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ABSTRACT

The wearable revolution, as a mass-market phenomenon, has finally
arrived. As a result, the question of how wearables should evolve
over the next 5 to 10 years is assuming an increasing level of so-
cietal and commercial importance. A range of open design and
system questions are emerging, for instance: How can wearables
shift from being largely health and fitness focused to tracking a
wider range of life events? What will become the dominant meth-
ods through which users interact with wearables and consume the
data collected? Are wearables destined to be cloud and/or smart-
phone dependent for their operation?

Towards building the critical mass of understanding and expe-
rience necessary to tackle such questions, we have designed and
implemented ZOE — a match-box sized (49g) collar- or lapel-worn
sensor that pushes the boundary of wearables in an important set of
new directions. First, ZOE aims to perform multiple deep sensor
inferences that span key aspects of everyday life (viz. personal, so-
cial and place information) on continuously sensed data; while also
offering this data not only within conventional analytics but also
through a speech dialog system that is able to answer impromptu
casual questions from users. (Am [ more stressed this week than
normal?) Crucially, and unlike other rich-sensing or dialog sup-
porting wearables, ZOE achieves this without cloud or smartphone
support — this has important side-effects for privacy since all user
information can remain on the device. Second, ZOE incorporates
the latest innovations in system-on-a-chip technology together with
a custom daughter-board to realize a three-tier low-power processor
hierarchy. We pair this hardware design with software techniques
that manage system latency while still allowing ZOE to remain en-
ergy efficient (with a typical lifespan of 30 hours), despite its high
sensing workload, small form-factor, and need to remain responsive
to user dialog requests.
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1. INTRODUCTION

The wearable market is rapidly advancing both in terms of raw tech-
nology and user adoption rates. As is often the case during peri-
ods of considerable innovation, wearable technology continues to
prompt questions at a faster rate than we are able to answer them.
In this paper, we start to examine a series of wearable system design
questions that we believe will be important for the evolution of this
category of mobile sensing devices moving forward. Specifically,
we investigate in the context of wearables:

1. Continuous Sensing of a Diverse Range of User Behaviors and
Environments. Most wearables today largely focus on health and
fitness. What is missing is a more comprehensive awareness of the
lives of users because real people have existences outside of the
gym. Increasingly sophisticated sensing algorithms are being de-
veloped on more powerful platforms, such as smartphones, that can
gather deep insights into areas like our conversation patterns [46],
incidents of stress [50]], the places we live and work [33]]. An under-
standing needs to be developed about how such sensing techniques
can be integrated together into wearable-class hardware and run si-
multaneously on continuous sensor streams.

2. Cloud-free Operation by exploiting Heterogeneous Local Com-
putation.  The capabilities and sophistication of mobile energy-
efficient processors progress at a relentless rate. For example, an
iPhone 6 represents a 10-fold increase in computation over a 5-
year old iPhone 3GS. Extensive research has given us a solid set
of techniques and an understanding of cloud-offloading and cyber-
foraging [18] — with recent work even exploring within the con-
text of wearable specifically [30]]. But benefits exist for privacy (as
data never leaves the device) and energy with purely device-only
solutions. Consumers are growing ever more wary of the remote
processing of sensor data, that contains potentially sensitive per-
sonal information [[16]. An important gap in our understanding is
precisely how far we can push emerging wearable hardware to ex-
ecute sensing and related algorithms without the assistance of re-
mote computation. Options within mobile architectures continue to
diversify (e.g., big. LITTLE technology, availability of FPGAs and
DSPs, CPUs interacting with sensor-attached MCUs). To maximize
these advances, we need to study how to best architect the sensor
inference and user interaction workloads for wearables cross such
heterogeneous hardware.

3. In-situ User Sensor Data Analysis with Near Real-time Respon-
siveness. Detailed analysis of user data from wearables is largely
only computed and offered to the user in off-line fashion for post
event consumption. For many activities which involve the “now”,
near real-time reporting can become pivotal: examples include the
calculation of current levels of stress with respect to other days,
simple queries for memory assistance — when did I last visit this
place? Or the reporting on past sporting activity performance com-
pared to the current activity. Supporting such forms of user ex-
perience requires investigation of how inference, analysis and user
interaction methods can be provided on-demand. It also provokes



questions: could any seldom used natural user interface methods,
such as speech dialog systems, be made responsive and resource
efficient enough for wearables?

We investigate these questions through the design and implementa-
tion of a novel wearable sensor — ZOE. The goal of ZOE is to con-
tinuously sense a comprehensive set of user behaviors and contexts
that span three key areas of everyday life (specifically personal-
, social- and place-oriented sensing); while also providing natu-
ral impromptu access to collected information with an interactive
speech dialog subsystem (complemented with more conventional
user interaction methods). Towards this goal, we have developed
an integrated sensing module that incorporates a range of state-
of-the-art sensing algorithms designed for devices more powerful
than typical wearable hardware — critically, almost all of these al-
gorithms have previously been studied in isolation. Together, with
the demands of the dialog system, this forms a highly demanding
sensing and interaction workload, parts of which require near real-
time responsiveness.

