
SociableSense: Exploring the Trade-offs of Adaptive
Sampling and Computation Offloading for Social Sensing

Kiran K. Rachuri, Cecilia Mascolo
Computer Laboratory

University of Cambridge

{kkr27, cm542}@cam.ac.uk

Mirco Musolesi
School of Computer Science

University of Birmingham

m.musolesi@cs.bham.ac.uk

Peter J. Rentfrow
Faculty of Politics, Psychology,

Sociology and International Studies
University of Cambridge

pjr39@cam.ac.uk

ABSTRACT

The interactions and social relations among users in work-
places have been studied by many generations of social psy-
chologists. There is evidence that groups of users that in-
teract more in workplaces are more productive. However, it
is still hard for social scientists to capture fine-grained data
about phenomena of this kind and to find the right means
to facilitate interaction. It is also difficult for users to keep
track of their level of sociability with colleagues. While mo-
bile phones offer a fantastic platform for harvesting long
term and fine grained data, they also pose challenges: bat-
tery power is limited and needs to be traded-off for sensor
reading accuracy and data transmission, while energy costs
in processing computationally intensive tasks are high.

In this paper, we propose SociableSense, a smart phones
based platform that captures user behavior in office environ-
ments, while providing the users with a quantitative mea-
sure of their sociability and that of colleagues. We tackle the
technical challenges of building such a tool: the system pro-
vides an adaptive sampling mechanism as well as models to
decide whether to perform computation of tasks, such as the
execution of classification and inference algorithms, locally
or remotely. We perform several micro-benchmark tests to
fine-tune and evaluate the performance of these mechanisms
and we show that the adaptive sampling and computation
distribution schemes balance trade-offs among accuracy, en-
ergy, latency, and data traffic. Finally, by means of a social
psychological study with ten participants for two working
weeks, we demonstrate that SociableSense fosters interac-
tions among the participants and helps in enhancing their
sociability.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless Co-
mmunication; H.1.2 [User/Machine Systems]: Human
Information Processing; H.3.4 [Systems and Software]:
Distributed Systems; J.4 [Social and Behavioral Sci-
ences]: Psychology, Sociology

General Terms

Algorithms, Design, Experimentation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’11, September 19–23, 2011, Las Vegas, Nevada, USA.
Copyright 2011 ACM 978-1-4503-0492-4/11/09 ...$10.00.

Keywords

Computation Offloading, Energy-Accuracy Trade-offs, Mo-
bile Phone Sensing, Social Interactions, Social Psychology.

1. INTRODUCTION
The study of interactions and sociability among users in

workplaces has been of interest to social scientists for many
generations. A deep understanding of social dynamics in the
office environments helps companies to better manage em-
ployees and increase their productivity. There is substantial
evidence that groups in which individuals are more socially
connected at work are also more productive [23, 27, 32].
Interactions are heavily influenced by the colocation in the
same office spaces and the type of work performed by the
employees. For this reason, there is generally a non-uniform
distribution of the strength of these social interactions. So-
cial scientists study user behavior and interactions in work-
places mostly through self-reports, however, these are found
to be biased towards positive (or pleasant) interactions [28].
In general, participants find it hard to accurately remem-
ber and report details. Moreover, incentives and sugges-
tions about possible further interactions are usually given
post-analysis and through costly meeting sessions with the
workers.

Smart phones represent an ideal computing platform to
conduct social psychological studies in the office environ-
ments and to close the loop by providing feedback to the
users as they are unobtrusive and sensor rich platforms. Re-
cently, we have seen a soaring number of systems based on
smart phones aimed at social psychological and behavioral
monitoring studies [16, 24, 31]. Most of these systems are
useful to collect data for the social scientists. There is an
opportunity to use these data to provide help, services, or
simply useful information to participants. However, the data
harvesting through mobile phones still presents a variety of
challenges to developers: energy consumption is still very
high for both data transmission and resource-intensive local
computation. Adaptive sampling of the sensors to preserve
energy, and the data offloading to servers for remote com-
puting of the analysis need to be traded-off for energy pre-
serving on the phones, which still need to be functional to
the users.

In this paper, we present the design, implementation, per-
formance evaluation, and deployment of SociableSense, a
smart phones based sensing platform with the aim of pro-
viding real-time feedback to users in order to help them
in fostering their interactions and improving their relations
with colleagues. SociableSense implements novel solutions in
terms of adaptive sensor sampling and intelligent distributed
computation based on the context and phone status. More



specifically, a sensor sampling component adaptively con-
trols the sampling rate of accelerometer, Bluetooth, and mi-
crophone sensors while balancing energy-accuracy-latency
trade-offs based on reinforcement learning mechanisms [5,
18]. A computation distribution component based on multi-
criteria decision theory [19] dynamically decides where to
perform computation of tasks such as data analysis and clas-
sification, by considering the importance given to each of the
dimensions: energy, latency, and data sent over the network.
Finally, with respect to the support for the application it-
self, a social feedback component determines the sociability
of users (i.e., a quantitative measure of the quality of their
relationships) based on interaction and colocation patterns
extracted from the sensed data at run-time and provides
them with feedback about their sociability, strength of rela-
tionship with colleagues, and also alerts about opportunities
to interact.

We perform a two-part evaluation of the SociableSense
system. First, we perform several micro-benchmark tests
to fine-tune and evaluate the various components. Second,
in order to demonstrate the usefulness of SociableSense to
the social scientists and participants, we conduct a social
psychological study in an office environment where 10 par-
ticipants carried mobile phones for two working weeks. To
the best of our knowledge, SociableSense is the first mo-
bile sensing system that implements sensor sampling that is
adaptive in real-time with respect to the changing context,
and a computation distribution scheme that takes into ac-
count the changing resources and the requirements of the
researchers collecting the sensor data. Furthermore, we be-
lieve that this is the first work that brings mobile sensing and
social network theory together in order to provide real-time
feedback to users about their relationships in an effective,
and, at the same time, efficient way.

More specifically, the key contributions of our work can
be summarized as follows:

• We illustrate a novel sensor sampling scheme based
on reinforcement learning that adaptively controls the
rate at which sensors in the phone are sampled, and
show that it achieves better accuracy and latency with-
out considerably compromising on the energy consump-
tion.

• We present a computation distribution scheme that
dynamically decides where to perform the computation
of classification tasks, i.e., locally or on remote servers
including cloud services, while considering three di-
mensions: energy, latency, and data traffic. We also
present a rule-based framework through which experi-
ment designers can adapt the behavior of this scheme
at run-time.

• We present the design, implementation, and evaluation
of a system for quantitatively measuring the sociabil-
ity and relations of users in the office environments
through our adaptive framework. We also close the
loop by providing real-time feedback about their socia-
bility, the strength of their relations with colleagues,
and opportunities to interact. By inferring the most
sociable person in the office, we provide implicit incen-
tives to users to become more sociable.

The remainder of this paper is organized as follows: we
describe the motivation of the work in Section 2, and our
approach in Section 3. We then present the details of our
system in Section 4. We present the evaluation through

micro-benchmarks in Section 5 and through a social exper-
iment in Section 6. We then present the related work in
Section 7, and, finally, we conclude the paper in Section 8.

2. RELATIONS IN WORKPLACES
Social science researchers have been devoting their atten-

tion on investigating behavior and interactions of users in
the workplaces for a long time, trying to answer questions
about different aspects of the problem. What are the inter-
action and colocation patterns among users in the office or
corporate environments? Do people socialize more in per-
sonal office spaces or in common spaces like coffee rooms?
Which work-group members socialize with one-another and
why? Considering evidence that work-groups with highly
connected team members outperform less connected ones [23,
27, 32], the importance of these research questions is clear:
Understanding how work-groups socialize naturally and iden-
tifying the factors that moderate socialization could have
significant effects on group performance and productivity.

Moreover, some of the questions concerning the users them-
selves include: Who is the most sociable person in the group?
Do I socialize more with person X or person Y ? Could I get
to know X more if I get a chance to interact with him/her
in the coffee room every day? How does my sociability vary
with respect to the time of day or day of week?

Investigations of workplace socializing tend to rely pri-
marily on self-report methods. Although such methods can
be useful and effective for assessing attitudes, beliefs, and
emotions, considerable evidence suggests that reports of be-
havior tend to be inaccurate [28]. Laboratory based stud-
ies enable researchers to observe behavior instead of rely-
ing on behavioral reports, however, the nature of laboratory
studies can make participants’ experiences unnatural and
contrived. Moreover, using these methods, real-time feed-
back/alerts about users’ own relations are hard to provide.
It is also difficult for participants to know precise answers
to the above questions, which go beyond their own approx-
imate observations.

