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Abstract

Traditional middleware primitives offer very elemen-
tary information dissemination mechanisms, which, in the
case of a decentralized and dynamic network such as a
mobile ad hoc network, do not offer the ability to con-
trol the information spreading. Control over information
dissemination could instead be very critical especially in
terms of lifetime of the network. Gossip-based communi-
cation and epidemic-style algorithms, which are based on
a store and forward approach, have been proposed to ob-
tain message dissemination with probabilistic guarantees
and lower overheads. However, epidemic algorithms have
never been used to allow designers to control the spreading
of the information depending on the desired reliability and
the network structure.

In this paper, we present a middleware for ad hoc net-
working, which uses epidemic-style information dissemina-
tion techniques to tune the reliability of the communication
in mobile ad hoc networks. The approach is based on re-
cent results of complex networks theory; the novelty of our
idea resides in the evaluation and the exploitation of the
structure of the underlying network for the automatic tun-
ing of the dissemination process and its use in the design of
the API offered by the middleware. We present a detailed
analytical model supported by several simulation results.

1 Introduction

Traditional middleware primitives for information dis-
semination fail to offer the right abstractions to the pro-
grammer of mobile applications, especially if these are
targeted to very decentralized systems such as mobile ad
hoc networks [16]. One of the main capabilities which is
missed is the ability to control the information spreading
from the application program. Examples of applications
in which this feature is essential are emergency and rescue
operations in possibly crowded public areas (such as inside
stations, airports or shopping centers) or during events that

involve a large number of people gathered together (such as
in occasion of major sport events in stadiums or arenas). If
the network infrastructure has failed, firefighters and other
helpers might want to relying on device to device connec-
tivity of the people in the area: the spreading of messages
might need to be controlled so to preserve the lifetime of
the network for future messages. For example, it may be
sufficient to send the messages only to a percentage of the
rescue team members (e.g., 50% of the doctors). In other
situations, there might be a need to reach all the deployed
emergency personnel. Up to our knowledge, no solutions
exploiting the minimal necessary and sufficient number of
replicated messages given the emergent network structure
to guarantee a desired level of reliability exist. This lack of
ability to control message dissemination at the application
level is partly due to the poor APIs offered by the middle-
ware but also to the lack of algorithms that can implement
this tuning over the network.

Mobile ad hoc networks can be frequently and tem-
porarily partitioned and the traditional routing protocols,
including the basic flooding, fail to offer any sort of reli-
ability when this happens. Epidemic-style protocols, in-
stead, being store and forward approaches, allow for com-
munication in dynamic and mobile networks, also in pres-
ence of temporary disconnections or network partitions.
The analogy between information dissemination in mobile
systems and epidemics transmission in communities is ev-
ident and a host can be referred to as infected when it re-
ceives a piece of information and stores it, and susceptible
(i.e, it could be infected) otherwise.

Epidemics-inspired techniques have received huge at-
tention in recent years from the distributed systems com-
munity [10]. These algorithms and protocols rely on prob-
abilistic message replication and redundancy to ensure reli-
able communication. Epidemic techniques were firstly ap-
plied to guarantee consistency in distributed databases [9].
A few attemps have been made to employ epidemic based
techniques for information dissemination in mobile ad hoc
networks [18, 8, 3]. However, existing epidemic algorithms
do not permit to control the spreading of the information
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depending on the wanted reliability and the network con-
ditions such as in the needed scenario depicted above. In
fact, these approaches are fundamentally based on empir-
ical experiments and not on analytical models: the input
parameters that control the dissemination process are se-
lected by using experimental results and are not based on
any mathematical model. This implies that the message
replication process cannot be tuned with accuracy in a dy-
namic way: for instance, it is not possible to set the param-
eters of the dissemination process in order to reach only a
certain desired percentage of the hosts. Furthermore, these
algorithms do not exploit the information on the underlying
network topology. This is due to the fact that many inter-
esting works on epidemic modelling in complex networked
systems are very recent [1].

The use of these recent complex network theories allows
us to devise a more precise model of the dissemination and
to control the reliability level that can be imposed on mes-
sage delivery, by evaluating the distribution of the degree
of connectivity of nodes. In other words, the number of the
replicas in the network and their persistence can be con-
trolled to support a delivery process that is characterised by
the reliability specified by developers. Moreover, by using
these results we designed algorithms that are able to adapt
dynamically to possibly variable degrees of connectivity of
the hosts.

