
Accelerating Mobile Audio Sensing Algorithms
through On-Chip GPU Offloading

Petko Georgiev§, Nicholas D. Lane†∗, Cecilia Mascolo§, David Chu‡
§University of Cambridge, †University College London, ∗Nokia Bell Labs, ‡Google

ABSTRACT
GPUs have recently enjoyed increased popularity as general pur-
pose software accelerators in multiple application domains includ-
ing computer vision and natural language processing. However,
there has been little exploration into the performance and energy
trade-offs mobile GPUs can deliver for the increasingly popular
workload of deep-inference audio sensing tasks, such as, spoken
keyword spotting in energy-constrained smartphones and wearables.
In this paper, we study these trade-offs and introduce an optimiza-
tion engine that leverages a series of structural and memory access
optimization techniques that allow audio algorithm performance to
be automatically tuned as a function of GPU device specifications
and model semantics. We find that parameter optimized audio rou-
tines obtain inferences an order of magnitude faster than sequential
CPU implementations, and up to 6.5x times faster than cloud of-
floading with good connectivity, while critically consuming 3-4x
less energy than the CPU. Under our optimized GPU, conventional
wisdom about how to use the cloud and low power chips is broken.
Unless the network has a throughput of at least 20Mbps (and a RTT
of 25 ms or less), with only about 10 to 20 seconds of buffering au-
dio data for batched execution, the optimized GPU audio sensing
apps begin to consume less energy than cloud offloading. Under
such conditions we find the optimized GPU can provide energy
benefits comparable to low-power reference DSP implementations
with some preliminary level of optimization; in addition to the GPU
always winning with lower latency.

1. INTRODUCTION
Graphics Processing Units (GPUs) are the method of choice for

executing high computational loads and accelerating compute-inten-
sive applications in domains such as computer vision [57, 23, 36]
and deep learning [16, 17]. But GPUs like any complex processor
architecture need to be used smartly to maximize their throughput
and efficiency. There have been extensive studies for graphics and
games [57, 36, 57, 50] including mobile [23], but the analysis has
largely evaded other general-purpose GPU computations on a mo-
bile device such as audio applications that rely on the power-hungry
microphone sensor. Examples of audio sensing apps are personal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys ’17, June 19–23, 2017, Niagara Falls, NY, USA
c© 2017 ACM. ISBN 978-1-4503-4928-4/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3081333.3081358

digital assistants such as Apple’s Siri [2] or Google Now [5], as
well as a plethora of behavior monitoring apps that recognize emo-
tions from voice [52, 46], or perform conversation analysis [45, 58,
48]. These applications are capable of deep inferences about user
behavior, often require continuous sensor monitoring, and boast
highly sophisticated inference algorithms that easily strain scarce
mobile resources(battery, memory and computation) [41]. As a
result, computational offloading to cloud [24] or low-power co-
processors [27, 45] has often been the solution applied to keep these
apps functional on the mobile device, but no study has been done on
the feasibility of GPU offloading for this data-intensive workload.

In the mobile landscape where energy is the biggest limiting fac-
tor, it is not immediately obvious whether accelerating these sens-
ing applications via GPU offloading will result in energy-justified
performance boosts compared to the above mentioned alternatives
(cloud and low-power co-processors). Questions that we inves-
tigate in this paper are: What trade-offs do we get in terms of
speed and energy if we express audio sensing algorithms in a GPU-
compliant manner? How can we best take advantage of the general-
purpose computing capabilities of mobile GPUs to offload audio
processing? When should we prefer GPU computation to cloud?
Can we obtain energy efficiency on a scale comparable to a low-
power Digital Signal Processor (DSP)?

In this work, we show that the GPU performance of audio sens-
ing algorithms is sensitive to two key control-flow parameters such
as the frame fan-out (total number of frame processing GPU threads)
and per-thread compute factors (amount of computation relative
to memory accesses). We present a GPU offloading engine that
leverages parallel optimization techniques that allow us to control
these parameters and auto-tune the performance of audio routines.
Without such optimization, naively parameterized GPU implemen-
tations may be up to 1.5x slower than multi-threaded CPU alterna-
tives, and consume more than 2x the energy of cloud offloading.

Through extensive evaluation we find that for time-sensitive au-
dio apps, and when energy is less of a concern, there is no bet-
ter option than using GPU optimized audio routines. Algorithms
tuned for the GPU can deliver inferences an order of magnitude
faster than a sequential CPU deployment, and 3.1x or 6.5x faster
than cloud offloading with good connectivity for deep audio infer-
ences such as speaker identification and keyword spotting, respec-
tively. At the same time, the energy consumed is 3-4x lower than
when using the CPU. Perhaps more surprising, for tasks that are
more continuous but tolerate short delays (of 10-20 secs) GPU is
also a top choice. When raw data is accumulated for batched pro-
cessing, algorithms optimized for the GPU begin to consume less
energy than cloud offloading with fast connections. Further, the op-
timized GPU can deliver energy efficiency levels in ranges compa-
rable to what can be achieved by low-power DSP implementations

inference
window

audio signal
(sampling)

audio signal
(sampling)

framing

FE FE FE FE FE FE FE FE FE FE
feature

extraction

classification

classification/
inference

Figure 1: Audio pipeline structure.

with some preliminary optimization. The batching delays required
for the benefits to appear are sufficiently short to support the opera-
tion of not only life-logging style behavior monitoring applications
that tolerate large delays, but also apps that deliver context aware
services and notifications such as conversation analysis [58, 43].

The contributions of our work are:
• A detailed study of the trade-offs of using mobile system-on-a-

chip GPUs for audio sensing workloads.
• An optimization engine that uses key structural and memory ac-

cess parallel patterns applicable to popular algorithm building
blocks used in numerous audio sensing apps available commer-
cially and in the literature. These patterns allow us to automat-
ically tune the GPU performance boost of audio pipelines: they
1) increase the data parallelism by allowing a larger number of
threads to work independently on smaller portions of the au-
dio input stream; and 2) strategically place data needed by the
threads into GPU memory caches where access latency is lower
and the data can be reused.
• A comprehensive proof-of-concept OpenCL [11] implementa-

tion of widely used audio sensing algorithms built on a smart-
phone development board [15]. Our prototype includes a library
of sensing components for feature extraction and classification
(including DNNs [34], GMMs [18] etc.) needed for common
forms of context inference. These components serve as the build-
ing blocks for numerous apps from the audio processing litera-
ture – as a demonstration, we implement 3 recently proposed
application pipelines (e.g., emotion recognition, speaker identi-
fication and spoken keyword spotting).
To the best of our knowledge, we are the first to identify gener-

alizable GPU parallel optimizations that are applicable across mul-
tiple algorithms used in the unique workloads required by audio
sensing. Previous efforts [60, 29] have focused on different work-
load scenarios (e.g., automated speech recognition) where process-
ing requirements differ from those imposed by audio sensing: con-
tinuous background monitoring of coarse sound classes supported
by offline-trained models that can operate entirely cloud-free.

2. AUDIO SENSING MEETS THE GPU
In this section, we detail the operation of typical microphone-

based sensor apps, elaborate on the GPU execution model and high-
light some of the challenges it presents for audio sensing.

2.1 Audio Sensing Primer
Audio sensing apps are characterized by their ability to sample

and process microphone data – they include specialized audio pro-
cessing code that is distinctly different from the app specific logic

(e.g., activating services based on detected audio context). The
dataflow of sensor processing within these apps share many sim-
ilarities which we illustrate in Figure 1. The execution begins with
the sampling of the microphone where raw data is typically accu-
mulated over a short time window (hundreds of milliseconds up
to a few seconds) sufficient to capture distinctive characteristics of
sounds and utterances. The audio signal is then subdivided into
much shorter (e.g., 30ms) segments called frames which are sub-
ject to preprocessing and feature extraction. The aim of the features
is to summarize the collected data in a way that describes the differ-
ences between targeted behavior or context (e.g., sounds, words, or
speaker identity). Identifying which activity or context is observed
in the sensor data in the analyzed time window requires the use of
one or more classification models. Models are usually built offline
prior to deploying a sensor app based on examples of different ac-
tivities and often the classification (i.e., model evaluation applied
to the whole window of stacked frame feature data) is a bottleneck
stage of the audio pipeline [27]. Example audio apps with their
execution properties are listed in Table 1.

2.2 Example Audio Applications
Two most widely used classification models in the audio sensing

domain are Gaussian Mixture Models (GMMs) and Deep Neural
Networks (DNNs). Table 2 gives instances of their near ubiquitous
usage. Here we describe the operational semantics of 3 representa-
tive data-intensive deep-inference examples built on these models.
However, we note that the techniques we develop are applicable to
any other audio sensing application from Table 2 that uses these
models as a building block.

Speaker Identification (GMM based). The pipeline is introduced
by Rachuri et al. [52]. Gaussian Mixture Model classifiers are
trained using speech from 23 speakers. Each of the speakers is
represented by a speaker-specific GMM built by performing Max-
imum a Posteriori (MAP) adaptation of a 128-component back-
ground GMM representative of all speakers. The GMM evaluates
the probability with which certain acoustic observations match the
model and in our case these observations are 32 Perceptual Lin-
ear Prediction (PLP) coefficients [32] extracted from 30-ms frames
over 5 seconds of recorded audio. At runtime, the likelihood of
the audio sequence is calculated given each speaker model and the
speaker with the highest likelihood is predicted.