We demonstrate this workload can be serviced with a wearable
device — without cloud assistance — and still provide acceptable en-
ergy and responsiveness performance. This is possible through a
custom wearable hardware prototype and a combination of work-
load optimizations and resource management algorithms. The pro-
totype for ZOE is designed around the recently released Intel Edi-
son SoC [3] that includes a dual-core 500 MHz CPU and 100 MHz
MCU. In our design, Edison is coupled with another MCU present
on a custom designed daughter-board to form a 3-tier computational
hierarchy. Each tier in the hierarchy offers a different computation
and energy trade-off that, when managed efficiently, enables ZOE
to meet user experience needs.

The contributions of our work include:

e The study of a collection of diverse, complex sensing al-
gorithms that are integrated together and performed simul-
taneously within the computation and energy constraints of
wearable-class hardware.

The proposal of a new, spontaneous way for wearable users
to interact with their data through a verbal dialog. We demon-
strate this is feasible even without cloud assistance while of-
fering near real-time responsiveness.

e The design and prototyping of new wearable hardware that
offers the heterogeneous computation necessary to meet the
workload demands of ZOE. Through proposed performance
techniques, we show the hardware capabilities of our proto-
type are efficiently used in support of sensing and interaction
workloads.

e The systematic evaluation of the end-to-end design of ZOE
using a variety of large-scale datasets and fine-grain energy
and responsiveness measurements. Our results indicate ZOE
can provide acceptable levels of inference accuracy, battery
life and responsiveness.

2. ZOE DESIGN OVERVIEW

We begin our description of ZOE, with a comprehensive overview.
After describing how this wearable can impact the everyday life of
its users, we proceed to discuss the design goals that are natural ex-
tensions of such scenarios. We close with a comparison of ZOE to
existing wearables of commercial, academic or industry lab origins.

Figure 1: ZOE Prototype

2.1 Targeted User Experiences

ZOE offers many new capabilities not seen in today’s wearables.
By sketching usage scenarios for these capabilities we also high-
light the technical challenges that must be solved.

Life with ZOE. As shown in Figure [T} ZOE is designed to be
worn on a collar or lapel. At just 49g and with a typical lifetime
of 30 hours, it is designed to be worn constantly during everyday
activities. As such, ZOE aims to capture a broad set of user actions
and ambient conditions, not just a single domain such as health
and wellbeing. Shown in Table [} the current prototype captures
a diverse set of inferences from three main areas of life (viz. per-
sonal sensing, social sensing, place sensing). Because ZOE has
built-in WiFi-host support any nearby computer or the user’s own
smartphone can be used to browse collected user information by
simply connecting to the wearable (and being able to successfully
authenticate), with ZOE acting as a local web-server (technique first
proposed in [69]]). Beyond such conventional interaction methods,
users are also able to spontaneously ask spoken questions regard-
ing their data and perform basic control operations (see Table @)
By providing both interaction methods users have conventional ac-
cess to comprehensive analytics about their behavior, while still be-
ing able to informally gather short personal factoids whenever a
question occurs to them. Significantly, ZOE can provide all of this
functionality without the support of the cloud or off-loading com-
putation to the user’s smartphone. This addresses some aspects of
user privacy concerns by allowing all data to remain on the device
rather than data leaking to the cloud for analysis.

We envision many scenarios of potential use for ZOE. Within
the sphere of personal use there are a number of natural application
domains related to mHealth, life-logging, cognitive assistance, per-
suasive systems and the quantified-self movement. In more emerg-
ing fields there are applications of productivity, “life-hacking” and
time accounting in which users want to optimize their activities by
maximizing what they can accomplish each day. For example, with
minor changes to the design presented in this paper, users would be
able to understand which behavioral patterns lead to their most pro-
ductive days or more simply track precisely how they spend their
days in the office. When multiple ZOE devices are used in orga-
nizational and company settings, we expect they will be able to
highlight, for instance, which teams work more closely together
and how such co-operation relates to intra- and inter-team social
interactions. Finally, ZOE can be a powerful tool in the hands of
social scientists providing unobtrusively captured fine-grain behav-
ioral data from which they can understand fundamental character-
istics and relationships that shape our actions.

Technical Challenges. For ZOE to function as described above,
the following challenges must be addressed.

1. Multi-domain User Sensing. To capture a broad understanding
of a user’s life will require multiple inference algorithms operating



Category Subtype Inferences
Personal Transportation {motorized, non-motorized}
Phy. Activities {walk, stationary, run, other}

Stress Detection {stressed, neutral}

Social Social Interaction {conversation, other}
Conversation Analysis estimators: dominance, turns

Place Place Recognition {home, work, other}

Place Context occupancy estimation

estimators: music, noise, chatter

Table 1: Sensor inference capabilities of ZOE

in concert, often even simultaneously as they examine differing el-
ements of the same event. Broadening the scope of user monitoring
also requires more complex algorithms capable of mining deeper
types of inferences.