The contribution of this paper can be summarised as fol-
lows:
• We design a dissemination algorithm for mobile ad

hoc networks that relies on epidemic models taking
into account the structure of the underlying network
and using recent results in complex networks theory
concerning the modelling of epidemics spreading;

• we define a middleware interface for probabilistic
communication and information dissemination in mo-
bile systems that allows the programmers to set the re-
liability for unicasting and anycasting based on these
theoretical results with a high degree of accuracy, also
in presence of failures.

Complex networks are usually classified in two main
groups depending on the distribution of the degree of con-
nectivity of the nodes (i.e., the number of the links of
the hosts): exponential networks and scale free networks.
The formers are characterised by a connectivity distribu-
tion P (k) peaked at an average value 〈k〉. Typical ex-
amples are random graph model [6] and the small-world
model proposed by Watts and Strogatz [1]. Scale free net-
works are characterised by fluctuations of the degree k that
any given node may have. Exponential networks are char-
acterised by very small fluctuations (i.e., the degree of ev-
ery vertex can be approximated as k ≈ 〈k〉); for this rea-
son, they are also identified as homogeneous networks. On
the other hand, for the inherent fluctuations of the degree of
connectivity, scale-free networks are classified as heteroge-

neous networks. We will first assume a mobile system with
homogeneous network structure. This structure is realis-
tic for a number of typical of scenarios characterized by a
high density of hosts and where the movements of the hosts
can be approximately modeled as random, such as in large
outdoor spaces (i.e., squares, stations, airports or around
sport venues) [12]. Then, we will discuss a generalization
of the model to heterogeneous networks. This is the case of
scenarios with the presence of groups of hosts and solitary
individuals. In other words, we prove that the middleware
has a general applicability, since it can be used in presence
of both homogeneous and heterogeneous networks.

This paper is structured as follows. Section 2 introduces
the middleware interfaces for controlled information dis-
semination. Section 3 provides a brief introduction to epi-
demic spreading models proposed in the recent complex
networks studies and discusses the design of possible in-
formation dissemination strategies based on them. The im-
plementation of our algorithm supporting he middleware
primitives is described in Section 4. Section 5 shows an
analytical study of our approach and presents several sim-
ulation results that confirm the validity of the theoretical
model. In Section 6 we compare our approach to existing
work, underlining its novelty and possible extensions of the
model to heterogeneous networks scenarios. Section 7 con-
cludes the paper, summarizing its contribution.

2 Middleware Primitives for Controlled Epi-
demic Dissemination

Our goal is to provide a set of primitives that allows de-
velopers to tune information dissemination in mobile ad
hoc networks according to their specific application re-
quirements. This problem can be evaluated from two dif-
ferent perspectives. In fact, the spreading of information
from a source A to a certain percentage Ψ of the mobile
hosts of the system can be seen as the problem of sending
a message from host A to another randomly chosen host B
with a certain probability Ψ. This probability can be inter-
preted as the reliability of the delivery mechanism.

We designed two primitives to support controlled com-
munication in mobile systems that capture these two com-
plementary perspectives. First of all, we design a primitive
for probabilistic unicast communication:

epsend(message,recipient,reliability,time)

where message is the message that has to be sent to the
recipient with a certain probability measured by the
value reliability (that has to be chosen in the range
[0, 1]) in a bounded time interval defined by the time field.
The field reliability is used to set the value of Ψ.
The validity of the message corresponding to the interval
of time during which the infection will spread is specified
by the field time.
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Similarly, we introduce a primitive for probabilistic
anycast communication as follows:

epcast(message,percentageOfHosts,time)

where message is the message that has to be sent to a
certain percentage of hosts equal to the value defined in
percentageOfHosts in a bounded time interval equal
to time. In this case the field percentageOfHosts is
used to set the value of Ψ.

The infectivity of the epidemics (i.e., the probability of
being infected by a host that is in the same radio range,
like in human diseases spreading) can be used to control
the reliability of the unicast probabilistic communication
mechanism. In other words, given an expected reliability
(or percentage of hosts that has to be infected) equal to Ψ,
we are able to accurately calculate the value of the infectiv-
ity in order to obtain an infection rate equal to a proportion
of the total number of the hosts in the network. It is also
worth noting that, as we will discuss in the next section,
these primitives rely on a probabilistic algorithm based on
the transmission of a minimal, and, at the same time, suf-
ficient, number of messages. In other words, the energy
consumption due to transmissions is minimized.