Emotion Recognition (GMM based). Structurally, the pipeline
is identical to the Speaker Identification. The difference comes
from the parameters of the GMMs which are trained on a differ-
ent dataset (the Emotional Prosody Speech and Transcripts library
[44]) so that each GMM represents an emotional category [52].

Keyword Spotting (DNN based). The application is based on the
small-footprint implementation of Chen et al. [22], and its aim is
to detect a hot phrase spoken by a nearby speaker. The example ap-
plication is trained to detect an "Ok, Google" command. The audio
analysis is performed by segmenting the input signal into frames of
length 25ms with an offset of 10ms, i.e. the frames overlap. Filter-
bank energies (40 coefficients) are extracted from each frame and
accumulated into a group of 40 frames. The features from these
frames serve as the input layer to a DNN with as many output layer
nodes as there are target keywords (plus an additional sink node to
capture other words). The DNN is fully connected and has 3 hidden
layers with 128 nodes each. The output of the DNN is raw poste-
rior probabilities of encountering each of the keywords over the last
second of data. The DNN feed forwarding is performed in a slid-
ing window with every new frame, resulting in 100 propagations
per second (once every 10 ms).

Application Purpose Main Features Inference Model Frame Window
Emotion Recognition∗ [52] emotion recognition PLP∗ [32] 14 Gaussian Mixture Models∗ [18] 30ms 5s
Speaker Identification∗ [52] speaker identification PLP∗ 23 Gaussian Mixture Models∗ 30ms 5s

Keyword Spotting∗ [22] hotphrase recognition Filterbank Energies∗ Deep Neural Network∗ [34] 25ms 1s
Stress Detection [46] stress from voice MFCC [26], TEO-CB-AutoEnv [61] 2 Gaussian Mixture Models∗ 32ms 1.28s
Speaker Count [58] speaker counting MFCC, pitch [25] Unsupervised Clustering 32ms 3s

Ambient Sound Classification [47] sound recognition MFCC, Time Domain Features Gaussian Mixture Models∗ 64ms 1.28s

Table 1: Example audio sensing applications and their properties. ∗Apps and models implemented in OpenCL.

Classifier Applications
GMM emotion recognition [52], speaker identification [52, 45],

ambient sound classification [47], stress detection [46]
DNN keyword spotting [22], emotion recognition [30], speech

recognition [33], sound event classification [49]

Table 2: Categorization of audio sensing applications based on
classification model.

Work Item

Work Group ND Range

SP

Waves

Figure 2: OpenCL thread model and a GPU Shader Processor. The
SP features 2 waves of 8 work items each, it can run 16 threads
in total simultaneously. The work items of one work group are
executed on a single SP.

2.3 GPU Execution Model and Challenges
We use OpenCL’s terminology [11] and Qualcomm Adreno GPU

[12] as an example for GPU architecture and programming model,
but our discussion and conclusions apply equally to other GPU plat-
forms, such as NVIDIA with CUDA [9]. To an OpenCL program-
mer, a computing system consists of a host that is traditionally a
CPU, such as the Snapdragon 800 Krait CPU, and one or more
devices (GPU) that communicate with the host to perform paral-
lel computation. Programs written in OpenCL consist of host code
(C API extensions) and device code (OpenCL C kernel language)
– communication between the two is performed by issuing com-
mands to a command queue through the host program space. Ex-
ample commands are copying data from host to device memory,
or launching a kernel for execution on the device. Kernels specify
the data-parallel part of the program that will be executed by the
GPU threads. When a kernel is launched, all the threads execute
the same code but on different parts of the data.

Thread Model and Compute Granularity. All the threads gen-
erated when the kernel function is called are collectively known as
a grid (or ND Range) and are organized in a two-level hierarchy
independently from the underlying device architecture. Figure 2 il-
lustrates this organization. The grid consists of work groups each
containing a set of threads known as work items. The exact thread
scheduling on the GPU is decoupled from the work groups and is
vendor specific although it shares a lot of similarities among GPU
varieties. Switching from a group of work items to another occurs
when there is a data dependency (read/write) that must be com-
pleted before proceeding and is done to mask these IO latencies.

One of the challenges of implementing GPU-friendly algorithms
is providing the right level of work item granularity. If the GPU
threads are too few, the GPU will struggle with hiding memory
access latency due to not being able to switch between compute-
ready threads while others are stalled on a memory transaction.

Pattern Type Applicability
fan-out structural GMM, DNN, feature ex-

traction sub-phases
vectorization memory access ubiquitous

sliding window memory access DNN, pre-emphasis
tiling memory access GMM, filter banks

Table 3: Parallel optimization patterns taxonomy.

Audio sensing algorithm execution revolves around the analysis of
frames, and a natural candidate for data parallelization is to let each
work item/thread analyze a frame. However, the number of frames
in an inference window is on the order of tens to hundreds, whereas
the GPU typically requires thousands of threads for any meaningful
speedups to begin to appear. A challenge is organizing the audio al-
gorithm execution in a way that allows more work items to perform
computation.

Managing Memory-Bound Audio Kernels. Work items have ac-
cess to different memory types (global, constant, local/shared, or
private) each of which provides various size vs. access latency
trade-offs. Global memory is the largest but also the slowest among
the memories. Private memory is exclusive to each work item and
is very limited in size, whereas the shared memory is larger and
accessible by all work items in a group. Often, a compute to global
memory access (CGMA) ratio is used as an indicator of the kernel
efficiency – the higher the ratio is, the more work the kernel can
perform per global memory access, the higher the performance.

Typical algorithms used in audio sensing need to read a large
number of model parameters which they apply to the frame data,
but the number of floating point operations per read is relatively
low making audio kernels memory-bound. In order to squeeze max-
imum performance out of the mobile GPU (highest speed and thus
lowest energy consumed), algorithms will need to reduce the global
memory traffic by intelligently leveraging the smaller but lower
access latency memories (shared and private). The challenge is
enabling appropriate memory optimization strategies that keep the
CGMA ratio high while maintaining a suitable level of granularity
for the work items.

Summary. GPUs are a powerful platform for general-purpose
computing programmed by language abstractions such as OpenCL
and CUDA. An unanswered challenge is how and what perfor-
mance control techniques we can leverage that depend on the al-
gorithm semantics rather than a concrete hardware configuration.

3. OPTIMIZATION ENGINE OVERVIEW
To address the GPU deployment challenges presented in the pre-

vious section, we build a library of OpenCL auto-tunable audio rou-
tines that form the narrow waist of audio processing pipelines found
in the mobile sensing literature (e.g., filter bank feature extraction,
Gaussian Mixture Model, Deep Neural Network inference). This
library builds upon a set of structural and memory access tech-
niques that expose a set of tunable audio model-dependent control-
flow parameters which we can control in a pre-deployment step

GPU

Config

Audio

Algorithm

Library

Model

Parameters

Optimization

Engine

Parameterized

GPU algorithm

instances

Offline

Optimization

Mobile

GPU

1

2

3

Figure 3: High-level optimization engine workflow.

with an optimization engine. The goal of this engine is to provide
the best match between the domain-specific library implementa-
tion and mobile GPU hardware constraints. The engine helps to
avoid cumbersome hand tuning, instead automatically finds optimal
parameters for the audio kernel routines with large performance
boosts for some of the algorithms. This requires zero change in
the kernel code itself, the parameters are passed through OpenCL
commands as kernel arguments at runtime. A high-level workflow
is illustrated in Figure 3.

The pre-deployment step is a three-staged process, where the en-
gine first loads as input audio model parameters such as the DNN
layout and queries the GPU device specification (e.g., GPU shared
cache size) in order to be able to estimate optimum values for the
GPU algorithm control-flow parameters. In the second stage, the
engine performs the optimization step by solving a series of linear
and quadratic equations and outputs a configuration file with GPU-
kernel parameter values required by our audio library. The third
stage is loading the values from the locally persisted config file to
parameterize the audio algorithms upon initialization of concrete
sensor apps.

To provide high-performance parallel implementations, we build
the techniques listed in Table 3 that enable control over the follow-
ing parameters. Empirically we found that for memory-bound au-
dio kernels, these provide a sweet spot of tunable but not too com-
plex parameters with a key impact on mobile GPU performance:
• frame fan-out factor (φ) – defined as the total number of au-

dio frame processing GPU threads. A higher value results in an
increase in the number of concurrent threads that can work inde-
pendently.
• per-thread compute factor (κ) – defined as the number of com-

puted output values per GPU thread. By optimizing this the
engine attempts to maximize the number of computations each
thread can perform relative to its memory reads and writes (fa-
voring compute-bound operation instead of memory-bound).
Manipulating the first parameter is achieved in our library through

the frame fan-out structural optimization pattern. The core idea
behind it is to split the audio analysis so that each GPU thread
can work on a subset of the output values extracted from an audio
frame. The second parameter is tightly related to a set of memory
access patterns that reduce expensive global memory traffic and in-
crease the per-thread compute factor. These techniques are: 1) Vec-
torization that consolidates slow global memory reads into a single
load operation which is possible thanks to the sequential nature of
accessing values from the audio stream. In our examples, the en-
gine selects larger read batches and can fetch into the thread regis-
ters up to x values from memory, where x is vendor specific (for
Qualcomm Adreno x = 16, for NVidia Tegra X1 x = 4 [10]). 2)
Memory Sliding Window and Memory Tiling: the techniques allow
threads to collaboratively load data into shared memory where this

data can be subsequently reused with lower latency to produce mul-
tiple output values. These are critical optimizations since global
memory access is arguably the most prominent bottleneck we ob-
serve in the widely used audio classification and feature extraction
algorithms.

