
data.

Our vanilla experiment with the default parameters showed
the mean number of familiar stranger nodes (when using our
prediction) was less than 200, thus causing a relatively small
amount of state (less than 60kB for our fine-grained predic-
tion method) being carried around by the mobile device.

5.5.1 Transfer success rate
Figure 5 shows the percentage of successfully completed

transfers while varying the achievable transfer speed, with
the file size being set to 5MB. For all selection methods,
the success rate increases as the speed does, asymptotically
approaching 100%, as transfers become more likely to fin-
ish before the source departs. Oracle shows the optimal
selection performance, it is not 100% as colocation length
alone is not sufficient to know how much information can
be transferred in varying network conditions. Our uniform
fine-grained time slice prediction mechanism (Prediction) is
always significantly higher than the Random approach, at
least 50% better, approaching 80% successes at fast transfer
speeds. As well as the fine-grained uniform one-hour time
slice division, we also tested the performance of our selection
scheme when using four time slices within a one day period,
carefully chosen using our domain specific knowledge, as dis-
cussed in Section 5.1. This more coarse-grained time slice
scheme (CG Prediction) suffers a small, consistent penalty
for storing less detailed information. This indicates that it is
possible to reduce storage overhead, by compromising some
performance, when knowledge about movement routines can
be learnt from the dataset. Consequently, we only present
the results for the fine-grained version in subsequent graphs.

5.5.2 Efficiency
For all approaches, the efficiency of network usage in-

creases with the network speed (Figure 6). At the most
conservative end of the transfer speed (100-200kb/s) 57%



 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 150  200  250  300  350  400  450

E
ffi

ci
en

cy

Mean transfer speed (kb/s)

Oracle
Prediction

CG Prediction
Random

Figure 6: Efficiency of network.

of all transferred data is not useful when using Random.
Wasted work is only 25% for our prediction, even the per-
fect Oracle cannot avoid some waste, of 19%, due to the false
positives caused by the sub-100% success rate. At higher
speeds, the efficiency improves for all approaches, with our
scheme constantly exhibiting at least 18% better network
efficiency than Random.

5.5.3 Library increase
Figure 7 shows how the mean host library size increases

roughly linearly as the network transmits the files faster.
Random gains the least files, due to choosing poor content
sources and its overly aggressive initiation of transfers caus-
ing the excess of traffic to collide with neighbours, extend-
ing their downloads even further. Oracle and Prediction,
due to them employing an initiation threshold, do not cause
as much network contention, and subsequently are actually
able to transmit more files over the experiment. Prediction
enables each host to gain from 5 to 10 more files per host
than Random, as network speed increases, with Oracle only
finding another 2 files per host, thanks to its perfect coloca-
tion duration knowledge.

We have also studied the impact of file size (from 3MB to
10MB mean value) on library increase, with realistic through-
put of [200, 300] kb/s. As expected, larger files take longer
to transfer, causing smaller library increases for all tech-
niques. Prediction trails Oracle, with Oracle getting on av-
erage 2 files more than Prediction almost regardless of file
size, while Random remains behind, with between 10 and 2
files less than Prediction, for 3MB to 10MB files respectively.

5.5.4 File receipt distribution
The expected effect on user libraries from running our sys-

tem is to increase the amount of music they have to listen
to. It is important to check that this improvement occurs for
all genres, not just the most popular ones. Figure 8 shows
the effect on the genre occurrence distribution in the net-
work from using our system. The ‘Initial distribution’ and
‘Gained distribution’ are combined in to the ‘Final distribu-
tion’. As desired, all media categories become increasingly
available across the network, with a relative greater increase
observed for less popular categories, as the most popular

 0

 5

 10

 15

 20

 150  200  250  300  350  400  450

Li
br

ar
y 

in
cr

ea
se

 (
fil

es
)

Mean transfer speed (kb/s)

Oracle
Prediction

CG Prediction
Random

Figure 7: Library size increase.