The applications of these middleware primitives are
many. For example, these can be used to reach only a per-
centage of hosts in a network. Using these primitives, a
member of an emergency squad finding a person in rel-
atively critical conditions while exploring a disaster area,
can alert a fraction of his/her colleagues, so to let others
attend other patients.

3 Dissemination Techniques based on Epi-
demic Models

In this section, we discuss our application of mathemat-
ical models of epidemic spreading to the problem of prob-
abilistic communication and information dissemination in
mobile ad hoc networks. We consider a system composed
of nodes characterized by a finite buffer size, which is a
realistic assumption. The communication in the system
is message passing based. Messages are composed of a
header, containing information that is used to perform the
shipment and a body, containing the data that has to be
sent to a specific host. Every message is characterized by a
unique identifier. An expiration time field is used to specify
its validity. Given the limited buffer size, every node can
store a finite number of messages. These are inserted in the
buffer only if not already present.

We now briefly introduce the mathematical models that
we exploit to design the dissemination algorithms. These
are at the basis of the design of the middleware API pre-
sented in Section 2. In order to model the replication mech-
anisms for the messages, we exploit mathematical models

that have been devised to describe the dynamics of infec-
tions in human populations [2]. The study of mathemati-
cal models of biological phenomena has been pioneered by
Kermack and McKendrick in the first half of the last cen-
tury. In the following decades, their work has been consid-
erably extended and, nowadays, the study of epidemiology
from a mathematical point of view is a mature scientific
discipline. In particular, mathematical models of infection
spreading of human diseases have been developed and suc-
cessfully exploited to predict the evolution of the epidemics
with the aim of finding effective countermeasures. Very
recently, researchers in the area of complex networks the-
ory have focused their attention on the problem of model-
ing epidemics spreading in networks characterized by well-
defined structures [4].

According to the Kermack and McKendrick model, an
individual can be in three states: infected, (i.e., an individ-
ual is infected with the disease) susceptible (i.e., an individ-
ual is prone to be infected) and removed (i.e., an individual
is immune, as it recovered from the disease). This kind of
model is usually referred to as the Susceptible-Infective-
Removed (SIR) model [2]. In this paper we use a simpli-
fied version of the model, according to which individuals
can exist in only two possible states, infected and suscep-
tible. In the literature, this model is usually referred to
as Susceptible-Infective-Susceptible (SIS) model [2]. We
now map this model onto a mobile network of commu-
nicating hosts, where messages are disseminated. In the
remainder of this paper we will substitute the term individ-
ual, used by epidemiologists, with the term host. A host is
considered infected, if it holds the message and susceptible
if it does not. If the message is deleted from the host, the
host becomes susceptible again.

The main assumptions of our model are the following:
• all susceptibles in the population are equally at risk

of infection from any infected host (this hypothesis is
usually defined by epidemiologists as homogeneous
mixing);

• the infectivity of a single host, per message, is con-
stant1;

• every host collaborates to the delivery process and no
malicious nodes are present;

• each node has a buffer of the same size;
• the initial number of hosts and the host failure rate are

known a priori by each host2;

1Note that the infectivity per single message (i.e., a disease) is con-
stant, but not per single host. In other words, a host usually stores mes-
sages characterized by different infectivities in its buffer.

2The initial number of hosts can be usually estimated in occasion of
sport events, rallies, etc. for example by evaluating the seating capacity
of the venues or the size of the area when the event takes place. Statis-
tical data are also usually available for many application scenarios, such
as number of passengers that uses a station or an airport in a certain time
of the day, etc. Alternatively, this number can be estimated using dis-
tributed algorithms for the calculation of the approximated network size
such as [13].
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• the host failure rate can be approximated as a sta-
tionary process within the time interval of infection
spreading (i.e., the number of hosts is considered con-
stant during the spreading of the infection)3;

• the failures of the nodes are uniformly random dis-
tributed and permanent.

Under the assumptions above, the dynamics of the in-
fectives and susceptibles in the case of a scenario composed
of N(t) active hosts (i.e., not failed) can be approximately4

described by means of a system of differential equations
which we refined from [2] as follows:

dS(t)
dt

= −βS(t)I(t) + γ(t)I(t)
dI(t)
dt

= βS(t)I(t)− γ(t)I(t)
dN(t)

dt
= −φN(t)

S(t) + I(t) = N(t)

(1)

where I(t) is the number of infected hosts at time t, S(t) is
the number of susceptible hosts at time t, β is the average
number of contacts with susceptible hosts that leads to a
new infected host per unit of time per infective in the pop-
ulation, γ is the average rate of removal of infectives from
circulation per unit of time per infectives in the population
and φ is the failure rate (i.e., the probability that one host
fails per unit of time).