4. PARALLEL CONTROL-FLOW
OPTIMIZATION

In this section, we detail the structural and memory access paral-
lel patterns that enable the optimization engine to parameterize the
audio routines in our library.

4.1 Inter- and Intra- Frame Fan-Out
This pattern controls the level of data parallelism by allowing a

larger number of concurrent threads to perform independent com-
putations on the input data. We can support such a mode of op-
eration thanks to the way audio pipelines process frames – repeat-
edly mixing the frame samples/coefficient with multiple parameters
(GMM mixtures, DNN network weights). Independent computa-
tions are performed not only among different frames but also within
a single frame as well, a phenomenon which we call the frame fan-
out. This allows the total amount of threads, or fan-out factor (φ),
to be relatively high. It can be computed as follows: φ = n∗ν

κ
where n is the number of frames, ν is the total number of output
values per frame, and κ is the number of computed values per GPU
thread (per-thread compute factor). This structural optimization is
applicable across both feature extraction (filter bank computation)
and classification phases. The next two examples illustrate how this
pattern can be applied:

GMM Fan-Out. The input for this classification phase is the ex-
tracted feature coefficients from all frames. In the Speaker Iden-
tification pipeline there are 32 PLP frame features and a total of
n = 500 frames per inference window (one frame every 10ms for
5s). Each GMM has ν = 128 mixtures each of which computes a
probability score by mixing the 32 PLP coefficients from a frame
with the parameters (mean and variance) of 32 Gaussian distribu-
tions. With a per-thread compute factor of κ = 1, we could let each
OpenCL work item estimate the probability score for one mixture
per frame resulting in a fan-out factor of φ = 500×128. We enable
the kernel to generate this massive number of work items by letting
them write intermediate scores to global memory and a separate
kernel is launched to sum the scores.

DNN Fan-Out. Similarly, the input data for the keyword spot-
ting DNN classification is the extracted filter bank energies from
the frames. In a 1-second inference window there are a total of
n = 100 network propagations (one per new frame every 10ms).
A DNN kernel computes partial results across all input frames by
performing the feed forward propagation for one layer across the
frames simultaneously. Multiple kernels are launched each of which
computes the node activation values for the next layer. With ν =
128 nodes in the hidden layers we could let each OpenCL work
item compute the activation for one node per frame offset (κ = 1)
resulting in a fan-out factor of φ = 100× 128.

The role of the optimization engine is to provide optimum values
for the control-flow parameters φ and κ. n and ν are determined di-
rectly by the audio model specification, whereas the final value of φ
depends on κ, or the amount of work each GPU thread is assigned.
The engine tunes the per-thread compute factor κ since we observe
that maximum GPU performance may not necessarily be reached
when parallelism is highest. The fan-out factor φ reaches its max-
imum when its denominator (κ) has its lowest value (κ = 1), i.e.

Algorithm 1 Shared Memory Use Kernel Template

1: Input: (i) Pointer to input buffer (in), (ii) Pointer to output
buffer (out), (iii) Thread local id (lid), (iv) Thread group id
(gid), (v) Shared memory maximum size (max_s).

. Collaborative data load:
2: loadOffset← compute_load_offset(lid)
3: inputOffset← compute_input_offset(gid, lid)
4: __shared floatN data[max_s] . shared memory declaration
5: if loadOffset <max_s then
6: data[loadOffset]← vloadN (0, &in[inputOffset]) .

vectorized
7: barrier(CLK_LOCAL_MEM_FENCE) . wait for all threads

to finish loading data
. Shared data processing:

8: for (i = 0; i < x; + + i) do
9: localDataOffset← compute_local_offset(lid, i)

10: result← process(&data[localDataOffset])
11: outputOffset← compute_output_offset(gid, lid, i)
12: out[outputOffset]← result

when there are more threads performing less work. The memory
access patterns in the following subsection enable each GPU thread
to perform more computation (κ > 1) relative to the number of its
memory reads and writes: the total count of threads decreases but
they can make a more efficient use of memory.

4.2 Memory Access Control
Tuning audio kernel performance with the per-thread compute

factor κ is closely related to how memory access is managed by
the threads in a work group. Increasing the number of computa-
tions per thread per global memory access and thus finding opti-
mum values for κ depends on maximum exploitation of the faster
but limited in size GPU memories. We discuss several key strate-
gies, enabled by the specifics of digital signal processing, to lower
the number of global memory operations. These strategies either
1) batch global memory transactions into fewer operations, or 2)
let the threads in a work group collaboratively load data needed by
all of them into shared memory where access latency is lower.

Vectorization. When kernels read the input data features or param-
eters, for instance, they access all the adjacent values in a frame.
As a result, the memory access can be vectorized and consolidated
with vector load operations that fetch multiple neighboring val-
ues at once from global to private memory. For example, when a
thread requires the 32 PLP coefficients from a frame, it can use the
OpenCL vloadx operation to issue 2 reads with 16 values (vload16)
fetched simultaneously instead of performing 32 reads for each co-
efficient separately.

Shared Memory Sliding Window. Often the input raw audio or
feature stream is processed in sliding window steps, i.e. the input is
divided into overlapping frames over which identical computations
are performed. Example scenarios where this type of processing
is commonly applied are the feature extraction (PLP, MFCC [26]),
or the classification of the feature stream into observed phenom-
ena (as is the case for the DNN keyword spotting, see Figure 4).
The data overlap is usually quite substantial – the feature extrac-
tion phase for the Speaker Identification pipeline, for instance, uses
30ms frames (240 samples at a sampling rate of 8kHz) with a 10ms
frame rate (an offset of 80 samples) resulting in a 66% data over-
lap between subsequent frames. We can exploit this property of
the audio stream processing to let the threads in a work group col-
laboratively load a larger chunk from the input spanning samples
from multiple frames into shared memory (where access latency is
lower), and let each thread reuse its loaded parameters by applying

frame
data

0 1 2 N-1 N+1N

Work item 1
load

Work item 2
load

Work item 3
loadwork

group

frame
data

0 N+1

DNN
prop

Work item 1
computation

DNN
prop

DNN
prop

Figure 4: Sliding window example. The DNN activation of one
node in the first layer (denoted by DNN prop) is performed by each
work item in a work group. The required data for one such com-
putation is N frames. The figure explicitly shows the computation
for work item 1 which is performed for 3 frame offsets from the
accumulated frame input data (0 toN−1, 1 toN , and 2 toN+1).
Each work item in a group can load a part of the data needed for
the DNN layer activation, but will use all data loaded by the peers
in the group, as work item 1 does. A work item computes the acti-
vation for one node in a layer (DNN prop), but since more data is
accessible from the collaborative loading, the item can reuse its pa-
rameters to compute the activation for the same node for 3 different
frame offsets.

them against several offsets from the input. The higher the data
overlap for adjacent frames, the larger the opportunity the threads
have to load more adjacent regions with fewer read operations, and
the more computation they can perform per global memory read.
The pattern enables the control of the per-thread compute factor κ
by increasing the CGMA ratio of the kernel operation.

Algorithm 1 shows example kernel pseudo code where the work
items cooperate to load data into shared memory. The key advan-
tage is that each thread can use a single vectorized fetch which
is only a small proportion of the actual data needed from global
memory. Collectively, however, all threads are able to load the data
needed by their peers in the work group. The number of adjacent
input regions x over which the threads in a work group perform
computations are limited by the maximum size of the shared mem-
ory reserved to a work group. For Adreno 330 that size is 8KB.
The optimization engine estimates the maximum x as a function of
the model size and shared memory constraints, the pattern exposes
x as the per-thread compute factor (κ = x).

Shared Memory Tiling. As discussed in the description of the
frame fan-out in §4.1, when audio processing pipelines work on a
frame they usually produce multiple output values (e.g., feature co-
efficients or probability scores) by combining the frame data with
multiple parameters. The procedure can be treated as generalized
dense matrix-matrix multiplication with the two matrices being: 1)
an input matrix I(n,d) with n input frames each of which has d
elements (samples/coefficients); and 2) a parameter matrix P(k,d)

with k parameters each of which has dimensionality d. The re-
sult of the combination of the two matrices is a matrix O(n,k) =

I(n,d)
⊗
PT(k,d) where

⊗
can be a generalized operation that per-

forms a reduction over d elements from the two matrices (a row
from O and a column from PT). Prominent applications of this
operation can be found in the computation of the filter bank co-
efficients, the GMM mixture probability estimation, and the DNN
network propagation. An example reduction

⊗
used in the GMM

classification stage is shown in the following equation:

tiling
alternatives

shared memory
size = 4

frames

1

N

2

parameters
1 2 M

output (NxM)

1

2

Figure 5: Tiling example. There are N frame data rows and M
parameter columns that can be combined to yield N×M output val-
ues. The shared memory size of a work group is limited to 4 frame
rows or parameter columns in total. There are 2 tiling alternatives.
Alternative 1 fills shared memory by loading data for 2 frames and
2 parameters leading to 4 computed values in total from the work
group. Alternative 2 loads data for 3 frames and 1 parameter lead-
ing to 3 computed values in total.

oij = −
1

2
(gj +

∑
0≤s<d

(xis −mjs)
2vjs) (1)

where oij is one element from the output matrix; mj , vj , and gj
are the Gaussian parameters of a mixture component; and xi are
feature values from frame i.