2. Energy Efficiency. Wearables like ZOE work best when worn
continuously day-after-day. This becomes impractical if they must
be frequently recharged by users. Therefore wearables must be
highly energy efficient and remain active for multiple days on a
single charge. The design tension here, however, is that for similar
reasons they also need to be small and light — which promotes small
batteries. Furthermore, the need for additional sensing algorithms
(see above) only applies more pressure to battery reserves.

3. Near Real-time Processing. The user experience of dialog in-
teractions are highly time sensitive; for example, a typical pause
before responding in normal conversations is around 500 ms [27].
The benefit of offering casual and impromptu questions or instruc-
tions disappears if user wait times are either excessive or even just
inconsistent (leading to uncertainty — e.g., did it understand me?).
Similarly, because ZOE provides not only longitudinal information
but also the ability to query recent events or make comparisons
(e.g., Am I being interrupted more today than normal?), sensor in-
ferences must complete in a timely fashion, likely over time-scales
of an hour or two.

2.2 Prototype Design

We will now describe in detail how ZOE overcomes the challenges
just described. However, before diving into such details we briefly
outline key aspects of our hardware design and software dataflow.

Hardware Prototype. As shown in Figure[2] the current hardware
is only 499mm by 10mm with a depth of 57mm. Figure[I|shows ZOE
within its 3D-printed case. These dimensions and device weight
measurement (49g) assume the use of a 1500 mAh battery — as
shown in all figures. Further details of our hardware design are
discussed in §5.1]

The heart of our prototype is the Intel Edison SoC that is
paired with a custom daughter-board containing a programmable
micro-controller, wireless charger, speaker and sensors (viz. gy-
roscope, accelerometer and microphone). The Edison itself has a
further two processing units, the primary one being a dual-core 500
MHz Atom processor which is supported by a 100 MHz Quark pro-
cessor. WiFi is also built-in directly to the Edison SoC which is re-
quired for both sensing and user interaction tasks. Essentially they
form a three-tier processing hierarchy. Collectively, different con-
figurations of these tiers offer a variety of energy usage and compu-
tational trade-offs that we leverage towards high levels of respon-
siveness and energy efficiency in ZOE.

Software Operation. ZOE is comprised of three core compo-
nents illustrated in Figure 3] Specifically these are: Sensing Al-
gorithms (§3), Dialog Subsystem (§4) and Performance Controller
(§B). Each component relies on a secondary set of shared auxiliary
modules (§6) — the most prominent of these is the User Knowledge
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Figure 2: ZOE hardware showing the heterogeneous MCUs and CPU.
(Inset image: Underneath prototype, showing recharging coil.)

Store. We now describe the operation of ZOE in terms of each of
these core components.

Sensing Algorithms. ~ We integrate into a single sensing module
a broad set of accelerometer-, gyroscope-, WiFi- and microphone-
based based algorithms that infer user behaviors and ambient con-
texts. Table [I] summarizes the specific inferences made by ZOE
continuously throughout the day. Inferences are selected to pro-
vide well-rounded sensing coverage across key areas of the user’s
life. In our current prototype these domains include: Personal Sens-
ing — which spans the actions, behaviors and the status of the user
themselves; Social Sensing — that monitors and quantifies the inter-
actions the user has with other people; and finally, Place Sensing —
aiming to track locations of importance to users (home, work etc.)
and characterize their conditions.

The stream of inferences generated by this component are orga-
nized into a local user knowledge store designed to support dialog
queries. Using a few relatively simple inference processing mecha-
nisms even single inferences generate multiple knowledge base en-
tries. For example, as the user is detected to arrive home by ZOE,
many behavioral data points are created, including: the duration
of the commute, the distance, and a simple carbon footprint esti-
mate. By storing this information in structured storage, supporting
a diverse set of user inquires is simplified. Additional details are
presented later in §6]

Dialog Subsystem. The purpose of this component is to recognize
and respond to user queries for information and device commands
(e.g., privacy settings) they issue. In many respects, the Sensing Al-
gorithms component previously described shares many characteris-
tics with the Dialog Subsystem. Both components track sensor data
(only the microphone in this case) and react by performing different
actions based on the content of observed data. For example, when a
special activation keyword is spoken (e.g., the name of the system)
then the complete sentence is analyzed so that the system can un-
derstand and respond. Our implementation includes optimizations
based on fixed point math and fast methods for processing Gaus-
sian Mixture Models (GMMs) on embedded hardware. However,

[:Accelerometerj [Gyroscope:) (:Microphone:] [Wi Fi Radio:) [Speaker]

[Sensing Algorithmsj [Dialog Subsystem] @ser Knowledge Storej

C Performance Controller ]

[Atom CPU:) [Quark MCU] CDaughter—board MCU]