The equations of the system state that the decaying rate
of susceptibles and the growth rate of infectives are cal-
culated by considering two competing effects: the former,
proportional to the infectivity β, the number of susceptibles
S(t) and the number of infectives I(t); the latter, propor-
tional to the removal rate γ and the number of infectives
I(t). The third equation is a consequence of the hypothesis
of closed system (i.e., the nodes are the same and the num-
ber of hosts is constant over the interval of time taken into
consideration). If we solve the system by using the initial
condition I(t) = I0 (where I0 is the number of initial hosts
infected), we obtain that the number of infectives at time t
is described by the following equation:

I(t) =
I0e

αβt

1 +
I0

α
(eαβt − 1)

(2)

with α = N(t) − γ

β
. N(t) is considered approximately

constant during the entire epidemic process described by
the system 1, since we assume that the failure process is
stationary considering the interval of time during which the
epidemics spreading happens (i.e., we assume N(t) ≈ N∗

3This is a realistic assumption, since users usually require that the in-
formation will be disseminated in a limited time.

4This is rigorously justifiable only for complete graphs in large popu-
lation limit. However, the model provides a good approximation also in
scenarios composed of a limited number of hosts.

with N∗ equal to the number of hosts present in the system
at the beginning of the epidemics). In our case the initial
condition is I0 = 1: this represents the first copy of the
message that is inserted in its buffer by the sender. This
result can be used to calculate the number of infectives at
instant t with a given infectivity β and a given removal
rate γ, or, more interestingly for our purposes, β and γ can
be tuned in order to obtain a certain epidemics spreading,
after a specific length of time has passed. The infectivity
β is the fundamental parameter of the message replication
algorithm. In fact, a certain infectivity β can be selected in
order to obtain, at time t∗, a number of infectives (i.e., hosts
that have received the message) equal to I(t∗) or, in other
words, a percentage of infectives5 equal to I(t∗)/N(t∗).
The parameter γ can be interpreted as the deletion rate of
the messages from the buffer of the hosts. In fact, since the
message buffers have limited size, it may be necessary to
delete some messages according to a certain policy. Thus,
from the average removal rate of messages from buffer, it
is possible to derive the infectivity that is necessary and
sufficient to spread the infection. In case the absence of
overflow phenomena (i.e., in the case of sufficiently large
buffers) can be assumed, the model can be simplified with
γ = 0.

In order to effectively exploit the model just described,
the actual connectivity of each host should be kept into ac-
count. As discussed in Section 1, the node degree k for
each node can be approximated quite precisely with the av-
erage degree of connectivity 〈k〉 of the network. Therefore,
in case of homogeneous networks, in order to take into ac-
count the effect of the connectivity, it is possible to rewrite

the system (1), substituting β with λ
〈k〉
N

as follows, as dis-
cussed in [4]:

dS(t)
dt

= −λ
〈k〉
N

S(t)I(t) + γ(t)I(t)
dI(t)
dt

= λ
〈k〉
N

S(t)I(t)− γ(t)I(t)
dN(t)

dt
= −φN(t)

S(t) + I(t) = N(t)

(3)

λ represents the probability of infecting a neighboring host.
〈k〉
N gives the probability of being in contact with a certain

host. In other words, in this model, by substituting β with
λ 〈k〉

N , we have separated, in a sense, the event of being con-
nected to a certain host and the infective process [4].

The solution of this system is similar to (2) (i.e., it is
sufficient to substitute β with λ 〈k〉

N ). Thus, it is possible
to calculate λ as function of I(t∗) and 〈k〉. Finally, it is
interesting to note that in homogeneous networks, every

5Note that β = f(I(t)) is not defined for I(t) = N(t). Therefore,
from a practical point of view, in the case of a message sent to all the
hosts of the system, we will use the approximation I(t) = N(t) − ε,
with ε > 0, in the expression used to calculate β.
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host knows its value of k and, consequently, of 〈k〉. We
will exploit this property to tune the spreading of message
replicas in the system.