The straightforward implementation of a GPU kernel to compute
matrix O would be to let each thread compute one output value oij
and load independently an input row i and a parameter column j.
However, a strategy for reducing global memory traffic is to intro-
duce a model-specific version of tiled algorithms used in matrix-
matrix multiplication [39]. The core idea is to let the work groups
of a kernel partition the output matrix into tiles so that the total data
for each tile fits into shared memory. Our goal is to have the threads
in a work group collaboratively load both input data and parame-
ters into shared memory in a way that maximizes the number of
computations per global memory read. This can be achieved if the
number of computed values ({number of frames} Nf × {number
of parameters} Np) per loaded data is as large as possible for the
entire work group. Figure 5 illustrates the pattern in operation.

4.3 Parameter Estimation
We calculate key optimization parameters as described below.

Vector size x. The engine selects the vector size for batched mem-
ory reads by querying with OpenCL commands whether the audio
kernel can successfully be compiled with the given value for x.
The engine enumerates the possible values for x in descending or-
der and picks the highest value under which the kernel successfully
compiles. Compilation may fail when the size of the vectorized
loads exhausts the thread register space.

Memory sliding κ. Optimizing this parameter involves solving a
linear equation with respect to the GPU shared memory size, and
input model parameters. If SM is the total number of values the
shared memory can accommodate, SF is the input region size, and
r is the frame offset in number of input values, then the maximum
κ is computed in the following manner: κ =

⌊
SM−SF

r

⌋
+ 1.

Memory tiling κ. The optimization engine makes a two-staged
decision: whether to activate this pattern and if activated how to
best parameterize it. The decision is based on the type of the model

used for audio analysis (filter banks, GMM, or DNN), input model
dimensions (size of the model parameters), maximum work group
size, and shared memory size. The optimization engine estimates
the work group size and an optimum number of output matrix val-
ues each thread in the work group should compute so that global
memory accesses are minimized. This is implemented by solving
a quadratic equation with respect to Nf and Np under the shared
memory constraints. In our examples, the pattern would be acti-
vated for the filter banks and GMM computation, but not for the
DNN where the size of the network is prohibitively large for any
meaningful subset to be effectively exploited from shared memory.

Frame fan-out φ and work group size. The engine estimates the
fan-out factor in a final step by reading the specified audio model
parameters (e.g., number of frames) and having κ determined in a
prior step. We strive to select the largest work group size possible.
Similarly to vectorization, this can be done by exhaustively trying
to compile the kernels with values up to the maximum size allowed.
Sizes are enumerated in multiples of the preferred group multiple
parameter (queried from the GPU with OpenCL).

5. IMPLEMENTATION
We briefly summarize the details of the software artifacts used in

this work.

Hardware and APIs. We prototype the audio sensing algorithms
on a Snapdragon 800 Mobile Development Platform for Smart-
phones (MDP) [15] with an Android 4.3 Jelly Bean OS featuring
Adreno 330 GPU present in mobile phones such Samsung Galaxy
S5 and LG G Pro2. All GPGPU development is done with OpenCL
1.1 Embedded Profile and we reuse utilities for initializing and
querying the GPU from the Adreno SDK that is openly available
[12]. In addition, we prototype baseline versions of the audio sens-
ing pipelines for the Qualcomm Hexagon DSP [13] with the Hexagon
C SDK v1.0 [14]. The DSP has 3 hardware threads and we use
the dspCV thread pool library shipped with the Hexgagon SDK to
build multithreaded versions of the algorithms for the DSP. The
CPU sequential baselines reuse the C code built for the DSP and
are accessed by interfacing with the Android Native Development
Kit (NDK). Multithreaded CPU versions are built by using C++11
threads – we leverage the 4 cores available to the Snapdragon Krait
CPU. Note, our implementation does not explicitly leverage, nor is
structured for the use of, SIMD instructions (like NEON) as avail-
able in the Krait CPU. Although we take advantage of Qualcomm
SDK primitives and other best practices (described next) that en-
hance the performance of the CPU and DSP in the Snapdragon.
Power measurements are performed with a Monsoon Power Mon-
itor [8] attached to the MDP. Classifier models are trained with
the HTK toolkit [6] for the Speaker/Emotion Recognition and the
Theano python library [17] for the Keyword Spotting.

DSP Baseline Implementation. We implement basic DSP bench-
marks as a ballpark reference on energy consumption and a first
indication of latency when machine learning algorithms found in
audio sensing are executed on a low-power chip. As stated above,
we use the Qualcomm Hexagon SDK to tailor implementations to
the DSP which are not a direct compilation of CPU-based code.
The DSP C language features are a subset of the standard C distri-
butions [27], which is why without significant modifications most
CPU algorithms cannot be directly executed on the Hexagon DSP.
Instead, we build our baselines to match the requirements and con-
ventions of the Hexagon Elite SDK for audio processing, our ba-
sis is DSP-targeted code which has been modified to be executed
on the CPU as well. Although we have yet to take advantage of

the more advanced VLIW (Very Long Instruction Word) instruc-
tions available to the DSP everywhere in our code, our DSP im-
plementations are not naive CPU-variants as we reuse some of the
optimized DSP processing routines coming readily with the DSP
SDK (such as FFT computation): these already come with VLIW
optimized instructions and intrinsics. The algorithms that are not
included in these DSP libraries we have implemented ourselves fol-
lowing the guidelines provided by the Elite audio processing SDK
(e.g., for memory allocation). We acknowledge additional research
is needed to find the most optimal DSP implementations, however
we do leverage optimized algorithmic primitives distributed with
the SDK to give some reference numbers on the amount of en-
ergy required to process machine learning algorithms found in au-
dio sensing.

Kernel Compilation. Building the OpenCL kernels can be done
either via reading the sources from a string and compiling them at
runtime or by pre-compiling the source into a binary. We use pre-
compiled binaries that drastically reduce the kernel load time and
that need to be produced once per deployment.

6. EVALUATION
In this section, we provide an extensive evaluation of the parallel

optimizations under representative audio sensing algorithms when
deployed on a mobile GPU. The main findings are:
• Optimizing the control-flow parameters is critical – naively pa-

rameterized GPU implementations may be up to 1.5x slower
than multithreaded CPU baselines and consume more than 2x
the energy of offloading batched computation to the cloud.
• The total speedup against a sequential CPU implementation for

an optimized GMM-based and a DNN-based pipeline running
entirely on the GPU is 8.2x and 13.5x respectively, making the
GPU the processing unit of choice for fast real-time feedback.
The optimized GPU is also 3-4x more energy efficient than se-
quential CPU implementations, but can consume up to 3.2x more
energy than a low-power DSP.
• After a certain batching threshold (10 to 20 seconds) of com-

puting multiple inferences in one go, optimized GPU algorithms
begin to consume less energy than cloud offloading with good
throughput (5Mbps and 10Mbps), in addition to obtaining infer-
ences 3.1x and 6.5x times faster for the GMM and DNN-based
pipelines respectively.
• The total energy consumption under batching scenarios is in ranges

comparable to those delivered by reference low-power DSP im-
plementations with some basic optimization.

6.1 Experimental Setup
Experiments are performed with the display off and the algo-

rithms are executing in the background, as is typical for sensing
apps to operate in such mode. We denote with Audio Optimized
GPU (a-GPU) the output from the optimization engine as described
in §3. Throughout the section we use the following baselines.

• DSP sequential (DSP). Our DSP baselines are implemented
as specified in Section 5 via the Hexagon DSP in DSP- com-
patible C. We reuse optimized built-in primitives for FFT
computation, memory allocation and follow the conventions
of the Elite SDK for audio processing. Our implementations
are meant to be used as a ballpark reference on the energy
efficiency that can be supported by low-power units but do
not claim they are the most efficient that can be achieved
through advanced hardware optimizations applied rigorously
throughout the code base.

Computation Parameters Speed-up Gain
GMM x = 1, κ = ν 3.6x

x = 16, κ = ν 12.8x
x = 16, κ = 1 15.6x
x = 16, κ = 4 (tiling) 16.2x

DNN x = 1, κ = ν 1.8x
x = 16, κ = ν 4.8x
x = 16, κ = 1 13x
x = 16, κ = 5 (sliding window) 21.3x

Filter banks x = 1, κ = ν 1.7x
x = 16, κ = ν 4x
x = 16, κ = 1 6x
x = 16, κ = 2 (tiling) 6.6x

Table 4: Parameter configuration speed-ups vs. CPU sequential
implementation. Lines in bold show the optimal parameter values
found by the optimization engine.

• CPU sequential (CPU). Our implementations have a sequen-
tial workflow that follows the DSP code structure but reim-
plements some of the routines that require DSP-specific VLIW
instructions (e.g., FFT computation). The baselines are based
on DSP-compatible C.