[ Battery j[ Wireless Charger j
Figure 3: ZOE Architecture




Mobile Device Dimensions Weight  Lifetime Battery Cloud? Inferences Made
ZOE 47 x 10 x 57mm 49¢g 30 hours 1500mAh No Physical Activity (Walking, Stationary, Running, Other); Stress;
Transportation; Place; Place Context; Voicing; Conversation Analysis
MSP [23] S5Imm x 36mm x NA 115g 10/20 hr 1800 mAH No Physical Activity (Walking, Running, Cycling, Stairs); Cooking; TV;
Voicing; Eating; Working on a Computer; Elliptical Trainer; Elevator
Gabriel [30] Glasss-sized 42g 1 hr 2.1Wh Yes Face Recognition; OCR; Object Recognition; AR; Motion/Activity
Microsoft Band [9)] 19mm x 8.7 mm x NA 60g 48 hr 200mAh Partial Heart Rate; Sleep; Exercise Routine; Jogging; Hiking; Cycling
Jawbone Up3 [7] 220 x 12.2 x 3.0-9.3mm 29g 168 hr 38 mAh No Heart Rate; Sleep; Running; Steps; Calories;
Automated Fitness Activity Recognition
Opo [35] l4cm? 11.4g 93 hr 40mAh No Physical Proximity; Face-to-Face Interaction
LG G Watch R [8] 46.4 X 53.6 x 9.7mm 62¢g 23 hr [2] 410 mAh Partial Heart Rate; Sleep, Physical Activity; Voice Commands;

Running; Steps; Calories

Table 2: Comparison of ZOE with recent and/or popular wearables from the literature and available commercially

How much time did I spend driving over the last week?

How many different places did I visit in the last four days?

Give me the number of times I was here this month?

Compared to the previous time I was here am I more stressed?

How does the amount of my cycling this week compare to last week?
How long did I talk to people this morning?

What fraction of my time do I spend listening to music?

On which day do I travel in a vehicle most?

Where do I spend more time chatting with people than usual?

Am I more stressed than normal on weekdays?

How many times was I feeling stressed this month?

If I leave for home now how long does it normally take me to get there?
When did I finish jogging?

Table 3: Representative sentences supported by Dialog Subsystem

we find that the most critical factor in determining the accuracy and
latency of the Dialog Subsystem is the design of the language model
and the composition of the vocabulary. Table 3| provides represen-
tative examples of our design decisions, under which interactions
remain quasi-natural but limited in scope to device inferences and
control. Responses are determined by the template-matching tech-
nique, each template is tied to handlers in code that dictates how to
respond.

Performance Controller. This component collectively refers to the
key design decisions that largely enable ZOE to operate for more
than a day with a single battery charge and be responsive while still
performing a rich set of sensing inferences. Our control plane lever-
ages the built-in inter-processor communication mechanisms for
synchronizing the operation of the three processor units (2 MCUs
and Atom CPU). Critically, the MCUs offload the sensor sampling
from the Atom and execute sensor data pre-filtering to control the
workload generated for the CPU. The Quark MCU, for instance,
filters silent samples and approaches the CPU for computation only
when noise is detected in the user surroundings. This allows the
CPU to remain in low-power sleep state for a large fraction of the
day. Other functions falling under the umbrella term of perfor-
mance control include speech activation (to spawn speech-related
pipelines only when the context is human voice), owner triggered
keyword spotting (to detect the commands issued by the owner),
as well as dialog command prioritization over sensor processing to
promote system responsiveness.

2.3 Comparisons to Existing Wearables

Table 2] surveys a range of wearables both from the literature and
those commercially available. Devices in this table capture a num-
ber of wearable sub-categories. First, the very popular, but health-
focused offerings from Jawbone and Microsoft. Second, examples
of systems built on Google Glass (or glass-like) devices that pri-
marily rely on vision techniques for inference. Third, very small
single purpose devices like Opo [35] that have excellent battery life
— in the case of Opo specializing in tracking face-to-face user in-
teractions. Fourth, devices such as the Mobile Sensing Platform

(MSP) [23] and the watch-style wearables represented in the table
by the LG G Watch R [§]]. Because these final two device classes
are both multi-sensor and computationally capable, they therefore
can support a variety of user inferences. However, watch wearable
apps are still in their infancy and so the MSP is the closest wear-
able to ZOE in terms of breadth of user-focused activity recognition
supported.

Inference Depth. One clear message from Table 2] is that ZOE
distances itself from other wearables due to the range of inferences
it can support. Commercial wearables, for example, only partially
support the personal sensing inferences of ZOE and miss advanced
microphone features such as stress detection — although ZOE is
unable to track sleep, something that all of these health-targeting
wearables can perform. Gabriel [30]] is the closest comparison in
shear inference depth because it leverages the vision capabilities of
Google Glass to offer a number of deep context inferences. How-
ever, this device has much worse battery-life as well as being larger
and heavier. The MSP is the nearest single device in terms of size
and weight — supporting a few high-level user inferences similar
to those of ZOE. But even acknowledging mobile technology ad-
vancements since 2008 (when the MSP v2, with which we com-
pare, was developed), unlike ZOE this system does not include the
performance control mechanisms needed to the maximize benefits
of such hardware.