4 Implementing the Middleware Interface

Every time one of the two middleware primitives de-
fined in Section 2 is invoked, the middleware calculates the
value of the infectivity λ that is necessary and sufficient
to spread the information with the desired reliability in the
specified time interval, by evaluating the current average
degree of connectivity and the current removal rate of mes-
sages from the buffer. The message identifiers, the value
of the calculated infectivity, the timestamp containing the
value specified in time expressing its temporal validity are
inserted in the corresponding headers of the message in the
infectivity field. Then, the message is inserted in the local
buffer.

avDegreeOfConnectivity=System.getAvDegreeOfConn();
deletionRate=System.getDeletionRate();
infectivity=
calculateInfectivity(reliability,deletionRate,
avDegreeOfConnectivity, time);

basicReproductiveNumber=System.getBasicReprNumber();
if (basicReproductiveNumber>1) {

m=new Message();
m.setMessageId(System.generateMessageId());
m.setRecipient(recipient);
m.setContent(messageContent);
m.setInfectivity(infectivity);
m.setTimeStamp(time);
System.addToBuffer(m);

} else throw new deliveryException();

Program 1: Calculation of the parameters of the message.

A fundamental parameter in epidemiology is the basic
reproductive number R0 [2]. This can be interpreted as the
number of secondary infected hosts generated by one pri-
mary infective. In epidemiology, this is generally used to
evaluate the conditions which give rise an epidemic out-
break in a population. Under the given assumptions, the
basic reproductive number is intuitively defined as:

R0 =
λ〈k〉

γ
(4)

It can be deduced that the epidemics will spread only if
R0 > 1 [4]. In this case, in fact, the epidemics will be able
to generate a number of infected hosts (represented by the
numerator) larger than those which have become suscep-
tibles again (represented by the denominator) per unit of
time, leading to a monotonic increase of the number of in-
fectives I(t). By evaluating the basic reproductive number,
if it is not possible to ensure the specified reliability (i.e.,
the basic reproductive number is less than 1), an exception
is thrown. The conditions under which R0 is greater than
1 are discussed in Section 5.1.1 A possible implementation

using an object-oriented programming style is presented in
Program 1.

Program 2 contains the epidemic spreading algorithm.
This procedure is executed periodically with a period equal
to τ . With respect to the calculation of the message infec-
tivity, it is possible to assume τ as time unit in the formu-
lae presented in Section 3. In other words, assuming, for
example, τ = 10, a timestamp equal to one minute corre-
sponds to six time units. The value of τ can be set by the
application developer during the deployment of the plat-
form. Clearly, the choice of the values of τ influences the
accuracy of the model, since it relies on a probabilistic pro-
cess. For this reason, given a minimum value of timestamp
equal to tMIN , developers should ensure τ << tMIN . The
number of rounds will be equal to t∗/τ . For the Law of the
Large Numbers, we obtain a better accuracy of the esti-
mation of the evolution of the epidemics as the number of
rounds (i.e., from a probabilistic point of view, the number
of trials) increases. We implemented the epidemic algo-

for (int i=0;i<numberOfMessagesStored;i++) {
m=System.getMessageAtPosition(i);
infectivity=m.getInfectivity();
for (int k=0;k<numberOfHostsInReach;k++) {
rValue=random(0,1);
if (rValue<=infectivity)
System.sendMessage(m,k);

}
}

Program 2: Epidemic Spreading Algorithm.

rithm and the middleware interface using Java SDK and
we tested the functionalities of the framework with laptops
connected by a wireless ad hoc network. However, in order
to validate the epidemic algorithm, we studied its proper-
ties from an analytical point of view and we tested it in
more realistic large-scale scenarios by means of simula-
tions as described in the next section.

5 Evaluation

We now present the evaluation of the proposed approach
based on the analytical derivation of some characterizing
properties of the system and on simulation results that con-
firm the theoretical model. We do not show and compare
the results obtained with existing epidemic protocols and
spanning-tree based multicast algorithms, since the goal of
our work is different. The main aim of those protocols is
to achieve 100% reliability communication with all of the
participating hosts, whereas we are interested in achieving
an accurate tuning of the dissemination process given the
network structure in order to be able to reach only a per-
centage of the nodes.

5



5.1 Analytical Study of Properties of the System

5.1.1 Spreading and Persistence of Messages

It is interesting to derive under which conditions the repro-
ductive number R0 (defined in Section 4) is greater than
1. In this case, we will be sure that the epidemics will
propagate until the expiration time6. With Preplacement

we indicate the probability that a message will have to be
deleted from the buffer in order to free space when it is
full. This will happen when a message is received, which
is not already in the (full) buffer. With Phit(t) we indicate
the probability of receiving from a neighbor a message that
is already in the buffer (with a size equal to BufferSize) at
time t. Therefore, the probability that a message in a full
buffer will be deleted and replaced is equal to:

Preplacement = 1− Phit (5)

γ represents the deletion rate from the buffer that is propor-
tional to the arrival rate of a new message and the proba-
bility that this message is already in the buffer (represented
by Preplacement). Since the arrival rate of new messages
from any link is proportional to the spreading rate λ and
the average number of connections 〈k〉, we re-write (4) as
follows:

R0 =
λ〈k〉

γ
=

λ〈k〉
λ〈k〉Preplacement

=
1

Preplacement
(6)

Thus, R0 will be greater than 1 if and only if
Preplacement < 1. In other words, if the buffer is large
enough to ensure that the average removal rate is less than
1, the messages will remain in the system until their expi-
ration time.