• CPU multi-threaded (CPU-m). We implement variants of the
pipeline algorithms where the bottleneck classification stage
of the audio pipeline (occupying> 90% of the runtime in our
examples) is parallelized across multiple threads. The GMM
classification is restructured so that each GMM model proba-
bility is the unit of work for a separate thread. We maintain a
pool of 4 threads which equals the number of physical cores
of the Snapdragon Krait CPU – adding more threads did not
lead to any performance benefits. The DNN classification
is restructured so that the network propagation step is per-
formed in parallel: each thread processes the activation of
one node in a layer.

• DSP multi-threaded (DSP-m). Similarly to the multi-threaded
CPU versions of the algorithms, we adopt DSP alternatives
that parallelize the pipeline classification. The parallel DSP
variants have logically the same threading model as the CPU
one, with the difference that the DSP thread pool size is 3, i.e.
it equals the number of hardware threads. We use the worker
pool utility library dspCV which speeds up the execution for
Computer Vision algorithms on the DSP.

• Naive GPU (n-GPU). We add the most naively parameter-
ized GPU implementations as explicit baselines in addition
to showing different parameter configurations. For all algo-
rithmic building blocks (GMM, DNN, and features) in this
naive baseline category we set the vectorized load factor x =
1, and the per-frame compute factor to be κ = ν which re-
sults in a frame fan-out factor of φ = n.

Energy Measurements. All energy measurements are taken with
a Monsoon Power Monitor attached to our MDP device. By de-
fault, the experiments were performed with a display off, with no
services running in the background except system processes. This
reflects the case when GPU offloading is done in the background,
as in a continuous sensing scenario. The power evaluation setup
closely matches the one reported by LEO [28]. Each application
is profiled separately for energy consumption by averaging power
over multiple runs on the CPU, DSP and GPU.

6.2 Pattern Optimization Benchmarks
In this subsection, we study how the application and parame-

terization of the various optimization techniques presented in §4

GMM full pipeline GMM classification DNN full pipeline DNN classification
DSP -8.8x -8.6x -4.5x -4.0x
DSP-m -3.2x 2.5x -2.1x -1.5x
CPU (runtime) 1.0x (1573 ms) 1.0x (1472 ms) 1.0x (501 ms) 1.0x (490 ms)
CPU-m 3.0x 3.4x 2.8x 2.9x
n-GPU 3.1x 3.6x 1.8x 1.8x
a-GPU 8.2x 16.2x 13.5x 21.3x

Table 5: Speedup factors for one run of the various pipeline implementations compared against the sequential CPU baseline. Negative
numbers for the DSP variants show that the runtime is that amount of time slower than the CPU baseline. CPU average runtime in ms is
given for reference in brackets. Note that the DSP numbers are provided by our reference implementation under the conditions specified in
the baseline definition. A highly optimized DSP implementation might challenge the CPU latency-wise in certain scenarios. We still expect
the a-GPU to be the lead given its current massive speed-ups.

affect the GPU kernel runtime performance. Table 4 shows differ-
ent points in the parameter space compared to the engine optimized
configuration.

Pattern Speedups. A first observation is that using vectorization
with larger batches (x = 16) provides a significant boost across all
algorithms. The speedup of the most naïve GMM kernels jumps
from 3.6x to 12.8x, the DNN ones – from 1.8x to 4.8, and the
filter banks – from 1.7x to 4x. The success of this simple technique
can be attributed to the fact that the mobile GPU is optimized to
efficiently access multiple items with a single instruction.

Another observation is that increasing the fan-out factor φ by
setting κ = 1 provides tangible runtime boosts. As illustrated,
speedups increase from 12.8x to 15.6x for the GMM, and from
4.8x to 13x for the DNN. Interestingly, the higher fan-out pro-
vides benefits even though the number of global memory accesses
is raised by issuing writes of intermediate values to a scratch mem-
ory. The reason for this is that the fan-out pattern prominently in-
creases the total number of work items and as a consequence there
are more opportunities for the GPU to hide memory access laten-
cies – whenever a group of threads is stalled on a memory read or
write operation, with a higher probability the GPU can find another
group that can perform computation while the former waits.

Last but not least, the more advanced tiling and sliding win-
dow techniques tuned by the optimization engine provide notice-
able speedup improvements over the straightforward use of shared
memory. The sliding window optimization boosts the second best
DNN kernel speedup from 13x to 21.3x, which is also the highest
cumulative gain observed across all algorithms. Optimally param-
eterized tiling, on the other hand, brings the overall GMM speedup
to 16.2x and filter banks to 6.6x. In these cases, increasing κ fur-
ther results in suboptimal use of shared memory – since its size
is limited, the work items can fetch only a proportion of the total
data they need, the rest needs to be loaded from the slower global
memory into thread registers.

Summary. The engine optimized kernels allow GPU computa-
tion to exhibit much higher performance than naively parameter-
ized baselines. The optimization techniques can be ubiquitously
applied across multiple stages of the pipelines.

6.3 GPU Pipeline Runtime and Energy
We compare our engine optimized GPU pipelines against the

baselines listed in §6.1. Table 5 shows the runtime for running
the pipelines on the various processing units. The most prominent
observation is that the optimized GPU implementation is the fastest
one. For instance, the full GMM and DNN pipelines are 8.2x and
13.5x times faster than a sequential CPU implementation respec-
tively, an order of magnitude faster. In comparison, the CPU multi-
threaded alternatives are around 3x times faster only. If the GPU

10 20 30 40 50
Batch Size (seconds)

0

5

10

15

20

25

E
ne

rg
y

(J
)

(a) GMM pipeline

1 2 3 4 5 6 7 8 9 10
Batch Size (seconds)

0
2
4
6
8

10
12
14

E
ne

rg
y

(J
)

n-GPU

a-GPU

CPU

DSP

CPU-m

DSP-m

(b) DNN pipeline

Figure 6: Energy (J) as a function of the audio processing batch
size in seconds. Legend is shared, axis scales are different.

is not carefully utilized, the naively parameterized GPU implemen-
tations may be up to 1.5x slower than the multicore variants (e.g.,
DNN pipeline). The reason why the audio-optimized GPU fares so
much better than both multicore CPU and naive GPU alternatives
is because massive data parallelism is enabled by the parallel tech-
niques – the hundreds of cores on the GPU can work on multiple
small independent tasks simultaneously and hide memory access
latency. This is especially true for the classification tasks that are
16.2x (GMM) and 21.3x (DNN) faster than their sequential CPU
counterparts.

In Figure 6 we plot the energy needed by the various units to ex-
ecute the pipeline logic repeatedly on batched audio data. For one-
off computations the cheapest alternative energy-wise is the DSP
which can be up to 3.2x more energy efficient than the optimized
a-GPU for the DNN pipeline. Yet, the a-GPU is between 3x and
4x times more energy efficient than the sequential CPU for both
applications. If high performance is of utmost priority for an ap-
plication, the GPU is the method of choice for on-device real-time
feedback – when optimized, GPU offloading will obtain inferences
much faster and significantly reduce energy compared to the CPU.

A notable observation is that as the size of the buffered audio
data increases, the a-GPU begins to deliver energy efficiency in the
ranges provided by the low-power DSP. For instance, with batch
sizes of 10 and 6 seconds for the GMM and DNN pipeline respec-
tively, the a-GPU provides comparable energy while being multiple
times faster (> 50x compared to our reference baselines). If appli-
cations can tolerate small delays in obtaining inferences, batched
GPU computation will save amounts of energy similarly to a low-
power DSP and at the same time obtain results faster. We note that
a heavily optimized DSP implementation will be the best option
energy-wise; here we show that contrary to conventional wisdom,
there is a scenario in which the GPU can be used to save energy on
a scale that is much closer to what a low-power unit can achieve.

1 5 10 20 n- a-
0.0
0.4
0.8
1.2
1.6

R
un

tim
e

(s
)

(a) GMM

1 5 10 20 n- a-
0.0
0.4
0.8
1.2
1.6

R
un

tim
e

(s
)

(b) DNN

Figure 7: End-to-end latency for computing the audio pipelines
on the GPU vs cloud. Numbers on the x axis show throughput in
Mbps, and n- and a- refer to n-GPU and a-GPU.

10 20 30 40 50
Batch Size (seconds)

0
1
2
3
4
5
6
7

E
ne

rg
y

(J
)

(a) GMM

2 4 6 8 10 12 14 16 18 20
Batch Size (seconds)

0
1
2
3
4
5
6
7

E
ne

rg
y

(J
)

n-GPU

a-GPU

1Mbps

5Mbps

10Mbps

20Mbps

(b) DNN

Figure 8: End-to-end energy as a function of the batch compu-
tation size for running the audio pipelines on the GPU vs cloud
offloading. Legend is shared.

6.4 GPU Sensing vs Cloud Offloading
Cloud baselines. We compare the performance of the sensing algo-
rithms on the GPU against the best performing cloud alternatives.
For the DNN-style Keyword Spotting application, the cheapest al-
ternative is to send the raw data directly for processing to the cloud
because the application generates as many features as the size of the
raw input data. For the GMM-style Speaker Identification pipeline,
the cheapest alternative is to compute the features on the DSP and
send them for classification to the cloud. However, this variant is
> 10 times slower than computing the features on the CPU. Fur-
ther, we find that when sending the features to the cloud, establish-
ing the connection and transferring the data dominate the energy
needed to compute features on the CPU. For this reason, the GMM
cloud baseline in our experiments computes features on the CPU
and sends them for classification to a remote server.