In fact, some of the best comparisons of inference breadth avail-
able are not designed for wearables but rather phones. For exam-
ple, apps like PEIR [56] and CenceMe [54]] support multiple infer-
ences (such as activity, voicing, and transportation in the case of
CenceMe) during their operation. Essentially ZOE provides levels
of inference depth that exceeds even sensing apps for smartphones,
and brings this experience to a different, miniaturized class of de-
vice: wearables.

Battery-Life and Form-Factor. ZOE has a high ratio of inference
breadth to energy efficiency. It has a battery life comparable to the
Microsoft Band [9]] (30 hours vs 48 hours) but with a larger set of
inferences; other devices, like Gabriel, that also support a number
of inferences have lifespans of just 1 or 2 hours. Yet, ZOE does
not approach the lifespans of the Jawbone Up3. In terms of form-
factor, its size and weight are similar again to commercial devices
like the Band. Although ZOE has a collar form factor and most
devices in Table 2] are wrist-worn, the volumes of these devices are
still comparable.

Interaction Model. None of the wearables we survey offer the
same set of interaction modes as ZOE. All rely on cloud-based ser-
vices to present wearable data to either the user’s smartphone or
desktop. None support the direct serving of data from the wear-
able to the user’s devices like ZOE. Only one device (the Microsoft
Band [9]) includes dialog support, but this was supported via a
smartphone interacting with the cloud rather than the wearable op-
erating in isolation. However, many devices do include screens for
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Figure 4: Sensing Algorithm Module

presenting data — although the lapel position of ZOE likely makes
reading a screen difficult.

Leveraging Heterogeneous Computation. The general approach
of MCU offloading of tasks from a CPU is not new for wearables.
The recent MotoActv smartwatch [[10] from Motorola, to name just
one wearable, performs step counting on an MCU rather than the
more energy consuming CPU. ZOE however relies on dual MCUs,
with the Quark MCU itself having similar computational capacity
as the MCU used by the Microsoft Band (ARM Cortex M4 MCU
processor). Due to this design, and a number of performance con-
troller optimizations (see §B), this architecture affords ZOE pre-
viously unseen features such as always-on audio sensing and user
dialog support, all without cloud involvement. Other wearables in-
clude similarly rich computational options (the LG G Watch R, for
example, incorporates a Qualcomm Snapdragon 400 SoC [11] com-
plete with 4-core CPU and Hexagon DSP). But, such hardware is
not yet being used to its full potential (in the case of the LG G Watch
R its software only exploits 1 CPU core, and not the DSP [2])).

3. SENSING ALGORITHMS

In this section, we describe the sensing algorithms adopted in the
current design of ZOE that span the categories of personal-, social-
and place-related inference. Each form of sensing incorporated has
already been validated in previously published work. The focus in
ZOE is to combine these techniques into a single integrated sensing
module that operates within hardware (and energy) constraints.

Overview.  Figure [4] details the interaction between each sig-
nal processing and machine learning component needed to imple-
ment the collection of sensing algorithms in ZOE. A high degree
of component sharing can be seen in the figure, especially between
those components operating on data from the same sensor. Over-
all, the data-flow of each individual algorithm within the module is,
at a high-level, very similar. All sensors are continuously sampled
with this data feeding into pre-processing stages that perform op-
erations like applying a low-pass filter or estimating the direction
of gravity (see §0] for more details). Domain specific features are
then extracted that project raw data into representations designed
to accentuate patterns of similarity between features from the same
logical class (intra-class distance); while doing the opposite (i.e.,
emphasizing the differences) between features of different logical
classes (inter-class distance). Finally classification models deter-
mine which class the data belongs to (e.g., does the collected data
correspond to the user driving or not driving).

Accelerometer and gyroscope processing algorithms (transporta-
tion mode and activity inferences) share pre-processing techniques
and have a number of overlapping common features. Furthermore,

both utilize the same classifier design and combine a static clas-
sifier with simple temporal smoothing. WiFi-radio processing is
very simple in comparison and is not shared with any other algo-
rithm. By far the most complex is audio processing. Two pipeline
branches are encoded, one for human speech and one for back-
ground ambient sound. Shared pre-processing includes silence de-
tection and coarse category classification {music, voicing, other}.
Deep processing occurs along the voicing branch with stages in-
cluding binary user-oriented speakerID and stress detection, while
ambient audio is mined for various characteristics of the place (e.g.,
number nearby people). Sharing features is common in the voicing
branch as are models in some cases (such as GMMs). Further-
more, social interaction metrics (that are somewhat distinct from
the other classifiers included in the module) reuse whole compo-
nents together — for example, conversation is detected using coarse
classification, the presence of silence periods along with speaker ID
to recognize that a user is actually involved in the conversation and
simply not just nearby.

As previously mentioned, raw inferences from this module are
expanded upon while being stored in the User Knowledge Store
(§6). For example: frequency counts, durations, start and end-
times. This explicitly captures multiple pieces of information each
inference can hold about a person.

3.1 Personal Sensing

ZOE supports 3 forms of personal sensing; namely the detection of
physical activities and transportation mode along with a recognizer
of periods when the user is under stress.