Smart phones can prove invaluable for the long term and
continuous monitoring of people in their environment. Since
everyone has a mobile phone, they are a perfect platform for
conducting behavioral monitoring studies. Moreover, they
are also very effective to close the loop by providing feedback
and alerts to participants. However, before smart phones
can be thought as the perfect platform for social studies,
there are many challenges which need to be addressed: first,
since mobile phones are battery powered, the sensor sam-
pling rate should be adaptively controlled while considering
not only accuracy, energy, but also latency, as timely alerts
for socializing opportunities are important: phones are pri-
marily to be used by users for their tasks and energy should
not be depleted. Second, efficient classifiers have to be de-
veloped to derive accurate inferences from the raw data of
potentially inaccurate sensors of mobile phones. Third, de-
vices should be able to effectively use the local and cloud
resources not only to achieve energy efficiency but also to
reduce the data transmission over the network in order to
avoid to use the data plans of participants. Fourth, with re-
spect to sensing social interactions, efficient algorithms have
to be designed to capture the relations among users. Fifth,
online feedback mechanisms have to be designed in order to
provide timely alerts to users (e.g., about opportunities to
interact with their colleagues).



3. OUR APPROACH AT A GLANCE
In this section, we describe how we address the key chal-

lenges in building the SociableSense system.

Adaptive Sensor Sampling The sensors embedded in the
mobile phones have to be sampled continuously in order to
capture user behavior, however, this leads to the depletion of
battery. If the sensors are sampled at a slower rate, then it
may not be possible to capture the user behavior accurately.
Therefore, we design an adaptive sampling technique that
balances the energy-accuracy-latency trade-offs through the
use of linear reward-inaction learning [5, 18] that is based on
the theory of learning automata [26]. The adaptive sampling
scheme adjusts the sampling rate of these sensors dynami-
cally based on the context of the user in terms of events
observed (interesting or not) and thereby achieves an im-
proved accuracy and latency without considerably compro-
mising on the energy consumption of the system, i.e., the
sensors are sampled at a high rate when there are interest-
ing events observed and at a low rate when there are no
events of interest. We provide detailed explanation about
this adaptation scheme in Section 4.1.

Intelligent Computation Distribution Once the data
from the sensors are sampled, they need to be processed to
derive high level inferences. This processing might be triv-
ial in terms of resource consumption for some classification
tasks like detecting whether a person is stationary or mov-
ing, and intensive for some other tasks like speaker identifi-
cation from microphone data or image recognition from cam-
era sensing. Mobile phones have limited computing power
but they can depend on remote computation performed on
back-end servers such as cloud farms. However, in general,
data transmission is costly in terms of energy consumption
and not all users may have unlimited data plans. There-
fore, the allocation of the execution of computational tasks
is of key importance in such systems. We design a compu-
tation distribution scheme based on multi-criteria decision
theory [19] that decides whether to perform the computation
locally on the phone or remotely in the cloud by consider-
ing various dimensions such as energy, latency, and data sent
over the network. This scheme smartly distributes the classi-
fication tasks among local and cloud resources while balanc-
ing the energy-latency-traffic trade-offs. Furthermore, we
also design a rule based framework for dynamically adapt-
ing the behavior of this distribution scheme with respect to
decrease/increase in the mobile phone resources (like bat-
tery charge/discharge cycles, user’s data plan running out
of allowance). We provide details about this component in
Section 4.2.

Measuring Sociability for Effective Feedback Based
on the inferences derived from the classifiers, we quantita-
tively measure the sociability of users and the strength of
relations with their colleagues using the so-called network
constraint [6]. The quantification of sociability is performed
with respect to user colocation and interaction patterns. In
order to enhance the sociability of users, we design alert and
feedback mechanisms that inform the users about opportu-
nities to interact with colleagues in social locations and rela-
tionships that need attention. We explain these mechanisms
in detail in Sections 4.3 and 4.4.

Cloud / Remote Server

Mobile Phone

SociableSense

Accelerometer MicBluetooth

Sensor 
Sampling

Computation 
Distribution

Application

Remote 
Classifiers

Cloud
Local 

Classifiers

 Alerts 
Module Web 

API
Rules 

Framework

Figure 1: Architecture of the SociableSense system.

4. SYSTEM COMPONENTS
In this section we describe the details of the components

of the SociableSense system, focusing on the description of
its novel underlying mechanisms. The overall system archi-
tecture of SociableSense is shown in Figure 1.

4.1 Sensor Sampling
This component is responsible for adaptively querying the

data from the accelerometer, Bluetooth, and microphone
sensors while balancing energy-accuracy-latency trade-offs.
We first present the learning technique based on the theory
of learning automata [26] that is used for adaptive sampling.

4.1.1 Design Methodology

After raw data are queried from the sensors, they are sent
to the classifiers to derive high level inferences. We refer to
these inferences as events. For example, the X, Y , Z axes
values are queried from the accelerometer sensor continu-
ously for a certain period of time and are then sent to the
activity recognition classifier in order to extract the moving
or stationary events. We further categorize each of these
classified events into two classes, viz., missable and unmiss-
able. A missable event indicates that no interesting exter-
nal phenomenon has happened and the corresponding sensor
can sleep during this time. An unmissable event is an event
of interest observed in the environment that should not be
missed by the sensor. The classification of an event as miss-
able or unmissable is application dependent. For example,
a categorization of missable and unmissable events for voice
recognition classifier based on the microphone sensor can
be as follows: silence might be missable, some audible data
might be unmissable.

4.1.2 Learning based Adaptation

The system uses a learning technique based the theory
of learning automata [26] to control the sampling rate of
the sensors. In particular, we use the linear reward-inaction
algorithm [5, 18] because of its suitability for adaptively ad-
justing the sampling rate of sensors1. Learning automata
based techniques are defined in terms of actions, probability
of taking these actions, and their resulting success or failure.
In the context of learning automata, there is only one ac-
tion in our scenario, i.e., sensing from a sensor. The decision
whether to sense or not from a sensor is based on a probabil-
ity value, which we call probability of sensing. The sensing
action results in either success or failure, which are defined

1Alternative techniques include information theoretical ap-
proaches such as compressed sensing [12], which are orthog-
onal with respect to our application-level approach.



as follows: when data sensed from a sensor corresponds to
an unmissable event (for example, when an audio sample
is recorded through the microphone sensor, and it contains
some audible data) then we term this as success. Similarly,
when data sensed from a sensor corresponds to a missable
event (for example, audio data from microphone sensor con-
tains no audible data and only silence) then we term this
as failure. The idea is that when a sensor expends some
energy in sensing and this results in capturing an event of
interest then it is considered as a success, otherwise as a fail-
ure. The probability of sensing from a sensor is dynamically
adjusted according to their previous successes and failures.
The technique works as follows: let pi be the probability of
sensing from a sensor si where i={accelerometer, Bluetooth,
microphone}, and ai be the sensing action on a sensor si.

If the sensing action ai results in an unmissable event,
it means that the system has detected an interesting event
(i.e., a success), so that probability is increased according to
the following formula:

pi = pi + α(1 − pi), where 0 < α < 1 (1)

If the sensing action ai results in a missable event, it
means that the system has not detected an interesting event
(i.e., a failure), so that probability is decreased according to
the following formula:

pi = pi − αpi, where 0 < α < 1 (2)

Therefore, by adopting these mechanisms, the sampling
rate adapts to the context of the user. We also limit the
lower and upper bounds of these probabilities to 0.1 and 0.9,
respectively. If the probability of sensing is less than 0.1 then
the duty cycling may fall below 10%, and if it is more than
0.9, the duty cycling may be over 90%. We limit the lower
bound to avoid having a very small sampling rate, which will
potentially lead to miss important events. At the same time,
we limit the upper bound to avoid a too aggressive sampling,
which reduces the battery life. We present the evaluation of
the learning technique and compare its performance with
various static functions and dynamic adaptation techniques
in Section 5.1.

4.2 Computation Distribution
After raw data are queried from the sensors, the sensor

sampling component sends them to the computation distri-
bution component, which is responsible for extracting the
high level inferences from the sensed data by performing the
computation efficiently using local and cloud resources.

4.2.1 Methodology

We refer to the task of classifying data from a sensor with
respect to a classifier as task and we assume that energy,
latency, and total data sent over the network for each of the
tasks are pre-calculated and available to this module before-
hand. This is a practical assumption as these values can be
calculated for most of the common sensing tasks relatively
easily: for example, the Nokia Energy Profiler [13] can be
used to obtain these values on the Symbian S60 platform.
We also assume that classifiers are preloaded both locally
on the phone and remotely in the server/cloud. For cer-
tain tasks it is possible to divide a bigger task into smaller
sub-tasks, for example, a speaker identification task can be
subdivided into extracting the characterizing features from
the audio file, and processing them to identify the speaker.