If the removal rate is higher than this threshold, the sys-
tem will not be able to guarantee the persistence of the
messages. It is possible to use this result to design a mech-
anism for determining when a notification that the message
cannot be disseminated needs to be issued to the applica-
tion. In general, the value of Preplacement is dependent on
the number of types of messages, their infectivities and the
different stages of the dissemination processes (i.e., infec-
tions) that are present in the system. However, if the traf-
fic behavior in terms of quantity and types of messages is
homogeneous, the replacement rate observed at local level
can be taken as a reasonable indicator of the average global
replacement rate.

5.1.2 Number of Messages in the Network

Another interesting quantitative parameter is the total num-
ber of messages needed to disseminate messages to a cer-
tain percentage of hosts. In particular, we now estimate the

6It is interesting to note that, in theory, the message dissemination
would continue also after the expiration time. However, since the replicas
are deleted from the buffer after the expiration time, the epidemic process
terminates.

number of replicas sent, per message, in the case of infi-
nite buffers (i.e., γ = 0). This is the case of systems which
are characterized by well-dimensioned buffers or where the
traffic is low so the buffers are able to store all the incoming
messages without the necessity of freeing space for them.

Considering an infection process repeated for a number
of times equal to r number of rounds, indicating with tr the
time length of the rth round, the total number of replicas
per single type of message can be estimated as follows:

NumberOfReplicas =
∫ t=tr

t=0

λ〈k〉I(t)dt (7)

By substituting the value of I(t) (obtained by solving the
system (3)), we solve the integral obtaining the following
estimation for the number of replicas:

NumberOfReplicas = Nln(1 +
1
N

(eλ〈k〉tr − 1)) (8)

This can be approximated as follows:

NumberOfReplicas = O(N〈k〉) (9)

It is interesting to note that in the case of a fully meshed
network (i.e., all the hosts are in the transmission range),
we obtain the worst case approximation:

NumberOfReplicas = O(N2) (10)

Another interesting case is when 〈k〉 ≈ lnN . In this case
the number of replicas is approximately linear:

NumberOfReplicas = O(N) (11)

Finally, if 〈k〉 is not dependent from N 7, the number of
messages remains approximately constant as N increases8.

5.2 Simulation Results

We evaluated the proposed system and model by consid-
ering the case of unicast communication with a given reli-
ability specified by the user. We do not consider the case
of anycast communication, since, as discussed, it relies on
the same delivery process.

5.2.1 Description of the Simulation

In order to test the performance of these techniques we con-
sidered a mobile scenarios composed of a realistic number
of hosts and we implemented and ran a series of simula-
tions by using the popular open source discrete-event sim-
ulator OMNeT++ [19]. We defined a square simulation
area with a side of 1 km and a transmission range equal

7This is the case of scenarios where the hosts occupy a larger area
as the population increases, so that the density of population and, conse-
quently, 〈k〉 remain approximately constant.

8This result can be directly derived by applying L’Hospital’s rule to
calculate the limit.
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to 200 m. The simulation was set to run several replicates
for each mobile scenario in order to obtain a statistically
meaningful set of results (with a maximum 5% error). The
intervals between each message are modeled as a Poisson
process. We studied scenarios characterized by different
number of hosts (more precisely 32, 64, 96, 128). These
input parameters model typical deployment settings of mo-
bile ad hoc networked systems. We do not model explicitly
the failures in the system, since we assume that during the
infection process, the number of hosts remains constant.

All the messages are sent in the first 20 seconds in order
to create enough traffic to saturate the buffer. The sender
and receiver of each message are chosen randomly. We
tested the algorithm with both finite and infinite (i.e. equal
to 100) buffer size. The buffer for each node is set to 100
messages (i.e, infinite buffer), unless otherwise specified.
The execution interval of the epidemic spreading procedure
(presented in the box Program 2) is 10 seconds. The expi-
ration time (i.e., the value of time) is equal to 10 minutes.
Therefore, the number of rounds is 60. We simulated only
the cases with the basic reproductive ratio R0 greater than
1, since the middleware primitives simply return an excep-
tion if this value does not reach the threshold.