Latency Results. In Figure 7 we plot the end-to-end time needed
to offload one pipeline computation to the cloud and compare it
against the total time required by the GPU to do the processing
(including the GPU kernel set-up and memory transfers). We as-
sume a window size of 64KB and vary the network RTT so that the
throughput ranges from 1 to 20Mbps. Given this, the a-GPU imple-
mentation is 3.1x and 6.5x faster than the good 5Mbps cloud alter-
native for the GMM and DNN pipelines respectively. This comes at
the expense of a 1.6x and 1.4x increase in the energy for a one-off
computation for the two pipeline types respectively. The takeaway
is that if speed is favoured over energy, the GPU should be used
for local processing because it will deliver inference results several
times faster than cloud offloading even with good connectivity.

Energy Results. In Figure 8 we plot the total energy required to
offload batched pipeline computations to the cloud as a function
of the batch size in seconds for which raw audio data is queued
for processing. The most notable outcome is that the a-GPU com-

GMM DNN
0.0

0.2

0.4

0.6

0.8

1.0

E
ne

rg
y

(J
)

GMM cloud

DNN cloud

Figure 9: Energy consumed for one-off computation for the
GMM- and DNN-based audio apps. Lighter shaded bars show en-
ergy spent for processing, the rest is GPU tail energy. Lines show
the total energy consumed by cloud offloading for the two apps for
a network connection with an RTT of 104 ms.

petes energy-wise with good connectivity cloud offloading in addi-
tion to being multiple times faster. After a certain batching thresh-
old, the total processing with the optimized a-GPU consumes even
less energy. For instance, unless the network has a throughput of
20Mbps (and an RTT of 25 ms) the GMM-style pipeline starts get-
ting cheaper than the faster connections after 20 seconds of buffered
audio, and the DNN Keyword Spotting pipeline – after only 10
seconds of audio data. The reason for this phenomenon (batched
processing is less expensive than cloud and one-off computation is
not) is that the initial kernel set-up and memory transfer costs are
high, but once paid, the a-GPU offers better energy per second for
audio sensing.

In Figure 9 we plot a breakdown of the energy for a one-time
run of the audio apps on the GPU to quantify the GPU setup over-
head. Overall, the amount of energy spent in the GPU tail states
is over 65% of the total consumption for both applications which
confirms the prohibitively high setup/tear-down GPU costs. With a
network that has an average RTT of 104ms (translating to≈ 5Mbps
throughput), the energy spent by cloud offloading is less than the
GPU setup cost. Unless the audio app is highly sensitive to the run-
time, cloud offloading may provide a desirable trade-off between
energy and latency.

Another critical result is that optimizing GPU execution is cru-
cial – the naive n-GPU is more expensive (> 2x) energy-wise than
almost all types of cloud offloading when batching. With the bet-
ter but still unoptimized baselines with highest fan-out (κ = 1),
the batching threshold for preferring GPU execution over cloud is
higher (e.g., ≈ 14 seconds for the DNN algorithm), delaying the
application response time further than what could be achieved with
the engine optimized version.

Summary. While cloud offloading has a significant computational
lead over mobile, the GPU now provides advantages that makes
local processing highly desirable – it is faster, less susceptible to
privacy leaks as execution is entirely local, works regardless of con-
nection speed, and even competes with cloud in terms of energy.

6.5 GPGPU and Graphics Workloads
Here we investigate how GPGPU computations interfere with

other GPU workloads such as those used for graphics processing –
will the background GPU computation affect negatively the user ex-
perience? We schedule the execution of the audio sensing pipelines
(either Speaker Identification or Keyword Spotting) to run continu-
ously for a minute on the GPU while the mobile user is interacting
with other applications that are known to strain the GPU resources,
i.e. games. We pick 5 hugely popular Android games with multi-
million downloads and different play styles (Angry Birds, Fruit

AB FN CR ABG SS
0

20

40

60

80
A

ve
ra

ge
 F

P
S

no GPGPU load

with GPGPU load

(a) Frame rate (FPS)

AB FN CR ABG SS
0

20
40
60
80

100

G
P

U
 lo

ad
 (

%
)

(b) total GPU load

Figure 10: Average frame rate and GPU load when the games run
without and with additional GPGPU load. Games in the experiment
are Angry Birds (AB), Fruit Ninja (FN), Crossy Road (CR), Angry
Birds GO (ABG), and Subway Surfers (SS). Legend is shared.

Ninja, Crossy Road, Angry Birds GO, and Subway Surfers), and
observe the effect GPGPU computation has on the perceived game-
play quality. To quantify this we measure the average frame rate
(frames per second (FPS)) with GameBench [3] during gameplay
over 5 1-minute long runs.

In Figure 10 we show the aggregate results from the experi-
ments. For all games except Subway Surfers the GPGPU com-
putation does not change the original frame rates of the games,
although the total GPU load substantially increases. For instance,
the render-heavy racing Angry Birds GO maintains an average frame
rate of 30 FPS both with and without the added audio sensing work-
load, even though the total GPU load jumps from 44% to 85%. For
this and the other three games with similar behavior (Angry Birds,
Fruit Ninja, Crossy Road), the effect can be explained by the facts
that 1) the original load the games place on the GPU is not too high,
2) GPU rendering is time-shared with GPGPU computation, and 3)
the audio sensing kernels are short-duration (a single kernel execu-
tion never exceeds tens of milliseconds). With the endless runner
Subway Surfers, however, the original average GPU load is already
very high (≈ 70%), and adding the GPGPU computation results in
a screen freeze so that the game becomes unresponsive. This can be
attributed to the fact that the OS does not treat the GPU as a shared
resource and there is a lack of isolation of the various GPU work-
loads. One way to approach this is introduce OS-level abstractions
that provide performance guarantees [53].

7. DISCUSSION AND IMPLICATIONS
Here we survey key scenarios and issues related to the applica-

bility of the GPU parallel optimizations for audio sensing.

Targeted Scenarios. There are many chains of audio workloads
that we envisage are relevant to GPU offloading with delayed cloud-
free batch processing. Examples are continuous low latency audio
tasks (hot key word recognition) followed by a much heavier pro-
cessing that is more tolerant to the delays offered by GPU acceler-
ation – all types of analysis possible on human voice fall into this
category. There are numerous such examples of behavior moni-
toring in the audio sensing literature: conversation analysis [48],
speaker counting [58], speaker identification [45], emotion recog-
nition [52], and ambient scene analysis [47] to name a few. Context
monitoring through sounds and triggering notifications (e.g., detect
conversation to mute the speaker) is another key functionality that
can be supported with this type of offloading: delayed cloud-free
batch processing with entirely offline trained models, or models
that need to be only infrequently updated. GPU offloading will be
a crucial part of more complicated scheduling schemes that involve
other processing units as well (e.g., [28]) and possibly cloud. In
that case hybrid solutions that use multiple processing units and

cloud can reap the benefits of GPU execution, and more applica-
tions including those that need cloud support such as Shazam can
take advantage of the more advanced local processing (e.g., to ex-
tract the features necessary to discriminate the encountered songs).

7.1 Implications
We believe the results presented in this work provide insights of

value to the following areas.

Privacy. Our findings suggest that algorithms optimized for embed-
ded-class GPUs can bring the much coveted privacy guarantees to
devices such as Amazon Echo [1] and Google Home [4], if the
operation remains entirely on the device itself. These assistants re-
spond to simple home user requests (such as, “turn on the light”),
but are known to heavily exploit cloud offloading. With the help
of our techniques doing the processing locally on the GPU can be
done faster than cloud offloading, and without exposing sensitive
information to untrusted third parties.

Servicing multi-app workloads. GPUs will play a crucial role in
offloading the sensing workloads of digital assistants as they can-
not be serviced by the DSP capabilities alone. Amazon Echo, for
instance, performs multiple audio sensing tasks on a continuously
processed audio stream, including: 1) detect the presence of speech
vs other sounds; 2) perform spoken keyword spotting (as all com-
mands are triggered by the same starting word); and, 3) speech
recognition, along with additional dialog system analysis that al-
lows it to understand and react to the command. These tasks col-
lectively are well beyond the DSP processing and memory capabil-
ities [27], in such multi-app audio sensing scenarios approaching
the mobile GPU with routines that maximize runtime performance
and minimize energy consumption is critical.

Energy reductions. Audio sensing algorithms are notorious for
their continuous monitoring of the sensor stream. Whereas DSP
offloading is massively adopted as the go-to power reduction ap-
proach for applications such as hot keyword spotting, with the in-
crease in number of concurrent audio sensing services mobile users
adopt (e.g., Google Now, Auto Shazam), the DSP will have to se-
lectively process a subset of the algorithm stages. In multi-app
scenarios, optimally using the GPU as we have done in this work
will be instrumental in keeping the power-hungry CPU or privacy-
invading cloud offloading at bay.