Let T be a task that can be divided into the subtasks
t1, t2, t3, . . . tn (where n ≥ 1). If a task cannot be divided
into subtasks then we assume that it is composed of one
single subtask (i.e., the main task itself – n is equal to 1 in
this case). Each subtask ti can be computed locally on the
phone or remotely in the cloud. This results in a total of
2n unique combinations in which T can be computed. We
refer to a combination as a configuration. For each configu-
ration ci (i in [1, 2, . . . 2n]), let ei, li, di be the total energy
consumption, latency, and total data sent over the network
to process the task (including all subtasks). We use a tech-
nique based on multi-criteria decision theory [19] to select
the configuration for processing the overall task.

We first define a utility function with respect to energy
(uei

) for a configuration ci as:

uei
=

emin − ei

ei

(3)

where ei is the energy consumption for processing the task
T using the configuration ci and emin is the minimum of
{ei, i = 1, 2, . . . 2n}. This utility function quantifies the ad-
vantage of using a configuration over the best configuration
with respect to energy consumption, and its range is [−1, 0].
This utility function [15, 19] can be used to decide which
configuration to use for achieving energy efficiency, and that
is indeed the combination with highest utility (or highest
gain/advantage).

We also consider other performance metrics such as la-
tency and total data sent over the network. We define utility
functions for these performance metrics in a similar fashion.

uli =
lmin − li

li
(4)

where li is the latency for processing the task T using the
configuration ci and lmin is the minimum of {li, i = 1,
2, . . . 2n}.

udi
=

dmin − di

di

(5)

where di is the total data sent over the network for process-
ing the task T using the configuration ci and dmin is the
minimum of {di, i = 1, 2, . . . 2n}. In case of local compu-
tation di is zero, in cases like this we consider the value of
utility function to be zero. The decision on which configura-
tion ci to use for processing the task should take into account
all these performance metrics. For this reason, we define a
combined utility function based on the corresponding utili-
ties for each of the performance metrics. The combined util-
ity function (uci

) for ci is an additive utility function [14,
20] defined as follows:

uci
= weuei

+ wluli + wdudi
(6)

where we, wl, wd are the weights (or importance) given by
the experiment designers for energy, latency, and data sent
over the network, respectively, such that we + wl + wd = 1.
For example, participants with unlimited data plans may
not worry about the amount of data sent over the network
but maybe concerned about the battery, so the experiment
designers may give a higher weight to energy than data sent
over network. Finally, the configuration ci for which uci

is
maximum is used to process the task T .

This scheme can also be generalized to make it applica-
ble to various other scenarios considering additional per-
formance metrics or dimensions, and computation models



(like cloud computation through Wi-Fi, cloud computation
through 3G). Let D1, D2, . . . Dk be the k dimensions to be
considered, and M1, M2, . . . Mq be the computation models
available for selecting a configuration. The total configura-
tions for a task T with n subtasks will be qn. Then the
utility function for these configurations for each dimension
would be:

uDji
=

Djbest − Dji

Dji

, ∀ j in [1, 2, .. k], ∀ i in [1, 2, .. q
n] (7)

where Djbest is the value of the best case scenario for the
dimension Dj . The overall utility for each of the configura-
tions can be calculated as:

uci
=

k
X

j=1

wjuDji
, where

k
X

j=1

wj = 1, ∀ i in [1, 2, .. q
n] (8)

where wj is the weight for the dimension Dj . Finally, the
configuration with the maximum utility value, i.e., C =
max{uci

, i = 1, 2, . . . qn} is used to process the task.

4.2.2 Algorithmic Complexity

The main computational tasks involved in this scheme are:
computing the utility functions for each of the performance
metrics, and the total utility value for each of the configura-
tions. Each of these procedures has an algorithmic complex-
ity of O(qn), where n is the total number of subtasks that a
given task T can be divided into, and q is 2 as we consider
local and remote computation models. Since these proce-
dures are executed one after the other, the overall algorith-
mic complexity is O(2n). Even though this is exponential,
the total number of subtasks n is in practice small [10, 24].
For example, in case of computationally intensive tasks like
speaker recognition n is generally around 2 to 4 [24, 31].

4.2.3 Adaptation of Weights

The designers of the experiments are expected to provide
the weights for energy, latency, and total data sent over the
network. However, some resources like battery life and total
data left in user’s data plan change over time. The bat-
tery charge of mobile phones lasts for a limited amount of
time, and most users have limited data plans and the costs
after exceeding this limit are generally high. Therefore, it
seems sensible to use different weights for different“states”of
the devices. For example, the designers of the experiments
might want to give more importance to latency when the
battery is full, and when the battery is near depletion, they
might want to assign higher priority to energy. Moreover,
they might also want to put an upper limit on the amount of
data that can be sent over the network per day. We design a
framework where experiment designers can add simple rules
to switch the weights of the metrics with changing resource
levels. The specification of rules is in XML format, and a
sample configuration is shown in Figure 2. The weights con-
figured for the condition that matches first will be used. If
none of the conditions are satisfied then the weights config-
ured as the default will be used.

4.3 Sociability Measurements
We define sociability of a user as the strength of the user’s

connection to his/her social group. In other words, this met-
ric is used to represent the quantity and quality of his/her
relationships with the colleagues. We measure the strength
of a user’s relations and his/her overall sociability based on

<rules>
<condition="battery_left > 80 and data_sent < 50MB">

<weight metric="energy">33.3</weight>
<weight metric="latency">33.3</weight>
<weight metric="data">33.3</weight>

</condition>
<condition="battery_left < 20">

<weight metric="energy">60</weight>
<weight metric="latency">20</weight>
<weight metric="data">20</weight>

</condition>
<condition="data_sent > 50MB">

<weight metric="energy">20</weight>
<weight metric="latency">20</weight>
<weight metric="data">60</weight>

</condition>
<condition="default">
<weight metric="energy">33.3</weight>
<weight metric="latency">33.3</weight>
<weight metric="data">33.3</weight>

</condition>
</rules>

Figure 2: Sample rules for adaptation of weights for
energy, latency, and data sent over the network.

the network constraint [6]2. In a social network, the network
constraint for a node quantifies the strength of the node’s
connectivity. For any two persons in a social network, the
person with lower network constraint value is considered to
have higher strength in terms of connectivity. The network
constraint Ni for a node i in a social network is measured
as:

Ni =
X

j

(pij +
X

q

piqpqj)
2
, q 6= i, j; j 6= i (9)

where pij is the proportion of time i spent with j, i.e., the
total time spent by i with j divided by the total time spent
by i with all users in the network.

Based on this concept, we measure the sociability of users
with respect to the dimensions: colocation and interaction
patterns. We define colocation of a pair of users as being in
proximity to each other and interaction as speaking to each
other. The system captures the colocation patterns of users
through the Bluetooth sensor, and the interaction patterns
through the microphone sensor and a speaker identification
classifier [31]3. We refer to the network constraint for colo-
cation network as colocation network constraint (NC). This
is calculated as follows:

NCi =
X

j

(pcij +
X

q

pciqpcqj)
2
, q 6= i, j; j 6= i (10)

where pcij is the proportion of time user i is colocated with
user j. Similarly, we refer to the network constraint for the
interaction network as interaction network constraint (NI)
and is calculated as follows:

NIi =
X

j

(psij +
X

q

psiqpsqj)
2
, q 6= i, j; j 6= i (11)

2An alternative and in a way similar measure is the kith
index [32].
3There are other non-verbal modes of interactions among
users like gestures however these are hard to capture through
the sensors of smart phones.



A

B C

0.5

0.5

1
1

(a) A is more sociable than B,C.

D

B C

0.5 1

0.2

0.2A

E

0.5

0.2

0.4

0.40.4

Core network

(b) C is more sociable than A.

Figure 3: Sociability measurement examples.

where psij is the proportion of time user i has interacted
with user j. A smaller network constraint means smaller
psij and psiq values which in-turn means that user has spent
time interacting with many colleagues, i.e., he/she is more
sociable.