1e+01

1e+02

1e+03

1e+04

1e+05

 0  20  40  60  80  100  120  140  160  180

F
re

qu
en

cy

Genre rank

Final distribution
Initial distribution

Gained distribution

Figure 8: Genre distribution.

ones become so widely available that they are not desired as
much as at the beginning of the simulation. Note also how
the final distribution still follows a generalised-Zipf distri-
bution: we are thus not altering the natural distribution of
files in the system, we are simply making them more widely
available, in a way that reflects the natural distribution of
user’s interest.

Other experiments that are not presented due to space
limitations are now discussed. Once the mean number of
user’s interests exceeds 7, no real benefits are seen in li-
brary increase, as it then becomes almost equally likely any
given set of neighbours will have some files of interest to
a user. The success rate and efficiency metric are mostly
unaffected by the mean amount of genre interests, as unat-
tempted transfers, due to a lack of suitable files, do not
impact efficiency calculation. Varying the initial library size
above 3 files per user has a very small impact on the sys-
tem’s performance, as just a few successful transfers give
hosts enough files to satisfy future searches. The choice of
the search response shortlist (Section 3.2, step 5) had less
impact on system behaviour than expected. Advertising a
random selection of files was nearly as effective as advertis-



ing the least shared files (attempting to increase replication).
We feel that this would be important in a deployed system
with real users, possibly advertising the most listened to
files, and so spreading a users tastes through the system,
responding to desires for new popular tracks.

6. RELATED WORK
Investigation of of the inter-connectedness of personal de-

vices has received significant interest, with areas such as
Pocket Switched Networks (PSN), within the realm of Delay
Tolerant Networks (DTN), becoming established [9]. There
is much interest in DTNs, using personally carried mobile
devices and the opportunistic connections between them to
spread information along multiple hops. Whilst being inher-
ently comparable, our work does not focus on routing and/or
remote message delivery, but rather the behaviour of pair-
wise interactions. Knowledge about communities, social in-
teraction and colocation has been employed in multi-hop
DTN [17, 10]. With respect to these, we also concentrate
on gathering information about human behaviour to inform
and improve the operation of our network.

A number of approaches have been developed in recent
years to exploit the wireless connectivity of our portable
devices and deliver localised content sharing. In terms of
Bluetooth network exploitation for media delivery two ap-
proaches share a similar vision to ours.

Bluespots [14] is a public transport based content distri-
bution system. Communication occurs via a hub that is
installed on the bus, rather than peer-to-peer. Content that
is deemed to be popular (e.g., music, news sites) is hosted on
the hubs and is made available to the public. Though this
centralisation not only causes contention issues, but also re-
stricts the flexibility of what data can be shared and has
single points of failure.

Bluetorrent [11] is a peer-to-peer file sharing system using
Bluetooth. It is similar in operation to Bittorrent, where
files are split into small pieces, then downloaded and shared
by clients. Their goal is to support content download over
multiple sessions, thus avoiding the problem of indepen-
dently moving hosts, with short connectivity patterns. APs
are used to seed and spread selected content, requiring the
creation of this infrastructure and management of the injec-
tion of content into the system. The work relies on enough
people serving the same version of a file to gain the advan-
tage of swarming and includes a communication overhead of
informing other peers of individual file progress.

The highly temporally disconnected nature of the net-
works being considered would require an automatic method
to purge partially downloaded files that are unlikely to ever
complete. This could be due to rarity of a file, destined to
never complete, or even corrupted/malicious files becoming
available. We use a different approach, that is, to exploit the
regularity of human movement to select a source from where
we can reliably download a complete file in a single session,
thus only storing complete files. An hybrid approach could
be designed where our source selection approach is used to
select a peer from whom the most chunks will be received in
a single session, reducing the control information communi-
cation overhead.