Physical Activities. By extracting a series of 24 time- and frequency-
domain features (adopted from [52]) from the accelerometer and
gyroscope, the common user actions of {walk, stationary, run, other}
are tracked. A 7-layer deep J.48 decision tree is trained that is then
coupled to a 4-state Markov Model which smooths class transitions
based on typical activity sequences. This classifier combination is
common practice in many mobile sensing systems such as in [47].
Although relatively simple, this design has been shown to be suffi-
cient for this combination of activities (e.g., [57]).

Transportation Mode. Most proposed transportation mode recog-
nition techniques require data from either the GPS [63]] or a WiFi-
radio [41]. Instead ZOE incorporates less common accelerometer-
and gyroscope-based approaches (e.g., [52} [32]) that can achieve
similar levels of accuracy with a significantly lower energy over-
head (as inertial sensors require much less power than GPS or a
WiFi radio). In its current design this classifier only makes a bi-
nary decision {motorized, non-motorized}; although [32] indicates
with further refinement finer-grain distinctions (trains, buses, cars)
are possible. Again, we use a 4-second frame of 128 accelerometer
samples and a superset of the features used for physical activity
tracking are taken (adopted from [32f]) with additional adopted fea-
tures proposed first in [32]]. To perform classification, we settle on
an Adaboost ensemble learner with decision stumps acting as the
weak learner (essentially two-level decision trees) — empirically we
find that an ensemble of 20 stumps maximizes accuracy. The final
inference is made after (again) smoothing with a two-state Markov
model. In [32], this technique was found to outperform other can-
didate designs and, historically, it has been popular in many activity
recognition settings (e.g., [47]]).

Stress Periods.  ZOE applies the findings of [50|], and more
loosely [61]], towards detecting periods when the user is under stress.
Whenever the user is detected to be speaking the voicing sample is
analyzed and assigned into one of two categories: {stressed, neu-
tral}. In addition to shared acoustic features that are also used by



all audio classifiers in ZOE, stress detection uses additional fea-
tures that focus on: pitch, speaking rate and a 17-dimension feature
(TEO-CB-AutoEnv) that captures distinctive variations, especially
in high-level talking styles (“anger”, “loud”). For classification, as
in [50], we use 16-component GMMs for both classes with a deci-
sion made by applying a likelihood function assuming equal priors.
A single universal model is applied under all conditions and for all
users, we leave albeit useful extensions to the [S0] method involv-
ing model adaptation for future exploration.

3.2 Social Sensing

ZOE leverages two microphone pipelines, namely speech detec-
tion and speaker identification, as the basis for gathering a set of
conversation-related metadata and inferences. The speech detec-
tion component is based on a simple decision tree and enables the
detection of when and for how long a user socializes/interacts with
other nearby people. The algorithm borrows elements from [S1]]
and extracts features from 32ms sound frames every 1.28s when
noise is detected. It has the dual role of both providing social infer-
ences and acting as a trigger for other speech-related analysis.

The speaker identification module is used to detect whether the
currently talking speaker is the owner of the wearable. This enables
the monitoring of a wide set of additional conversation patterns in-
cluding dominance (i.e. the fraction of time the owner is talking),
turn taking periods, and even interactiveness (whether the user takes
short turns frequently with other people) [37]]. The speaker identi-
fication algorithm is adopted from [61] and relies on two Gaussian
Mixture Models, one representing the targeted speaker and the other
acting as a sink for other people. Similarly to the original pipeline,
Perceptual Linear Predictive (PLP) coefficients are extracted every
30ms and accumulated over a window of 3s. We use a shorter win-
dow to capture the onset of turns.

3.3 Place Sensing

The final category of sensing performed by ZOE is based on sig-
nificant places —i.e., locations that users frequently visit and spend
the majority of their time. We utilize two types of place sensing:
one that performs place recognition and another that analyzes the
ambient conditions of a place.

Place Recognition. The most common method to recognize places
is by comparing the signatures of WiFi scans (e.g., [40l 33])). A
signature is simply a vector of WiFi access point SSIDs. If the sig-
natures of two scans differ enough then they are assumed to be two
distinct places; similarly, a user returning to the same places again
(such as their home) is detected when the current signature matches
prior visits. We perform WiFi scans periodically on a 15-minute
duty-cycle, and use the Tanimoto coefficient to compute signature
similarity. Because this approach is unable to determine place se-
mantics (e.g., the meaning of the place) ZOE adopts a heuristic
derived from [42] to identify the two most important user locations
— their home and work locations. This is done based on the times
and days of arrival and departure, along with visit frequency.