In a social network of n nodes, the strength of relations of
a user i with respect to colocation is calculated based on the
pcij where j = 1, 2, . . . n, j 6= i and with respect to interac-
tions is calculated based on the psij where j = 1, 2, . . . n, j 6=
i. We call the user i where i = min{NCk, k = 1, 2, . . . n}
(i.e., user with least colocation network constraint value) the
mayor of the group with respect to colocation, and similarly
the user j where j = min{NIk, k = 1, 2, . . . n} (i.e., user
with least interaction network constraint value) the mayor
of the group with respect to interactions. The alerts about
the mayors are sent to all mobile phones periodically to en-
courage active participation of the users in the experiment
and also to motivate them to socialize more by adding the
competition and gaming factors.

We use two examples to demonstrate the quantification
of sociability through the network constraint. Figure 3(a)
shows a social network of three nodes. Let us say that A

spent 5 hours with B and 5 hours with C, and B, C did
not spend any time with each other. The fraction of time A

spent with B is 0.5 and with C is 0.5 and these are repre-
sented as weights in the graph. However, B has spent time
only with A, therefore the weight of the edge (B, A) is one,
similarly weight of edge (C, A) is one too. The ranking with
respect to decreasing order of sociability (or increasing order
of network constraint) is: A(0.5), B(1.25), C(1.25). Since
A distributes his/her time among two contacts, he/she is
less constrained compared to B and C, therefore A is more
sociable. Figure 3(b) shows a social network of five nodes.
Let us assume that there is a core social network consisting
of nodes A, B, and C, and two new persons D and E have
recently joined the network. D has shared his interactions
with two people in the network, whereas E has connected
only to one person. Therefore, D is connected more strongly
than E. The constraint for D and E are 1.13 and 1.32, re-
spectively, which makes D more sociable than E. Further,
A and C are both connected to three nodes, however, C’s
constraint (0.69) is lesser than A’s constraint (0.83) as more
information flows through C than A as the graph breaks
into two components without C. Therefore, C is considered
more sociable than A. This kind of data about the sociabil-
ity among users is of very high interest to social scientists
and corporates as it helps them to understand social pat-
terns of users at a great level of detail and, moreover, it also
has impact on their productivity [23, 27, 32].

4.4 Indoor Localization
The indoor localization feature in the SociableSense sys-

tem is based on the Bluetooth sensor, and is implemented to
identify the users in sociable locations to notify colleagues,
and to study the influence of type of location on the so-
ciability of users. By placing Bluetooth devices at various
locations in the office spaces, we can achieve a coarse grained
localization4. The main reason to use this methodology is
the following: since the system is already required to scan
for Bluetooth devices for identifying colocation of the users,
we do not need to expend additional energy on sensing from
other sensors like Wi-Fi or GPS that are generally expen-
sive in terms of energy consumption. Moreover, Wi-Fi is not
available on all smart phones, and GPS does not generally
work in indoor office locations.

Our main aim is to differentiate between work and social
spaces. The work locations are places where users work and
spend most of their office time. Sociable locations are places
where users socialize and spend time during breaks like cof-
fee rooms, common rooms, and game rooms. When a user
is in a sociable location, alert about this is sent to all other
participants, so that interested people can join the user and
socialize with him/her.

4.5 Implementation
The system is implemented on the Nokia 6210 Navigator

phone using Python for Symbian S60 (PyS60) [29]. Sen-
sor sampling, computation distribution, and social feedback
components run on the mobile phone, while the network
constraint calculation module and location alerts generation
module run on the remote server. The remote server mod-
ule is implemented in Python and is deployed on a power-
ful back-end server (Intel Xeon Octa-core E5506 2.13GHz
processor, and 12 GB RAM). The system on the mobile
phone connects to this server through a web-based API im-
plemented using the HTTP Connection module of PyS60.

The speaker recognition module is based on that used in
the EmotionSense system [31] which is implemented using
the Hidden Markov Model Toolkit (HTK) [17]. We collect
training data (approximately 10 minutes) from each par-
ticipant of the social psychological experiment (Section 6)
and generate a background Gaussian Mixture Model (GMM)
representative of all speech data. We then generate speaker
specific models based on their corresponding speech data.
We upload these GMMs on the mobile phones of users and
on the remote server. We also install HTK on all the mobile
phones and the remote server. At run-time, a recorded au-
dio file is converted to Perceptual Linear Predictive (PLP)
coefficients file using the HCopy tool of HTK, and this PLP
file is then compared with all the models of colocated users
(determined through Bluetooth) using the HERest tool of
HTK. Finally, the model with highest likelihood of match
is assigned as the speaker model. The indoor localization
and colocation detection is based on the lightblue [21] mod-
ule for PyS60, which is a cross-platform Bluetooth API and
provides a easy access to various Bluetooth operations. We
use the accelerometer sensor API provided by PyS60 plat-
form to access X, Y, Z axes data of accelerometer sensor.

4We also note that more fine-grained solutions based on Wi-
Fi fingerprinting and coarse-grained solutions like logical lo-
calization [2] can be integrated into this module, but since
our aim is to differentiate between work and social spaces,
we limit this feature to the Bluetooth based technique.



5. MICRO-BENCHMARKS
We perform a two-part evaluation of the SociableSense

system. Firstly, in this section, we evaluate the adaptive
sampling scheme with respect to accuracy, energy, and la-
tency, and computation distribution scheme with respect to
selecting the best suitable configuration, based on real traces
collected through participants carrying mobile phones. Sec-
ondly, in Section 6, we conduct a social psychology study to
understand the usefulness of the system to social scientists
and participants.

5.1 Sensor Sampling Benchmarks

5.1.1 Experimental Datasets

We collect the dataset for benchmarking the sensor sam-
pling component in an office environment during day time
working hours (10am to 4pm). We gather a total of 231
hours of raw accelerometer sensor data (i.e., X, Y, Z coordi-
nates), 241 hours of Bluetooth data (i.e., Bluetooth identi-
fiers), and 151 hours of microphone data (i.e., audio record-
ings), with 10 users carrying a Samsung Galaxy S or Nokia
6210 Navigator phone. The sampling of the accelerome-
ter and Bluetooth sensors is performed continuously with a
sleep interval of 0.5, 1 second, respectively. Audio samples of
length equal to 5 seconds are recorded from the microphone
sensor with a sleep interval of 1 second between consecutive
recordings.

Samsung Galaxy S phones were running Google Android
version 2.1 [1] or higher. Android Bluetooth APIs were used
to discover the Bluetooth devices in the proximity. The dis-
covery process is asynchronous and the method call imme-
diately returns with a boolean indicating whether discov-
ery has successfully started. The discovery process involves
an inquiry scan, followed by a page scan of each found de-
vice to retrieve its Bluetooth name. Android SensorMan-
ager Service is used to access X, Y, Z axes data of ac-
celerometer sensor. This process is asynchronous too and
involves registering a listener for capturing accelerometer
data. Android SensorManager API provides various speeds
at which data are sensed from accelerometer, and we use
SENSOR DELAY FASTEST setting to get sensor data
as fast as possible. Nokia 6210 Navigator phones were run-
ning Symbian S60. We use the lightblue [21] module for
PyS60 for performing Bluetooth discovery operations and
the accelerometer sensor API provided by PyS60 platform
to access X, Y, Z axes data of accelerometer sensor.

5.1.2 Methodology

Tuning of Adaptive Sampling Scheme We explore
the performance of learning technique for each sensor for
the entire parameter space of α (explained in Section 4.1) to
fine-tune the adaptive sampling scheme. Since the dataset
is collected in an office environment, the α value selected
through this process should be general enough to provide
the same level of performance in a similar environment.

Categorization of Events As discussed in Section 4.1,
we classify the raw data from the sensor traces into events,
which can be of two types, viz., “unmissable”and“missable”
events (or “interesting” and “uninteresting” events). In the
case of the microphone sensor, an unmissable event corre-
sponds to some audible data being heard in the environment
and a missable event corresponds to silence. These events
are generated using a GMM classifier [31] capable of clas-

sifying whether an audio trace contains any audible data.
For the Bluetooth sensor traces, an unmissable event corre-
sponds to a change in the number of colocated users, whereas
a missable event indicates that there is no change. In the
case of the accelerometer sensor, the unmissable event corre-
sponds to movement of a user and a missable event indicates
that the user is stationary. Although both these events are
unmissable, it is sufficient to detect just one of them since we
only have two possible events, so we choose a “user moving
event” as unmissable.