7.2 Discussion
Our design, and its results, also highlight the following issues.

Performance on other mobile GPU varieties. Although it is highly
likely there will be a difference in the exact values for the perfor-
mance boosts on other GPU models (such as NVIDIA’s Tegra), we
expect qualitatively similar results when deploying the pipelines
there. For example, speedups from the GPU data parallelism will
be sufficiently high to deliver real-time performance for applica-
tions that can afford the energy costs. This is because our proposed
optimizations can be generalized to any OpenCL-compliant GPU
architecture, and do not rely on vendor-specific features.

Parallelizing other sensor processing algorithms. The core me-
chanics behind the optimization patterns can be applied to other
classifiers such as Support Vector Machines (SVM), and deep learn-
ing network topologies such as Convolutional Neural Networks
(CNN). This is because the patterns depend on how the classifica-
tion is applied to the audio data stream (in sliding windows, com-
bining model parameters with frame data independently to different
frame offsets), rather than fully depend on the concrete algorithm
implementation. We believe the broader lessons learned from this

work on using the GPU will promote further research into how it
can be used to accelerate algorithms in other application domains
(e.g., alternative sensor processing from accelerometer, or GPS).

GPU vs. multicore CPUs. As single-thread performance for mi-
croprocessor technology is leveling off, multiple cores will become
major drivers for increased performance [19] (e.g., up to 61 for
Intel Xeon Phi [7]). Developers will likely be faced with similar
data parallel challenges – increasing the total number of concur-
rent tasks for better utilization, and efficiently leveraging memory
caches to mask access latency. As OpenCL manages heteroge-
neous parallel algorithms transparently from the underlying mul-
ticore architecture, the developed OpenCL-compliant optimization
techniques will prove valuable to multicore CPUs as well.

GPU programmability. GPUs are notoriously difficult to program
– even if the algorithm exhibits data parallelism, restructuring it to
benefit from GPU computation often requires in-depth knowledge
about the algorithm mechanics. In fact, automated conversion of
sequential to parallel code has been an active area of research [21,
20], but fully automating the parallelization process still remains a
big challenge. We provide a portable OpenCL library of parallel
implementations for key audio sensing algorithms (e.g., GMMs,
DNNs) and expect developers will either compose pipelines by
reusing the OpenCL host and kernel code, or by applying the in-
sights from our optimization patterns to their implementations.

We acknowledge that currently programming GPUs requires skill-
ful development. We hope that through our library we can simplify
the pure GPU kernel development by providing optimized machine
learning primitives developers can reuse. Without them, develop-
ers will mostly likely encounter the problems we uncovered while
designing our library (e.g., memory-bound processing) in order to
incorporate GPU processing into their audio application. We do not
fully automate the process, a potential direction for future research
is designing or reusing a simpler high-level declarative language
that can be used to specify pipeline processing. In the case that all
algorithmic components are covered by our library, this can greatly
simplify the developer burden. This compiler component can be
built on top of CUDA/OpenCL or industrial strength GPU APIs.

8. RELATED WORK
Our work is touches most closely the following areas of research

related to efficient sensing and efforts to optimize GPU usage.

Sensor Processing Acceleration and Efficiency. A large body of
research has been devoted to the use of heterogeneous computation
via low-power co-processors [51, 45, 27, 40, 42, 54] and custom-
built peripheral devices [56] to accelerate or sustain power effi-
cient processing for extended periods of time. Little Rock [51] and
SpeakerSense [45] are among the first to propose the offloading of
sensor sampling and early stages of audio sensing pipelines to low-
power co-processors – the processing enabled by such early units is
extremely energy efficient but limited by their compute capabilities
to relatively simple tasks such as feature extraction. DSP.Ear [27]
and Shen et al. [54] study more complex inference algorithms for
continuous operation on DSPs but demonstrate such units can be
easily overwhelmed and often the energy efficiency comes at the
price of increased inference latency.

LEO [28] is a low-power scheduler that dynamically distributes
computation across heterogeneous resources, including the GPU
as a possible resource, and lowers the overall energy consumption
for concurrent sensor apps. However, it does not investigate the
trade-offs of GPU offloading in detail, nor does it show what is
required to optimally utilize such a processing unit. We believe the

optimizations we designed complement sensor scheduling, and are
critically needed to allow frameworks to maximize GPU usage.

General-Purpose GPU Computing. GPUs have been used as
general-purpose accelerators for a range of tasks, the most popu-
lar applications being computer vision [57, 23, 36] and image pro-
cessing [55, 50]. Object removal [57] and face recognition [23]
on mobile GPUs have been showcased to offer massive speedups
via a set of carefully selected optimization techniques. Although
the techniques found in the graphics community as well as in the
field of speech processing (fast spoken query detection [60]) ad-
dress similar data parallel challenges to what we identify (increas-
ing thread throughput, careful memory management), these tech-
niques remain specific to the presented use cases.

The GPU implementation of automatic speech recognition based
on GMMs [29], for example, proposes optimizations that are re-
lated to the specifics of a more complex speech recognition pipeline.
Instead, we target a different workload scenario emerging from
a growing number of coarse-sound classification applications that
require processing that can happen entirely cloud-free. For this
distinctly different workload, we introduce general techniques that
are applied at the level of the machine learning model, or the level
of organization related to multiple algorithms for processing audio
data. As such, the insights drawn from our work are directly appli-
cable to a class of algorithms that build upon commonly adopted
machine learning models in audio sensing.

Packet routing [31] and SSL encryption [37] leverage GPUs to
increase processing throughput via batching of computations, but
none of these works is focused on studying energy efficiency as-
pects which are critical for battery-powered devices.

GPU Resource Management. PTask [53] is an OS-level abstrac-
tion that attempts to introduce system-level guarantees such as fair-
ness and performance isolation, since GPUs are not treated as a
shared system resource and concurrent workloads interfere with
each other. The relative difficulty in manually expressing algo-
rithms in a data parallel manner may lead to missed optimization
opportunities – works such as those of Zhang et al. [59] and Jog
et al. [38] attempt to streamline the optimization process. The
former improves GPU memory utilization and control flow by au-
tomatically removing data access irregularities, whereas the lat-
ter addresses problems with memory access latency at the thread
scheduling level. Both types of optimizations are complementary
to our work – we optimize the general structure of the parallel audio
processing algorithms, while the mentioned frameworks tune par-
allel behavior of already built implementations. Last but not least,
Sponge [35] provides a compiler framework that builds portable
CUDA programs from a high-level streaming language. Instead,
we study the trade-offs mobile GPUs provide for sensing, and build
on top of OpenCL which together with the Qualcomm Adreno GPU
dominates the mobile market.

9. CONCLUSION
In this paper we have studied the trade-offs of using a mobile

GPU for audio sensing. We devised an optimization engine that
leverages a set of structural and memory access parallel patterns to
auto-tune GPU audio pipelines – optimized GPU routines are an or-
der of magnitude faster than sequential CPU implementations, and
up to 6.5x faster than cloud offloading (5Mbps throughput). With
just 10-20 seconds of batched audio data, the optimized GPU be-
gins to consume less energy than cloud offloading and in the range
typical for low-power DSPs. The insights drawn can help towards
the growth of the next-generation mobile sensing apps that leverage
GPU capabilities for extreme runtime and energy performance.

10. ACKNOWLEDGMENTS
This work was supported by Microsoft Research through its PhD
Scholarship Program. We thank the anonymous reviewers and our
shepherd (Lin Zhong) for their valued comments and suggestions.

11. REFERENCES
[1] Amazon Echo. http://www.amazon.com/

Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/
B00X4WHP5E.

[2] Apple Siri. https://www.apple.com/uk/ios/siri/.
[3] GameBench. https://www.gamebench.net/.
[4] Google Home. https://home.google.com/.
[5] Google Now. http://www.google.co.uk/landing/now/.
[6] HTK Speech Recognition Toolkit. http://htk.eng.cam.ac.uk/.
[7] Intel Xeon Phi. http://www.intel.com/content/www/us/en/

processors/xeon/xeon-phi-detail.html.
[8] Monsoon Power Monitor.

http://www.msoon.com/LabEquipment/PowerMonitor/.
[9] NVIDIA CUDA.

http://www.nvidia.com/object/cuda_home_new.html.
[10] NVidia Tegra X1.

http://www.nvidia.com/object/tegra-x1-processor.html.
[11] OpenCL. https://www.khronos.org/opencl/.
[12] Qualcomm Adreno GPU. https:

//developer.qualcomm.com/software/adreno-gpu-sdk/gpu.
[13] Qualcomm Hexagon DSP.

https://developer.qualcomm.com/mobile-development/
maximize-hardware/multimedia-optimization-hexagon-sdk/
hexagon-dsp-processor.

[14] Qualcomm Hexagon SDK.
https://developer.qualcomm.com/mobile-development/
maximize-hardware/multimedia-optimization-hexagon-sdk.

[15] Qualcomm Snapdragon 800 MDP. http://goo.gl/ySfCFl.
[16] TensorFlow. https://www.tensorflow.org/.
[17] Theano. http://deeplearning.net/software/theano/.
[18] C. M. Bishop. Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[19] S. Borkar and A. A. Chien. The future of microprocessors.
Commun. ACM, 54(5):67–77, May 2011.

[20] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y.
Wei, and D. Brooks. Helix-rc: An architecture-compiler
co-design for automatic parallelization of irregular programs.
In Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ISCA ’14, pages 217–228,
Piscataway, NJ, USA, 2014. IEEE Press.