Our scenario of wireless media sharing in dense urban en-
vironments is shared by HyCast [2], a podcast (syndicated
media source) dissemination system. As in our approach,
HyCast identifies peers with similar interests and only ex-

pends energy communicating with such hosts. To combat
the effects of network contention from many unicast trans-
fers, it forms clusters out of nodes with similar interests. It
attempts to deal with transfer failures from node mobility
by simply waiting until churn stops before transferring data.
This is implausible in environments with constant churn and
could result in wasting whatever connection opportunities
are available. State is only maintained about other hosts
with reference to the content being shared between them,
without leveraging any historical information about coloca-
tions and their patterns.

7. CONCLUSIONS
In this paper we have presented an approach to content

sharing over urban transport. The approach used a mecha-
nism for device colocation pattern detection; such patterns
are exploited for the runtime selection of the best content
source among available peers. We have described the perfor-
mance of our approach through the use of extensive under-
ground transport usage traces collected in a large city. The
results show that the prediction of human colocation length
is a feasible and useful strategy for content source selection.
Even in large metropolitan cities, the regularity of people’s
movement can be leveraged to identify familiar strangers,
and exploit the learned colocation patterns.

Though our results have been validated only in the domain
of public transport movement, and not other user patterns,
many of the attributes of our test data will apply to other
human activities, such as coffee-shop or pub visiting. Our
findings show that, when automatically sharing content files
(e.g., music files and video clips) in human contact networks
subject to churn, the source selection stage is important.
Aggressive policies on whether to initiate downloads (e.g.,
Random) may procure more files, but lead to more incom-
plete transfers, increasing the burden on the network (re-
ducing neighbour’s throughput), wasting time that could be
spent on successful downloads and needlessly draining device
battery-life. Additionally, with some domain knowledge, it
is possible to achieve very similar results to our prediction
technique, while storing much less state.

The ATTEMPT THRESH parameter we use can be tuned
to effect the download initiation likelihood, and optionally
reduce the amount of download failures (at the expense of
some successes from false negatives). Its value can be set on
a per-user basis and be linked to other factors such as, for
example, battery level, causing a device to become progres-
sively more conservative with its download attempts as the
available power drains.

8. FUTURE WORK
An aspect we have not included yet in this work is con-

sidering a peer’s behaviour. Some nodes may, for example,
misbehave and share unrequested/corrupted content. When
selecting sources, we should thus rely on those that have
behaved repeatedly well in the past, as opposed to deceiv-
ing/unknown ones. We are investigating the integration of
a distributed trust management scheme within the source
selection stage, to cope with maliciousness/selfishness. The
sharing of recommendations about other host’s performance
has already been proposed as a means to build trust in
MANETs [4]. The combination of knowledge about an-
other host’s reputation, together with its movement pat-



terns, could then be exploited to maximise the efficient down-
load of relevant quality files.

We are aiming to increase the amount of platforms the
prototype can operate on, and eventually realise a large scale
real deployment. This is not only to gather technical data
on the operation of our system, but to enable accurate user
feedback on what they liked about the system, and what
additional features would be most appreciated.

Acknowledgements: We would like to acknowledge the
support of the European Union through project PLASTIC
and of EPSRC through project CREAM. We also thank Ian
Brown, Jon Crowcroft and Alan Medlar for their useful feed-
back.

9. REFERENCES
[1] Last.fm - http://www.last.fm, audioscrobbler data

source - http://www.audioscrobbler.net.

[2] Adrian Andronache, Matthias R. Brust, and Steffen
Rothkugel. Hycast- podcast discovery in mobile
networks. In WMuNeP ’07: Proc. of the 3rd ACM
Workshop on Wireless Multimedia Networking and
Performance Modeling, pages 27–34, New York, NY,
USA, 2007. ACM.

[3] Bluetooth SIG. Core Specification v2.1 + EDR -
Specification of the Bluetooth System. July 2007.

[4] S. Buchegger and J.-Y. L. Boudec. A Robust
Reputation System for P2P and Mobile Ad-hoc
Networks. In Proc. of the 2nd Workshop on the
Economics of Peer-to-Peer Systems, June 2004.

[5] Dartmoth College. CRAWDAD community resource
for archiving wireless data). Available at
http://crawdad.cs.dartmouth.edu/, Nov 2006.