Performance Metrics We evaluate the performance with
respect to the metrics: accuracy, energy, and latency. The
accuracy is measured in terms of the percentage of missed
events. An event is said to be missed when there is an un-
missable event recorded in the trace file while the sensor
is not actively queried. The energy consumption is mea-
sured using the Nokia Energy Profiler (NEP) [13]. NEP is
a stand-alone test and measurement application for Nokia
phones, and it provides an easy way of measuring the power
consumption of the mobile phone at a fine-grained time-
intervals. The energy consumption of a task is computed as
follows: we first measure the baseline energy consumption
of mobile phone, and then we activate the task in Sociable-
Sense and measure the energy consumption. The difference
between these energy consumption values is calculated as
energy of the task. We repeat this procedure for many iter-
ations and finally, we calculate the average of these values to
determine the average energy consumption of the task. The
latency is measured based on the delay in detecting change of
event sequence from missable to unmissable and vice versa.
For example, let us consider that a user is moving from time
Tx to Ty, and the system detects this moving event at Te

(Tx < Te < Ty). The latency of detecting this user moving
event is calculated as Te − Tx. All the performance metrics
used are the lower the better type of metrics (as accuracy is
measured in terms of missed events).

Techniques used for Comparison To quantify the ad-
vantages of using adaptive sensor sampling, we compare its
performance with various static functions and a dynamic
adaptation technique that controls the rate of sensor sam-
pling based on the context of the user. We define two types
of functions: if there are no “interesting” events observed
(i.e., missable events), then the sampling interval increases
(i.e., the sampling rate decreases) from its current value
based on a back-off function. Similarly, if the event is classi-
fied as unmissable, then the sampling interval decreases (i.e.,
the sampling rate increases) from its current value based on
an advance function. For example, let us assume that the
current sleep interval between two consecutive audio sam-
ples is x; a categorization of missable and unmissable events
can be as follows: missable: silence, unmissable: some au-
dible data. If the classifier detects that the current event
is silence, i.e., missable, then the sleep interval is increased
to f(x) based on a back-off function. If the choice of this
function is quadratic then the resulting sleep interval will
be f(x) = x2. Similarly, if an unmissable event is detected,
the sleep interval can be adjusted based on a quadratic ad-
vance function like f(x) =

√
x. The back-off and advance

functions used for the evaluation are given in Table 1.
We also compare the learning scheme against the dynamic

adaptation technique presented in [30]. This technique se-
lects a sampling function dynamically according to the num-
ber of consecutive events of the same category (missable or



 56

 58

 60

 62

 64

 66

 68

 70

 72

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

%
 o

f 
m

is
se

d
 e

ve
n
ts

alpha

Figure 4: Accuracy (% of missed
events) vs alpha for Bluetooth.

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

E
n
e
rg

y 
(j
o
u
le

s)

alpha

Figure 5: Energy consumption
per hour vs alpha for Bluetooth.

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

L
a
te

n
cy

 (
se

co
n
d
s)

alpha

Figure 6: Latency vs alpha for
Bluetooth.

Table 1: Back-off and advance functions

Type Back-off function Advance function

Linear k × x x/k

Quadratic x2
√

x

Exponential ex loge x

unmissable). More specifically, given a set of sampling func-
tions, the scheme initially uses the least aggressive sampling
function (e.g., linear back-off if missable events are observed)
and if the same type of events are detected for a number of
times equal to a certain threshold then it switches to a more
aggressive sampling function (e.g., quadratic back-off). This
continues until it finally switches to the most aggressive sam-
pling function (e.g., exponential back-off). The benchmarks
for each of the sensors are evaluated for various combinations
of advance and back-off functions, including the dynamic
adaptation and learning techniques. The x-axis labels in
this subsection have the format advance–back-off functions.

5.1.3 Results

To optimize the learning based technique for each of the
sensors, we first measure its performance in terms of ac-
curacy, energy, and latency by varying the α value. Fig-
ures 4, 5, and 6 show the variation of the parameter α with
respect to the performance of the learning based technique
for the Bluetooth sensor in terms of accuracy, energy, and
latency, respectively. Based on these plots, we choose α

to be 0.5 as this value corresponds to higher accuracy and
lower latency without considerable compromise on energy.
Since we measure the sociability with respect to colocation
as well, accurately detecting it (using Bluetooth) is an im-
portant consideration. We also note that since the dataset is
collected in an office environment, the α value selected may
provide close performance in a similar type of workplace.

We then evaluate the performance of various combina-
tions of advance and back-off functions with respect to all
the performance metrics. The results for the Bluetooth sen-
sor are shown in Figures 7, 8, and 9. We can observe that
the learning based technique performs well with respect to
accuracy and latency with only a slight increase in energy.
The accuracy of the learning based technique is 12% more
and latency is 56% less than that of the dynamic adaptation
technique (dynamic-dynamic), while the energy consump-
tion of the former is 25% more than the latter. Compared to
the other dynamic combinations like exponential-dynamic,
quadratic-dynamic, the performance of the learning based
technique is very close with respect to energy and accu-
racy, however, the latency is as much as 40% lesser than
these combinations. We can observe that the combinations
quadratic-linear and exponential-linear that use linear back-

off function exhibit similar performance, however, the gains
of the learning based technique with respect to accuracy
and latency are higher. Figures 10, 11, and 12 show the per-
formance of all the techniques for the accelerometer sensor
with respect to accuracy, energy, and latency, respectively.
We can observe that the learning based technique performs
much better than the other techniques in terms of accuracy
and latency, and with respect to energy consumption, it has
performance similar to other techniques (the maximum dif-
ference in energy consumption is only 4%). In other words,
the learning based technique performs better than all the
combinations of dynamic scheme with respect to all the per-
formance metrics for accelerometer sensor. Therefore, these
results justify the use of the learning based technique for
the adaptive sampling of sensors. Following similar consid-
erations, which we do not present here due to space limi-
tations, we choose to use the learning method also for the
microphone sensor.

5.2 Computation Distribution Benchmarks
In this section, we present the evaluation of the computa-

tion distribution scheme through micro-benchmark tests.

5.2.1 Methodology

The main aim of these benchmarks is to evaluate the per-
formance of the utility function (explained in Section 4.2)
used in the computation distribution scheme in terms of
selecting the best configuration given the importance as-
signed to each performance dimension. More specifically, we
compare the performance of all possible configurations and
evaluate whether the utility function selects the appropri-
ate configuration based on the weights given for the three
dimensions: energy, latency, and total data sent over the
network. The performance metrics used are: lifetime of the
phone (i.e., the total time until battery gets completely dis-
charged from the fully charged state), average latency (i.e.,
the average time taken for processing a sensor task), and av-
erage data sent over the network (i.e., the average number
of bytes sent by the system over the 3G network to process
a sensor task).

5.2.2 Tasks used in the Benchmarks

The classification tasks used in the benchmarks are of
three types based on the sensor from which data are queried.
The activity recognition classification task has one subtask
that classifies the data sensed from the accelerometer sensor
into moving or idle states. The colocation detection clas-
sification task has one subtask that detects the change in
colocation of user observed through the change in colocated
Bluetooth devices. The speaker identification classification
task performs the speaker identification and is divided into



 60

 65

 70

 75

 80

 85

 90

 95

q
u
a
d
ra

ti
c
-l
in

e
a
r

e
x
p
o
n
e
n
ti
a
l-
li
n
e
a
r

d
y
n
a
m

ic
-l
in

e
a
r

li
n
e
a
r-

q
u
a
d
ra

ti
c

q
u
a
d
ra

ti
c
-q

u
a
d
ra

ti
c

e
x
p
o
n
e
n
ti
a
l-
q
u
a
d
ra

ti
c

d
y
n
a
m

ic
-q

u
a
d
ra

ti
c

li
n
e
a
r-

e
x
p
o
n
e
n
ti
a
l

q
u
a
d
ra

ti
c
-e

x
p
o
n
e
n
ti
a
l

e
x
p
o
n
e
n
ti
a
l-
e
x
p
o
n
e
n
ti
a
l

d
y
n
a
m

ic
-e

x
p
o
n
e
n
ti
a
l

li
n
e
a
r-

d
y
n
a
m

ic

q
u
a
d
ra

ti
c
-d

y
n
a
m

ic

e
x
p
o
n
e
n
ti
a
l-
d
y
n
a
m

ic

d
y
n
a
m

ic
-d

y
n
a
m

ic

le
a
rn

in
g

%
 o

f 
m

is
s
e
d
 e

v
e
n
ts

Figure 7: Accuracy of the adapta-
tion techniques for Bluetooth.