The movements of the hosts are generated by using a
Random Way-Point mobility model [7]; every host moves
at a speed that is randomly generated by using a uniform
distribution. The range of the possible speeds is [1, 6]m/s.
We selected this mobility model, since as discussed in [12],
its emergent topology has an exponential structures, with
Poisson-like distributions. Therefore, in this scenario, the
properties of the network can be studied with a good ap-
proximation by assuming a homogeneous networks model.
The accuracy of the approximation increases as the density
of population increases, since, considering the finite and
limited simulated time, we obtain a scenario characterized
by a time series of degree of connectivity values charac-
terized by lower variance. Moreover, the so-called border
effects, due to the host that moves at the boundaries of the
simulated scenarios, have less influence as the density of
population increases. This also means that as the number of
failures in the system increases, the accuracy of the model
decreases. In fact, considering uniformly randomly dis-
tributed failures, a scenario composed of 32 nodes can be
used to model the case of a scenario with an initial number
of 64 nodes, where half of them have failed. Figure 1 shows
the distribution of the degree of connectivity in the simu-
lated scenarios composed of different numbers of hosts.

5.2.2 Analysis of Simulation Results

In this subsection we will analyze the results of our simu-
lations, discussing the performance of the proposed tech-
niques. We will study the variations of some performance
indicators, such as the delivery ratio and the number of
messages sent as functions of the density of hosts (i.e., the
number of the hosts in the simulation area), considering

different buffer size (and consequently different removal
rates).

Figure 2 shows a comparison with the estimated epi-
demic spreading (i.e., the number of infectives I(t∗)) and
the data obtained from the simulation of a mobile scenario
composed of 128 nodes, with t∗ = 10min and γ = 0.
It is interesting to note that the values of the theoretical
curve are higher than the experimental ones. This is due
to the fact that the degree of connectivity is not perfectly
homogeneous in the simulated scenarios. For example, if a
message is sent by a host that has a degree of connectivity
k > 〈k〉, the value of β will be lower than the infectivity
associated to the average degree of connectivity 〈k〉9.

Figure 3 and 4 show the delivery ratio in terms of pop-
ulation density, for the case of a desired reliability equal to
100 and 50, respectively, with t∗ = 10min and γ = 0. The
obtained delivery ratios are really close to the values ex-
pected from our model analysis. Also in this case, the bet-
ter approximation of the assumption of homogeneous net-
work, obtained when the density of population increases,
leads to better results (i.e., a more accurate estimation) for
the case of 128 nodes. Figure 5 and 6 show the number of
messages as function of population density. This confirms
the analytical results presented in Section 5.1.2. In fact, the
curve is approximately linear, as justified by the fact that, in
our simulations 〈k〉 � N . The number of replicas per host
per message are plotted in Figure 7 and 8. These diagrams
illustrate the scalability of our approach, since the number
of replicas per host per message can be approximated as
O(〈k〉). The influence of the buffer size is presented in
Figure 9 and Figure 10. The first shows the comparison
between the cases of infinite and limited (with a size equal
to 20) buffers. The effect of the non perfect network ho-
mogeneity is present also here and is more evident for the
scenarios composed of a lower number of hosts. In fact, if
the actual degree of connectivity is higher than the assumed
〈k〉 the probability of deletion of messages from the buffer
increases. In this case, the assumptions at the basis of the
model in (3) are not valid. Figure 10 shows that the number
of messages is greater than in the case of infinite buffers.
In fact, an increased infectivity is needed in order to spread
the messages also in presence of the removal phenomena,
due to the limited buffer size.

6 Related Work and Discussion

In this section, we compare our solution with existing
work and applications of the proposed model and outlining
our current research directions.