Place Context Analysis. To characterize the user’s environment in
different places, ZOE adopts a series of audio-based sensing tech-
niques originally proposed in [70] and [67]]. By combining the tech-
niques of these two respective systems we are able to coarsely mon-
itor: the number of people close to the user, and the intensity of
background chatter, music and overall noise level. Three categories
of place context (viz. music, noise, chatter) are recognized with
category specific 4-class GMMs, each class corresponding to the
level of intensity of the particular characteristic. Relatively com-
mon audio classification features are used, and these overlap with
features already required for already described audio classifiers; the
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Figure 5: Dialog Subsystem Workflow

exception being a binary indicator that signals when the user is en-
gaged in conversation that must be accounted for as it can skew the
assessment of the ambient environment. In contrast, the estimation
of occupancy is performed in a distinctly different manner, using an
unsupervised counting algorithm from [70f]. The features that feed
into this counting algorithm include a 19-dimension MFCC feature
vector along with pitch features that are used for gender disam-
biguation. A final occupancy estimate is produced by a clustering
like process designed for this specific task.

4. DIALOG SUBSYSTEM

ZOE understands user instructions and requests through a purpose-
built dialog system designed to operate within a series of hardware-
and energy-based constraints.

Overview. Figure [j]illustrates the components that comprise the
dialog subsystem, along with the dataflow between them. Operation
begins with a continuous stream of microphone data from which au-
dio frames containing non-silence and spoken words are extracted.
This front-end is shared with the sensing algorithms detailed in
When voicing frames are identified then Keyword Spotting (KWS)
is performed to recognize any sentences that begin with the dialog
activation phrase (in the case of our prototype: “ZOE”). Any sen-
tences beginning with the phrase are escalated to the Speech Recog-
nition unit. At this stage, all words are attempted to be recognized
through by a constrained vocabulary and language model that de-
scribes the boundaries of what ZOE is expected to understand. A
template-based dialog reasoning phase occurs next that maps the se-
quence of inferred words for each sentence to a response or action
from ZOE. Most responses are synthesized sentences spoken aloud
by ZOE, the specific user information provided is determined by
the keywords recognized in the dialog template. Alternatively, user
instructions simply just alter a device setting, such as temporarily
disabling sensing for reasons of user privacy.

Keyword Spotting. Robust recognition of the activation phrase
(e.g., the name of the device) is critical to successful dialog sup-
port. False positive results will cause needless processing of irrel-
evant sentences. False negative results cause ZOE to ignore user
speech input. To minimize this, we implement a state-of-the-art
deep learning-based recognizer modeled on recent advances [21] in
low-memory and low-complexity Deep Neural Networks (DNNss).

Within the KWS stage, and a continuous stream of sampled au-
dio, certain frames that are identified as containing voicing are first
represented as 40-dimension filter-bank energies (FBE) [20]. This
variety of features is closely related to the MFCC and PLP fea-
tures used in a number of the audio-related sensing described in
However, within the context of speech recognition FBE has been
shown to be much more robust than its MFCC and PLP counter-
parts. Features are extracted from 30 ms audio frames that slide
by 10 msec at a time. A 3-hidden-layer DNN is used that begins
with 128 nodes corresponding closely to values of features that are
ultimately linked to 2 output states in the final layer — one for each
possible outcome — {keyword, no keyword}. The value of each
node in the DNN is based on the values of all nodes in the prior



Processor
Quark MCU Silence Filtering
Daughter-board MCU  Stationary Filtering, Mizell Calibration
Physical Activities Classifier
Transportation Classifier
Shared Inertial Features
Transportation Features

Operation

Edison CPU Shared Audio Features, Stress Detector
User Noise Detector, WiFi Similarity
Conversation Analysis, SpeakerID

Stress Features

Table 4: Allocation of ZOE workload to hardware components

layer and computed with activation functions uniquely parameter-
ized on a node by node basis. As is standard practice, the final (2-
state) layer uses softmax activation functions to result in a binary
outcome given earlier inputs. Similarly, the proceeding layers have
activation functions trained by a rectifier linear unit [24] (ReLU)
selected for their performance in other related KWS systems.

Speech Recognition. To understand even a relatively limited vo-
cabulary and constrained language model using a DNN-style solu-
tion similar to the one just described is not yet possible given the
local computation available to ZOE. The length of processing de-
lays — to name just one problem — would be unacceptable to users.
Instead, we adopt proven speech recognition methods that target
memory and computation constrained devices (e.g., [29]). We also
carefully assemble our vocabulary and language model to sharply
lower runtime evaluation (reported in §7.3) while still supporting
~2300 words and thousands of supported unique sentences.

Once KWS confirms the presence of the activation word within
voicing speech audio segments, the beginning of that frame are
passed to the Speech Recognition stage. We train an acoustic model
using a 5-state HMM coupled to 39-dim. GMMs at each state
corresponding to sub-word utterances. Multiple groups of candi-
date words for each sentence can be computed using the acoustic
model. These candidates are further assessed with a bi-gram lan-
guage model to judge the likelihood that particular word collections
are correct given their sequential usage with an entire sentence.

Dialog Reasoning. We adopt the popular template-based approach
to dialog interactions. Based on the probability of words in the rec-
ognized sentence it is matched to one of a fixed set of query tem-
plates by a fitness score. Below a fixed threshold the user is asked
for clarification. For each template a query handler exists to gener-
ate requests to the User Knowledge Store (see §6). Parameters are
determined by spoken keywords in the sentence; if one of them has
an accuracy below a threshold, the user is asked to clarify. The logic
in each query handler might dictate other processing to resolve cer-
tain keywords such as “normal” which will enact a separate query to
determine the average for the user within some bound. As has been
found in dialog system research, for close-world domains template
matching can be highly effective but difficult to scale to general
purpose usage — often due to its dependence on hand crafting of
templates and template handlers.