[21] S. Campanoni, T. M. Jones, G. H. Holloway, G.-Y. Wei, and
D. M. Brooks. Helix: Making the extraction of thread-level
parallelism mainstream. IEEE Micro, 32(4):8–18, 2012.

[22] G. Chen, C. Parada, and G. Heigold. Small-footprint
keyword spotting using deep neural networks. In IEEE
International Conference on Acoustics, Speech, and Signal
Processing, ICASSP’14, 2014.

[23] K. T. Cheng and Y. C. Wang. Using mobile gpu for
general-purpose computing – a case study of face
recognition on smartphones. In VLSI Design, Automation
and Test (VLSI-DAT), 2011 International Symposium on,
pages 1–4, April 2011.

[24] D. Chu, N. D. Lane, T. T.-T. Lai, C. Pang, X. Meng, Q. Guo,
F. Li, and F. Zhao. Balancing energy, latency and accuracy
for mobile sensor data classification. In Proceedings of the

9th ACM Conference on Embedded Networked Sensor
Systems, SenSys ’11, pages 54–67, New York, NY, USA,
2011. ACM.

[25] A. de Cheveigné and H. Kawahara. YIN, a fundamental
frequency estimator for speech and music. The Journal of the
Acoustical Society of America, 111(4):1917–1930, 2002.

[26] Z. Fang, Z. Guoliang, and S. Zhanjiang. Comparison of
different implementations of mfcc. J. Comput. Sci. Technol.,
16(6):582–589, Nov. 2001.

[27] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo.
DSP.Ear: leveraging co-processor support for continuous
audio sensing on smartphones. In Proceedings of the 12th
ACM Conference on Embedded Network Sensor Systems,
SenSys ’14, New York, NY, USA, 2014. ACM.

[28] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo.
Leo: Scheduling sensor inference algorithms across
heterogeneous mobile processors and network resources. In
Proceedings of the 22Nd Annual International Conference
on Mobile Computing and Networking, MobiCom ’16, pages
320–333, New York, NY, USA, 2016. ACM.

[29] K. Gupta and J. D. Owens. Compute & memory
optimizations for high-quality speech recognition on low-end
gpu processors. In Proceedings of the 2011 18th
International Conference on High Performance Computing,
HIPC ’11, pages 1–10, Washington, DC, USA, 2011. IEEE
Computer Society.

[30] K. Han, D. Yu, and I. Tashev. Speech emotion recognition
using deep neural network and extreme learning machine. In
Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[31] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: A
gpu-accelerated software router. In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages
195–206, New York, NY, USA, 2010. ACM.

[32] H. Hermansky. Perceptual linear predictive (PLP) analysis of
speech. J. Acoust. Soc. Am., 57(4):1738–52, Apr. 1990.

[33] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath,
and B. Kingsbury. Deep neural networks for acoustic
modeling in speech recognition. Signal Processing
Magazine, 2012.

[34] G. Hinton, L. Deng, D. Yu, A. rahman Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. S. G. Dahl, and
B. Kingsbury. Deep neural networks for acoustic modeling in
speech recognition. IEEE Signal Processing Magazine,
29(6):82–97, November 2012.

[35] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and
S. Mahlke. Sponge: Portable stream programming on
graphics engines. In Proceedings of the Sixteenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XVI, pages 381–392, New York, NY, USA, 2011. ACM.

[36] A. Huqqani, E. Schikuta, S. Yea, and P. Chena. Multicore
and gpu parallelization of neural networks for face
recognition. In International Conference on Computational
Science, ICCS, Procedia Computer Science, pages 349–358,
London, UK, June 2013. Elsevier.

[37] K. Jang, S. Han, S. Han, S. Moon, and K. Park. Sslshader:
Cheap ssl acceleration with commodity processors. In
Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, pages 1–14,
Berkeley, CA, USA, 2011. USENIX Association.

[38] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K.
Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das.
Owl: Cooperative thread array aware scheduling techniques
for improving gpgpu performance. In Proceedings of the
Eighteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 395–406, New York, NY,
USA, 2013. ACM.

[39] D. B. Kirk and W.-m. W. Hwu. Programming Massively
Parallel Processors: A Hands-on Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2010.

[40] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi,
L. Jiao, L. Qendro, and F. Kawsar. Deepx: A software
accelerator for low-power deep learning inference on mobile
devices. In 2016 15th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), pages
1–12, April 2016.

[41] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and
F. Kawsar. An early resource characterization of deep
learning on wearables, smartphones and internet-of-things
devices. In Proceedings of the 2015 International Workshop
on Internet of Things Towards Applications, IoT-App ’15,
pages 7–12, New York, NY, USA, 2015. ACM.

[42] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: Robust
smartphone audio sensing in unconstrained acoustic
environments using deep learning. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’15, pages 283–294, New
York, NY, USA, 2015. ACM.

[43] Y. Lee, C. Min, C. Hwang, J. L. 0001, I. Hwang, Y. Ju,
C. Yoo, M. Moon, U. Lee, and J. Song. Sociophone:
everyday face-to-face interaction monitoring platform using
multi-phone sensor fusion. In H.-H. Chu, P. Huang, R. R.
Choudhury, and F. Zhao, editors, MobiSys, pages 499–500.
ACM, 2013.

[44] M. Liberman, K. Davis, M. Grossman, N. Martey, and
J. Bell. Emotional prosody speech and transcripts. 2002.

[45] H. Lu, A. J. B. Brush, B. Priyantha, A. K. Karlson, and
J. Liu. Speakersense: Energy efficient unobtrusive speaker
identification on mobile phones. In Proceedings of the 9th
International Conference on Pervasive Computing,
Pervasive’11, pages 188–205, Berlin, Heidelberg, 2011.
Springer-Verlag.

[46] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T.
Chittaranjan, A. T. Campbell, D. Gatica-Perez, and
T. Choudhury. Stresssense: Detecting stress in unconstrained
acoustic environments using smartphones. In Proceedings of
the 2012 ACM Conference on Ubiquitous Computing,
UbiComp ’12, pages 351–360, New York, NY, USA, 2012.
ACM.

[47] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T.
Campbell. The jigsaw continuous sensing engine for mobile
phone applications. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems,
SenSys ’10, pages 71–84, New York, NY, USA, 2010. ACM.

[48] C. Luo and M. C. Chan. Socialweaver: Collaborative
inference of human conversation networks using
smartphones. In Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’13, pages
20:1–20:14, New York, NY, USA, 2013. ACM.

[49] I. McLoughlin, H. Zhang, Z. Xie, Y. Song, and W. Xiao.

Robust sound event classification using deep neural
networks. Trans. Audio, Speech and Lang. Proc.,
23(3):540–552, Mar. 2015.

[50] I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. Kim.
Design and performance evaluation of image processing
algorithms on gpus. IEEE Trans. Parallel Distrib. Syst.,
22(1):91–104, Jan. 2011.

[51] B. Priyantha, D. Lymberopoulos, and J. Liu. Littlerock:
Enabling energy-efficient continuous sensing on mobile
phones. IEEE Pervasive Computing, 10(2):12–15, 2011.

[52] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow,
C. Longworth, and A. Aucinas. Emotionsense: A mobile
phones based adaptive platform for experimental social
psychology research. In Proceedings of the 12th ACM
International Conference on Ubiquitous Computing,
Ubicomp ’10, pages 281–290, New York, NY, USA, 2010.
ACM.

[53] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. Ptask: Operating system abstractions to manage
gpus as compute devices. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP
’11, pages 233–248, New York, NY, USA, 2011. ACM.

[54] C. Shen, S. Chakraborty, K. R. Raghavan, H. Choi, and
M. B. Srivastava. Exploiting processor heterogeneity for
energy efficient context inference on mobile phones. In
Proceedings of the Workshop on Power-Aware Computing
and Systems, HotPower ’13, pages 9:1–9:5, New York, NY,
USA, 2013. ACM.

[55] N. Singhal, I. K. Park, and S. Cho. Implementation and
optimization of image processing algorithms on handheld
gpu. In Image Processing (ICIP), 2010 17th IEEE
International Conference on, pages 4481–4484, Sept 2010.

[56] S. Verma, A. Robinson, and P. Dutta. Audiodaq: Turning the
mobile phone’s ubiquitous headset port into a universal data
acquisition interface. In Proceedings of the 10th ACM
Conference on Embedded Network Sensor Systems, SenSys
’12, pages 197–210, New York, NY, USA, 2012. ACM.

[57] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro. Accelerating
computer vision algorithms using opencl framework on the
mobile gpu - a case study. In ICASSP, pages 2629–2633.
IEEE, 2013.

[58] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen, J. Li,
and B. Firner. Crowd++: Unsupervised speaker count with
smartphones. In Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’13, pages 43–52, New York, NY, USA, 2013.
ACM.

[59] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen.
On-the-fly elimination of dynamic irregularities for gpu
computing. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, pages
369–380, New York, NY, USA, 2011. ACM.

[60] Y. Zhang, K. Adl, and J. Glass. Fast spoken query detection
using lower-bound dynamic time warping on graphical
processing units. In In Proc. ICASSP, pages 5173–5176,
2012.

[61] G. Zhou, J. H. L. Hansen, and J. F. Kaiser. Nonlinear feature
based classification of speech under stress. IEEE
Transactions on Speech and Audio Processing,
9(3):201–216, 2001.