 80
 100
 120
 140
 160
 180
 200
 220
 240

q
u
a
d
ra

ti
c
-l
in

e
a
r

e
x
p
o
n
e
n
ti
a
l-
li
n
e
a
r

d
y
n
a
m

ic
-l
in

e
a
r

li
n
e
a
r-

q
u
a
d
ra

ti
c

q
u
a
d
ra

ti
c
-q

u
a
d
ra

ti
c

e
x
p
o
n
e
n
ti
a
l-
q
u
a
d
ra

ti
c

d
y
n
a
m

ic
-q

u
a
d
ra

ti
c

li
n
e
a
r-

e
x
p
o
n
e
n
ti
a
l

q
u
a
d
ra

ti
c
-e

x
p
o
n
e
n
ti
a
l

e
x
p
o
n
e
n
ti
a
l-
e
x
p
o
n
e
n
ti
a
l

d
y
n
a
m

ic
-e

x
p
o
n
e
n
ti
a
l

li
n
e
a
r-

d
y
n
a
m

ic

q
u
a
d
ra

ti
c
-d

y
n
a
m

ic

e
x
p
o
n
e
n
ti
a
l-
d
y
n
a
m

ic

d
y
n
a
m

ic
-d

y
n
a
m

ic

le
a
rn

in
g

E
n
e
rg

y
 (

jo
u
le

s
)

Figure 8: Energy consumption
per hour of the schemes.

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

q
u
a
d
ra

ti
c
-l
in

e
a
r

e
x
p
o
n
e
n
ti
a
l-
li
n
e
a
r

d
y
n
a
m

ic
-l
in

e
a
r

li
n
e
a
r-

q
u
a
d
ra

ti
c

q
u
a
d
ra

ti
c
-q

u
a
d
ra

ti
c

e
x
p
o
n
e
n
ti
a
l-
q
u
a
d
ra

ti
c

d
y
n
a
m

ic
-q

u
a
d
ra

ti
c

li
n
e
a
r-

e
x
p
o
n
e
n
ti
a
l

q
u
a
d
ra

ti
c
-e

x
p
o
n
e
n
ti
a
l

e
x
p
o
n
e
n
ti
a
l-
e
x
p
o
n
e
n
ti
a
l

d
y
n
a
m

ic
-e

x
p
o
n
e
n
ti
a
l

li
n
e
a
r-

d
y
n
a
m

ic

q
u
a
d
ra

ti
c
-d

y
n
a
m

ic

e
x
p
o
n
e
n
ti
a
l-
d
y
n
a
m

ic

d
y
n
a
m

ic
-d

y
n
a
m

ic

le
a
rn

in
g

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Figure 9: Latency of the adapta-
tion techniques for Bluetooth.

 83
 84
 85
 86
 87
 88
 89
 90
 91
 92

q
u
a
d
ra

ti
c
-l
in

e
a
r

e
x
p
o
n
e
n
ti
a
l-
li
n
e
a
r

d
y
n
a
m

ic
-l
in

e
a
r

li
n
e
a
r-

q
u
a
d
ra

ti
c

q
u
a
d
ra

ti
c
-q

u
a
d
ra

ti
c

e
x
p
o
n
e
n
ti
a
l-
q
u
a
d
ra

ti
c

d
y
n
a
m

ic
-q

u
a
d
ra

ti
c

li
n
e
a
r-

e
x
p
o
n
e
n
ti
a
l

q
u
a
d
ra

ti
c
-e

x
p
o
n
e
n
ti
a
l

e
x
p
o
n
e
n
ti
a
l-
e
x
p
o
n
e
n
ti
a
l

d
y
n
a
m

ic
-e

x
p
o
n
e
n
ti
a
l

li
n
e
a
r-

d
y
n
a
m

ic

q
u
a
d
ra

ti
c
-d

y
n
a
m

ic

e
x
p
o
n
e
n
ti
a
l-
d
y
n
a
m

ic

d
y
n
a
m

ic
-d

y
n
a
m

ic

le
a
rn

in
g

%
 o

f 
m

is
s
e
d
 e

v
e
n
ts

Figure 10: Accuracy of the adap-
tation schemes for accelerometer.

 66

 68

 70

 72

 74
q
u
a
d
ra

ti
c
-l
in

e
a
r

e
x
p
o
n
e
n
ti
a
l-
li
n
e
a
r

d
y
n
a
m

ic
-l
in

e
a
r

li
n
e
a
r-

q
u
a
d
ra

ti
c

q
u
a
d
ra

ti
c
-q

u
a
d
ra

ti
c

e
x
p
o
n
e
n
ti
a
l-
q
u
a
d
ra

ti
c

d
y
n
a
m

ic
-q

u
a
d
ra

ti
c

li
n
e
a
r-

e
x
p
o
n
e
n
ti
a
l

q
u
a
d
ra

ti
c
-e

x
p
o
n
e
n
ti
a
l

e
x
p
o
n
e
n
ti
a
l-
e
x
p
o
n
e
n
ti
a
l

d
y
n
a
m

ic
-e

x
p
o
n
e
n
ti
a
l

li
n
e
a
r-

d
y
n
a
m

ic

q
u
a
d
ra

ti
c
-d

y
n
a
m

ic

e
x
p
o
n
e
n
ti
a
l-
d
y
n
a
m

ic

d
y
n
a
m

ic
-d

y
n
a
m

ic

le
a
rn

in
g

E
n
e
rg

y
 (

jo
u
le

s
)

Figure 11: Energy consumed per
hour of the adaptation techniques.

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

q
u
a
d
ra

ti
c
-l
in

e
a
r

e
x
p
o
n
e
n
ti
a
l-
li
n
e
a
r

d
y
n
a
m

ic
-l
in

e
a
r

li
n
e
a
r-

q
u
a
d
ra

ti
c

q
u
a
d
ra

ti
c
-q

u
a
d
ra

ti
c

e
x
p
o
n
e
n
ti
a
l-
q
u
a
d
ra

ti
c

d
y
n
a
m

ic
-q

u
a
d
ra

ti
c

li
n
e
a
r-

e
x
p
o
n
e
n
ti
a
l

q
u
a
d
ra

ti
c
-e

x
p
o
n
e
n
ti
a
l

e
x
p
o
n
e
n
ti
a
l-
e
x
p
o
n
e
n
ti
a
l

d
y
n
a
m

ic
-e

x
p
o
n
e
n
ti
a
l

li
n
e
a
r-

d
y
n
a
m

ic

q
u
a
d
ra

ti
c
-d

y
n
a
m

ic

e
x
p
o
n
e
n
ti
a
l-
d
y
n
a
m

ic

d
y
n
a
m

ic
-d

y
n
a
m

ic

le
a
rn

in
g

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Figure 12: Latency of the adapta-
tion techniques for accelerometer.

two subtasks: the first subtask converts the recorded au-
dio sample to Perceptual Linear Predictive (PLP) coeffi-
cients file using the HCopy tool of the Hidden Markov Model
Toolkit (HTK) [17], and the second subtask compares the
extracted coefficients file with the speaker models of all users
using the HERest tool of HTK, and the model with the high-
est likelihood of match is selected as the speaker model of
the recorded audio file.

5.2.3 Results

We first present the selection of the best configuration by
the computation distribution scheme for the speaker iden-
tification classification task. This task consists of two sub-
tasks, each of which can be executed locally on the phone
or remotely in the cloud. Therefore, we have a total of four
configurations in which this task can be executed: C1: all
subtasks computed locally; C2: first subtask computed lo-
cally and the other remotely; C3: first subtask computed
remotely and the other locally; C4: all subtasks computed
remotely. Let S1, S2, S3 and S4 denote the various combina-
tions of weights (configured by the experiment designers) in
the utility function: S1 : we = 1, wl = 0, wd = 0 (i.e., max-
imum weight to energy); S2 : we = 0, wl = 1, wd = 0 (i.e.,
maximum weight to latency); S3 : we = 0, wl = 0, wd = 1
(i.e., maximum weight to data sent over the network); S4 :
we = 0.33, wl = 0.33, wd = 0.33 (i.e., equal weights).

Figures 13, 14 and 15 show the performance of all the con-
figurations with respect to energy consumption, latency, and
total data sent over the network for processing the speaker
identification task. We can observe that the utility function

for the combination S1 selects the configuration C4 as this
has the lowest energy consumption, and for the combination
S2 the configuration selected is C4 as this is the lowest in
terms of latency as well. For the combination S3, the config-
uration C1 is selected as this sends the least amount of data
over the network. Finally, for the combination S4, which
gives equal weights to all the dimensions, the configuration
C4 is selected as this is the best considering all dimensions;
moreover, it is also the best performing configuration in two
out of three dimensions.