[6] V. Dyo and C. Mascolo. A Node Discovery Service for
Partially Mobile Sensor Networks. In Proceedings of
IEEE International Workshop on Sensor Network
Middleware (MIDSENS07), Colocated with
Middleware 2007, November 2007.

[7] E. O’Neill, V. Kostakos, T. Kindberg, A. Fatah gen.
Schiek, A. Penn, D. Stanton Fraser and T. Jones.
Instrumenting the City: Developing Methods for
Observing and Understanding the Digital Cityscape.
In International Conference on Ubiquitous Computing
(UbiComp), 2006.

[8] Marta C. Gonzalez, Cesar A. Hidalgo, and
Albert-Laszlo Barabasi. Understanding Individual
Human Mobility Patterns. Nature, 453:779–782, June
2008.

[9] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft,
and C. Diot. Packet Switched Networks and Human
Mobility in Conference Environments. In Proceeding of
the ACM SIGCOMM Workshop on Delay-Tolerant
Networking (WDTN), pages 244–251. ACM Press,
August 2005.

[10] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap:
Social-based Forwarding in Delay Tolerant Networks.
In Proc. of 9th ACM International Symposium on
Mobile Ad Hoc Networking and Computing
(MobiHoc), Hong Kong, May 2008.

[11] S. Jung, U. Lee, A. Chang, D. Cho, and M. Gerla.
BlueTorrent: Cooperative Content Sharing for
Bluetooth Users. Percom, pages 47–56, March 2007.

[12] Thomas Karagiannis, Jean-Yves Le Boudec, and
Milan Vojnović. Power Law and Exponential Decay of
Inter Contact Times Between Mobile Devices. In
MobiCom ’07: Proceedings of the 13th annual ACM
International Conference on Mobile Computing and
Networking, pages 183–194, New York, NY, USA,
2007. ACM.

[13] L. McNamara, C. Mascolo and L. Capra. Content
Source Selection in Bluetooth Networks. In Proc. of
International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services
(Mobiquitous), August 2007.

[14] J. LeBrun and C. Chuah. Bluetooth Content
Distribution Stations on Public Transit. In MobiShare
’06: Proc of the 1st Workshop on Decentralized
Resource Sharing in Mobile Computing and
Networking, pages 63–65, NY, USA, 2006. ACM.

[15] Glenn Lyons and Kiron Chatterjee. A Human
Perspective on the Daily Commute: Costs, Benefits
and Trade-offs. Transport Reviews, 28:181–198, March
2008.

[16] S. Moloney and P. Ginzboorg. Security for
Interactions in Pervasive Networks: Applicability of
Recommendation Systems. In Proceedings of ESAS,
pages 95–106, 2004.

[17] M. Piórkowski N. S-Djukic and M. Grossglauser.
Island Hopping: Efficient Mobility Assisted
Forwarding in Partitioned Networks. In Proc. of the
3rd IEEE SECON, Sept 2006.

[18] Nokia. PyS60 Sourceforge homepage -
http://sourceforge.net/projects/pys60.

[19] E. Paulos and E. Goodman. The Familiar Stranger:
Anxiety, Comfort, and Play in Public Places. In CHI
’04: Proc of the SIGCHI on Human Factors in
Computing Systems, pages 223–230, NY, USA, April
2004. ACM.

[20] R.O. Kharoufeh J.P. Peterson, B.S. Baldwin.
Bluetooth Inquiry Time Characterization and
Selection. IEEE Transactions on Mobile Computing,
5(9):1173–1187, 2006.

[21] Subhabrata Sen and Jia Wang. Analyzing
Peer-to-Peer Traffic Across Large Networks.
IEEE/ACM Trans. Netw., 12(2):219–232, 2004.

[22] Ting-Yu Lin and Yu-Chee Tseng. Collision Analysis
for a Multi-Bluetooth Picocells. IEEE Commun. Lett.,
7:475–477, Oct 2003.

[23] A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proc. of the European Simulation
Multiconference (ESM’01), June 2001.