9From a practical point of view, in order to cope with this issue, it is
sufficient to increase β, for example by adding a correction equal to a per-
centage of the value calculated by using the theoretical model. However,
for illustration purposes, in the simulations presented in the remainder of
this paper, we used values of β derived directly from the model presented
in Section 3 without corrections.
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6.1 Comparison with the State of the Art

As far as mobile systems are concerned, a first study
of the possible application of epidemic techniques in
MANETs is presented in [18] by Vahdat and Becker. Many
refinements of this approach have been proposed. A study
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Figure 4. Delivery ratio Vs population density
with desired reliability equal to 50 and γ = 0.
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densFity with desired reliability equal to 100
and γ = 0.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 32  64  96  128

N
um

be
r 

of
 m

es
sa

ge
s

Number of hosts

simulation data
interpolation

Figure 6. Number of messages Vs population
density with desired reliability equal to 50,
t∗ = 10min and γ = 0.

of the information dissemination based on epidemic mod-
els in mobile ad hoc networks is presented in [14]. How-
ever, the authors discuss only a theoretical framework,
without proposing concrete implementation of the model.
Moreover, they do not take into account the influence of the
structure of the network in the dissemination process.
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Epidemic-style techniques have been applied to the de-
sign of publish-subscribe systems for highly dynamic envi-
ronments; two recent interesting examples of such systems
are presented in [8] and [3]. Our approach can be used to
improve the performance of this class of systems in terms
of resource consumption, since it allows for a precise tun-
ing of the dissemination process.

In terms of more general distributed systems, the semi-
nal paper on the application of epidemic techniques is [9],
where these algorithms are used to maintain consistency
in replicated databases. A general introduction to epi-
demic algorithms for information dissemination in dis-
tributed systems can be found in [10]. Much work address-
ing different faces of the problem have been proposed, in-
cluding the remarkable contributions presented in [5, 11].
In general, in these works, the authors consider the struc-
ture of the underlying network topology only marginally,
or from empirical and experimental perspectives. A no-
table exception is [15], where the authors discuss the ap-
plication of the Harari graphs to the design of protocols for
broadcasting in fixed networks.

With respect to these works, the novelty of this paper
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Figure 9. Influence of the buffer size in the
128 hosts scenario with desired reliability
equal to 100 and t∗ = 10min: delivery ratio
Vs population density with buffer size equal
to 20.
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Figure 10. Influence of the buffer size in the
128 hosts scenario with desired reliability
equal to 100: number of messages Vs popu-
lation density with buffer size equal to 20.

resides in the evaluation of the structure of the network
by using accurate models to control and tune the dissem-
ination process according to a desired reliability. We also
underline that the design of our system is based on theoret-
ical results confirmed by experimental evidence, whereas
in some the existing works, mathematical models are only
used to understand the emergent behavior of the system a
posteriori. Moreover, up to our knowledge, this work can
be considered the first concrete application of the recent
results on epidemics spreading in complex networks [4].

We believe that these epidemic techniques should be ap-
plied only in the cases where useful context information
cannot be inferred. In another work [17], we have applied
prediction techniques to adapt the communication mecha-
nisms by evaluating the evolution of the mobile scenarios.
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6.2 Relaxing the Assumption of Homogeneous
Networks

The results and the solutions discussed in this paper
rely on the assumption of homogeneous networks, that are
emerging from the random movements of the nodes. We
now show that the proposed approach can be generalized
extended to the general case of heterogeneous networks.
These structures are emerging in presence of small clus-
ters of people or communities. The results that we are go-
ing to present for the case of heterogeneous networks are
also valid for homogeneous network, since the latter can be
treated as a particular case of the former.

For heterogeneous networks the approximation k ≈ 〈k〉
is not valid. However, the same probabilistic communica-
tion primitives introduced in Section 4 could be used, with
a different semantics. This relies on the following obser-
vations: given k fluctuating in the range [kMIN , kMAX ],
we observe that for a value of the infectivity correspond-
ing to k = kMIN , the obtained spreading of the infection
I(t∗, kMIN ) will satisfy the following property:

I(t∗, k) > I(t∗, kMIN ) ∀k ∈]kMIN , kMAX ] (12)

In other words, if kMIN is selected in the calculation of the
value of the infectivity, the value of Reliability can be
considered approximately as a guaranteed lower bound of
the reliability level. The value of kMIN can be dynam-
ically retrieved and set by the middleware by monitoring
the connectivity of the host in mobile systems. We plan to
investigate these adaptive mechanisms further in the future.

7 Concluding Remarks

In this paper, we have introduced middleware primitives
for controlled information dissemination in mobile ad hoc
networks, which relies on optimized epidemic-style tech-
niques. With respect to unicast communication, we have
showed that protocols that statistically ensure the desired
reliability level for the case of homogeneous networks can
be designed. We have also showed that these results may be
applied to the case of anycast and multicast communication
to tune and optimize the replication process. We have eval-
uated our approach through simulation and have presented
a possible generalization of the model discussing the relax-
ation of the assumption of homogeneous networks.
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