The above evaluation shows that the proposed scheme se-
lects the best configuration for a given task given the weights
defined by the experiment designers. However, to study the
impact of this selection “at system level”, we have also eval-
uated the effect of these decisions “at task level” on the over-
all performance of the system in terms of lifetime of mobile
phone, average latency of processing a task, and average
data sent over the network for processing a task. The phone
battery capacity is 3.7v/750mAh. We consider three sen-
sor classifiers: activity recognition (one subtask), change in
colocation detection (one subtask), and speaker identifica-
tion (two subtasks), so we have in total four possible sub-
tasks each of which can be computed locally on the phone or
remotely in the cloud. At a system level, this results in 16
possible ways (or configurations C1 to C16 ) of processing
the sensor tasks. We evaluate the utility function for the
same combination of weights: S1, S2, S3, and S4. We use
the same sensor traces used in the evaluation of the sensor
sampling scheme, and the learning based technique is used
as sampling mechanism.



 0

 5

 10

 15

 20

 25

C1 C2 C3 C4

E
n
e
rg

y 
co

n
su

m
p
tio

n
 (

jo
u
le

s)

Configuration

S3

S1,S2,S4

Figure 13: Energy consumption
for processing the speaker identi-
fication task.

 0

 10

 20

 30

 40

 50

 60

 70

C1 C2 C3 C4

L
a
te

n
cy

 (
se

co
n
d
s)

Configuration

S3

S1,S2,S4

Figure 14: Latency or delay for
processing the speaker identifica-
tion task.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

C1 C2 C3 C4

D
a
ta

 s
e
n
t 
o
ve

r 
n
e
tw

o
rk

 (
K

B
)

Configuration

S3

S1,S2,S4

Figure 15: Data sent over the net-
work for processing the speaker
identification task.

 0

 2

 4

 6

 8

 10

 12

 14

 16

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

L
ife

 t
im

e
 (

h
o
u
rs

)

Configuration

S3

S1,S2,S4

Figure 16: Total lifetime of the
mobile phone.

 0

 5

 10

 15

 20

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

L
a
te

n
cy

 (
se

co
n
d
s)

Configuration

S3

S1,S2,S4

Figure 17: Average latency of
processing a task.

 0

 2

 4

 6

 8

 10

 12

 14

 16

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

C
1
6

D
a
ta

 s
e
n
t 
o
ve

r 
n
e
tw

o
rk

 (
K

B
)

Configuration

S3

S1,S2,S4

Figure 18: Average data sent over
the network for processing a task.

Figures 16, 17 and 18 show the performance of all the
possible configurations in terms of lifetime, latency, and to-
tal data sent over the network. We can observe that for
the combination S1 that gives maximum weight to energy,
the configuration with the highest overall lifetime is selected
(i.e., C4 ) . For the combination S2 that gives maximum
weight to latency, the configuration C4 is selected as this is
the lowest in terms of latency as well. For the combination
S3, the configuration with lowest data sent over the network
is selected (i.e., C1 ). We can also observe that there are
multiple configurations with the lowest amount of data sent
over the network like C1, C5, C9, C13 and among them the
configuration with better latency and lifetime values (i.e.,
C1 ) is selected. Finally, for the combination S4, the con-
figuration C4 is selected as it is much better in two out
of three dimensions compared to the other configurations.
These results show that the proposed computation distribu-
tion scheme selects the best configuration given the weights
assigned to the different dimensions.

6. SOCIAL PSYCHOLOGY STUDY
In addition to the micro-benchmark tests, we also conduct

a social study to evaluate the usefulness of the SociableSense
system to the social scientists and the participants.

6.1 Overview of the Experiment
We conduct the experiment for a duration of two working

weeks (10 days) involving 10 users. We divide the exper-
iment into two phases each of which lasts for a week. In
the first phase, the feedback mechanisms of the Sociable-
Sense system were disabled, and in the second phase they
were displayed. More specifically, we show the following to
users: sociability, strength of their relations, activity levels,
and alerts about the users in sociable locations. During the
experiment each user carries a Nokia 6210 Navigator mobile

phone. We identify five main locations where users gener-
ally spend most of their time. We categorize three of these
as work locations as users work spaces are located in these
locations, and two of the locations as sociable locations that
include a common room and a cafeteria where users either
socialize or have breakfast/lunch. These two categories of
locations are in different parts of the building, i.e., Bluetooth
ranges were non-overlapping, therefore, localization error is
negligible.

6.2 Results and Discussion
We study the effect of feedback mechanisms on the socia-

bility of the users. Figures 19 and 20 show the colocation
network constraint and interaction network constraint for
the two phases of the experiment. We can observe that the
average network constraint for both colocation and speech
networks is lower when feedback and alert mechanisms were
enabled. Note that the network constraint is a lower the
better type of metric for sociability. We can also observe
that the difference between the network constraints with
and without feedback is greater in sociable locations than
in work locations, and based on this we can infer that the
feedback mechanisms have a greater effect on individuals at
sociable locations. We conjecture that this is the case be-
cause of the opportunities of interacting in these locations.

Figure 21 shows the standard deviation of network con-
straint of all the participants of the experiment. The stan-
dard deviation is similar for both the constraints with and
without feedback mechanisms except for the sociable loca-
tions. This shows that in the sociable locations the differ-
ence in the level of sociability among participants is lesser
with feedback mechanisms. From this we can infer that in
sociable locations with feedback mechanisms most users par-
ticipate in interactions compared to the case without feed-
back mechanisms. Figure 22 shows the average network con-



 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

work sociable all

C
o
lo

ca
tio

n
 n

e
tw

o
rk

 c
o
n
st

ra
in

t

Location type

without feedback

with feedback

Figure 19: Colocation network
constraint vs location types.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

work sociable all

In
te

ra
ct

io
n
 n

e
tw

o
rk

 c
o
n
st

ra
in

t

Location type

without feedback

with feedback

Figure 20: Interaction network
constraint vs location types.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

work sociable all work sociable all

S
td

. 
d
e
vi

a
tio

n
 o

f 
co

n
st

ra
in

t

Colocation network   Interaction network

without feedback

with feedback

Figure 21: Standard deviation of
network constraint.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

colocation interaction

N
e
tw

o
rk

 c
o
n
st

ra
in

t 
o
f 
m

a
yo

r

Type of the network

without feedback

with feedback

Figure 22: Average network con-
straint of the mayor.

 0

 20

 40

 60

 80

 100

work sociable all work sociable all

P
e
rc

e
n
ta

g
e

Stationary                      Moving

without feedback

with feedback

Figure 23: Activity levels of users
in various location types.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

stationary moving stationary moving

In
te

ra
ct

io
n
 n

e
tw

o
rk

 c
o
n
st

ra
in

t

Work                     Sociable

without feedback

with feedback

Figure 24: Network constraint vs
activity levels.

straint of the mayor of the group, and we can observe that
the level of sociability achieved by the mayor is very close
in both the phases of the experiment. This maybe related
to the fact that the feedback mechanisms do not modify the
behavior of a person that is already very sociable.

Finally, we analyze the effect of feedback mechanisms on
the level of activity of the users. Figure 23 shows the level
of activity of users in both the phases of the experiment,
where we observe a fairly consistent behavior. In order to
understand the effect of activity level on sociability of users,
we also measure the correlation between the level of activ-
ity and interaction network constraint, which is shown in
Figure 24. Apart from the observation that feedback mech-
anisms help users to socialize more irrespective of their level
of activity, this result also shows another interesting phe-
nomenon: in the work locations the feedback mechanisms
have greater effect on the sociability of users when they are
physically active, whereas in sociable locations the feedback
mechanisms are effective when users are stationary.

For this study we give equal importance to all the dimen-
sions: energy, latency, and data sent over the network. The
combination of weights is same as that of S4 in Section 5.2.
Therefore, the computation distribution scheme selects the
configuration C4 (speaker identification task computed re-
motely and other classification tasks computed locally). The
use of computation distribution scheme leads to approxi-
mately 28% more battery life, 6% less latency per task, and
3% less data transmitted over the network per task com-
pared to the model where all the classification tasks are
computed remotely.

7. RELATED WORK
Recently, ubiquitous technologies and especially mobile

smart phones have been widely used to monitor user behav-
ior [16, 24]. In particular, EmotionSense [31] is a platform
that is able to detect user emotional states using standard

off-the-shelf phones. Experience sampling [16] is a widely
used technique for social psychological studies, however, it
requires constant user input and is found to be generally
biased [28]. Other examples of systems that exploit ubiq-
uitous technology to quantitatively measure human behav-
ior include the Sociometer [8], the Mobile Sensing Plat-
form (MSP) [7]. Several studies were performed using the
Sociometer in order to understand organizational behav-
ior [32]. These systems rely on purpose-built devices (such
as mote-class sensors) that are not part of the everyday life
of people and, therefore, can be felt as obtrusive or simply
may not be always carried by the users of an experiment.

Energy is a key issue in building mobile sensing systems.
For example, the EEMSS platform [33] uses a hierarchi-
cal sensor management strategy to recognize participants’
activities. The Jigsaw continuous sensing engine [22] bal-
ances the performance requirements of the applications and
the resource demands of sensing continuously on the mobile
phone. Llama [4] is an energy management system based on
the user statistics in terms of usage and recharge cycles and
exploits the excessive energy for a better user experience.
PRISM [11] is a mobile sensing platform that makes it eas-
ier to develop and deploy the participatory applications as
executables on the mobile phones of the participating users.
Virtual Compass [3] builds a relative neighbor graph using
radio technologies like Bluetooth and Wi-Fi, and can be a
useful tool for social applications. It achieves energy effi-
ciency by monitoring topology changes and adapting scan-
ning rates, and selecting the most appropriate radio interface
based on energy characteristics.

With respect to exploiting the cloud computation, in [25]
the authors show that continuous sensing is a viable op-
tion for mobile phones by adopting strategies for efficient
data uploading. The focus of this work is on the minimiza-
tion of the amount of data sent to back-end servers and
not on the distribution of the computation. CloneCloud [9]



enables mobile applications running in an application-level
virtual machine to offload part of the execution to device
clones running in the cloud. However, the system is mainly
useful for mobile applications running in a virtual machine.
Finally, the authors of [10] present MAUI, a system that
achieves energy efficiency through fine-grained code offload-
ing to the cloud, however, it requires developers to annotate
the application source code. With respect to these works,
the computation distribution component in our system dis-
tributes tasks among local and cloud resources considering
the requirements of the experiment designers in terms of the
battery consumption, delay, and traffic trade-offs. To the
best of our knowledge, this is the first mobile sensing sys-
tem that implements energy-efficient mechanisms that are
adaptive with respect to the changing context and optimized
according to the requirements of the researchers collecting
the sensor data. Moreover, unlike SociableSense, all these
existing systems are used for collecting data without provid-
ing any feedback to the users.

8. CONCLUSIONS
In this paper, we have presented SociableSense, a sensing

platform that implements a novel adaptive sampling scheme
based on learning methods, and a dynamic computation dis-
tribution mechanism based on decision theory. The tool,
based on smart phones, has been applied to quantitatively
measure the sociability of users and strength of their rela-
tions with each of their colleagues in workplaces. It closes
the loop by providing real-time feedback to users about their
sociability, the strength of their relations with colleagues,
and opportunities to interact.

The sensor sampling scheme adaptively samples from ac-
celerometer, Bluetooth, and microphone sensors while bal-
ancing energy-accuracy-latency trade-offs. The computation
distribution scheme distributes the classification tasks be-
tween local and remote resources while considering the im-
portance given by the experimenter to each of the dimen-
sions: energy, latency, and data traffic. We have evaluated
the performance of sensor sampling and computation dis-
tribution schemes using several micro-benchmark tests. By
means of a social study we have also demonstrated the use-
fulness of SociableSense to researchers and participants.

ACKNOWLEDGMENTS

The authors would like to thank the members of the Sys-
tems Research Group at the University of Cambridge for
their invaluable feedback, and the participants of the social
psychology experiment. This work was supported through
Gates Cambridge Trust, and EPSRC grants EP/I019308,
EP/G069557, and EP/I032673.

9. REFERENCES
[1] Android 2.1.

http://developer.android.com/sdk/android-2.1.html.

[2] M. Azizyan, I. Constandache, and R. Roy Choudhury.
SurroundSense: Mobile Phone Localization via Ambience
Fingerprinting. In Proc. of MobiCom’09. ACM, 2009.

[3] N. Banerjee, S. Agarwal, P. Bahl, R. Chandra, A. Wolman, and
M. Corner. Virtual Compass: Relative Positioning to Sense
Mobile Social Interactions. In Proc. of Pervasive’10. LCNS
Springer, 2010.

[4] N. Banerjee, A. Rahmati, M. Corner, S. Rollins, and L. Zhong.
Users and Batteries: Interactions and Adaptive Energy
Management in Mobile Systems. In Proc. of UbiComp’07.
ACM, 2007.

[5] G. H. Bower and E. R. Hilgard. Theories of Learning.
Prentice-Hall, Inc., 1975.

[6] R. Burt. Structural Holes: The Social Structure of
Competition. Harvard University Press, 1995.

[7] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel,
B. Harrison, B. Hemingway, J. Hightower, P. P. Klasnja,
K. Koscher, A. LaMarca, J. A. Landay, L. LeGrand, J. Lester,
A. Rahimi, A. Rea, and D. Wyatt. The Mobile Sensing
Platform: An Embedded Activity Recognition System. IEEE
Pervasive Computing, 7(2):32–41, 2008.

[8] T. Choudhury and A. Pentland. Sensing and Modeling Human
Networks using the Sociometer. In Proc. of ISWC’03, 2003.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic Execution between Mobile Device and
Cloud. In Proc. of EuroSys’11. ACM, 2011.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making
Smartphones Last Longer with Code Offload. In Proc. of
MobiSys’10. ACM, 2010.

[11] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and
A. Sharma. PRISM: Platform for Remote Sensing using
Smartphones. In Proc. of MobiSys’10. ACM, 2010.

[12] D. Donoho. Compressed Sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

[13] Nokia Energy Profiler. http://store.ovi.com/content/17374.

[14] P. C. Fishburn. Independence in Utility Theory with Whole
Product Sets. Operations Research, 13(1):28–45, 1965.

[15] P. C. Fishburn. Utility Theory. Management Science, 14, 1968.

[16] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A.
Landay. MyExperience: A System for In situ Tracing and
Capturing of User Feedback on Mobile Phones. In Proc. of
MobiSys’07. ACM, 2007.

[17] Hidden Markov Model Toolkit. http://htk.eng.cam.ac.uk.

[18] L. Kaelbling, M. Littman, and A. Moore. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[19] R. Keeney and H. Raiffa. Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. John Wiley & Sons, 1976.

[20] R. L. Keeney. Common Mistakes in Making Value Trade-Offs.
Operations Research, 50(6):935–945, 2002.

[21] lightblue. http://lightblue.sourceforge.net.

[22] H. Lu, J. Yang, Z. Liu, N. Lane, T. Choudhury, and
A. Campbell. The Jigsaw Continuous Sensing Engine for
Mobile Phone Applications. In Proc. of SenSys’10. ACM, 2010.

[23] W. Lynn, B. N. Waber, S. Aral, E. Brynjolfsson, and
A. Pentland. Mining Face-to-Face Interaction Networks using
Sociometric Badges: Predicting Productivity in an IT
Configuration Task. In Proc. of the ICIS’08, 2008.

[24] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury,
Z. Liu, and A. T. Campbell. Darwin Phones: The Evolution of
Sensing and Inference on Mobile Phones. In Proc. of
MobiSys’10. ACM, 2010.

[25] M. Musolesi, M. Piraccini, K. Fodor, A. Corradi, and A. T.
Campbell. Supporting Energy-Efficient Uploading Strategies for
Continuous Sensing Applications on Mobile Phones. In Proc. of
Pervasive’10. LCNS Springer, 2010.

[26] K. S. Narendra and M. A. L. Thathachar. Learning Automata:
An Introduction. Prentice-Hall, Inc., 1989.

[27] D. Olguin and A. Pentland. Assessing Group Performance from
Collective Behavior. In Proc. of the CSCW’10. ACM, 2010.

[28] D. L. Paulhus and D. B. Reid. Enhancement and Denial in
Socially Desirable Responding. Journal of Personality and
Social Psychology, 60(2):307–317, 1991.

[29] Python for S60. https://garage.maemo.org/projects/pys60.

[30] K. K. Rachuri, M. Musolesi, and C. Mascolo. Energy-Accuracy
Trade-offs in Querying Sensor Data for Continuous Sensing
Mobile Systems. In Proc. of Mobile Context-Awareness
Workshop’10, 2010.

[31] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow,
C. Longworth, and A. Aucinas. EmotionSense: A Mobile
Phones based Adaptive Platform for Experimental Social
Psychology Research. In Proc. of UbiComp’10. ACM, 2010.

[32] B. Waber, D. O. Olguin, T. Kim, and A. Pentland.
Productivity through Coffee Breaks: Changing Social Networks
by Changing Break Structure. In Proc. of SSNC’10, 2010.

[33] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong,
B. Krishnamachari, and N. Sadeh. A Framework of Energy
Efficient Mobile Sensing for Automatic User State Recognition.
In Proc. of MobiSys’09. ACM, 2009.