Voice Synthesizer. ZOE replies to user dialog through a light-
weight text-to-speech (TTS) synthesizer that incorporates the for-
mant synthesis [26] technique. This approach can support a variety
of languages and pronunciations without resorting to recordings of
actual human voices; a critical factor in maintaining a low compu-
tational requirements along with a small memory footprint. Input to
this component is simply plain text responses generated during Di-
alog Reasoning. Like most TTS systems words are then broken into
the phonemes that describe how the letters in words should sound
when spoken aloud. As a result, the generated speech is stilted

and less natural (i.e., robotic sounding) than synthesizers with more
onerous runtime resource requirements (based on real recordings).
eSpeak uses a “formant synthesis” method. This allows many lan-
guages to be provided in a small size. The speech is clear, and can
be used at high speeds, but is not as natural or smooth as larger
synthesizers which are based on human speech recordings.

5.  PERFORMANCE CONTROLLER

In this section, we outline the hardware and optimization design
choices that heavily determine ZOE’s energy profile.

5.1 Hardware Prototype

To provide context for the optimization control plane, we begin with
a component-level description of the hardware. We briefly provide
specifications of two primary modules (viz. Edison and daughter-
board); additionally we describe how the 3-tier inter-processor com-
munication functions.

Intel Edison SoC. The SoC and mount board is only 3.55 x 2.5
x 0.39 cm in size. Within the SoC are two programmable units.
First, a dual-core Atom 22nm “Tangier” CPU that runs at 500 MHz
and has access to 1GB of RAM. Second, a Quark processor operat-
ing at 100 MHz is currently configured as an MCU; both code and
memory must occupy less than 192KB.

Custom Daughter-board. Designed to be roughly the same width
of Edison, our daughter-board is around twice the height. All nec-
essary sensors are either mounted or connected to this device. It
also contains the power regulator components necessary to connect
both a battery and the wireless recharging coil. Importantly, it also
contains the 3rd processor (that acts as a 2nd MCU): an IT 8350
processor (from ITE) running at 48 MHz with 64KB of RAM.

Inter-Processor Communication. The operation of both MCUs
(Quark and Daughter-board processor) is similar with respect to
the signaling and message facilities enabling the communication
with the primary CPU. Within the respective OSs of each MCU, a
controller arbitrates incoming and outgoing messages transfered via
IPC calls and shared memory. Within the MCU, code communica-
tion takes the forms of function calls. In the CPU, control nodes
exist within the kernel that are also wrapped by libraries supporting
interaction from within CPU-based source code.

5.2 Optimizations

‘We now elaborate on several design choices that are aimed at max-
imizing the power and performance benefits of the hardware com-
ponents listed in the previous subsection. Table ff] summarizes the
placement of primary ZOE components (shown in Figure [3) be-
tween computational tiers.

Sensor Pre-Processing. All microphone and accelerometer algo-
rithms rely on a front-end of shared pre-processing routines residing
partly in the MCUs or the Atom CPU. In the case of accelerometer-
based ones (activities and transportation mode) these routines are
placed on the daughter-board MCU and concern admission con-
trol and calibration. The admission control pre-processing is sim-
ple: by applying low-pass filter along with a threshold it seeks to
recognize when the device is completely stationary; perhaps when
a user leaves the device on a table. By filtering out these events
the remainder of the accelerometer stages are only exercised when
there is actually data to be processed. Calibration orients acceler-
ometer values into gravitational units using parameters learned by
applying the Mizell technique [S5]]. For the microphone, the front-
end of shared stages are only comprised of two processes. The
design for these two processes are adopted from [51]. First, an ad-



mission control separates silence from actual sound — a threshold-
based decision is made based on the Root Mean Square (RMS) [64].
Second, for those microphone samples that contain non-silence, a
coarse-grain category classifier is used to recognize frames contain-
ing voicing, music and other.

MCU Utilization. The proper use of the additional low-power
processors is critical to maintaining acceptable levels of energy con-
sumption. The MCUs excel at continuous sensor sampling at a low
power cost and we take advantage of this by allocating to these units
key filter-type computations conforming with the memory and run-
time constraints. The daughter-board MCU samples the accelero-
meter without interruption at 50 Hz, whereas the Quark monitors
the microphone continuously at 8KHz. The processing units liber-
ate the Atom CPU from performing sensor sampling allowing it to
go into a low-power standby state when the MCUs can handle the
sensor events from the stream of incoming data.

The daughter-board MCU performs the full physical activity and
transportation mode pipelines without assistance from the Atom
CPU. The MCU needs to periodically communicate its accumulated
inferences with the Atom CPU which is responsible for transferring
the labeled data to the knowledge base. There is a communication
overhead involving the transition of the CPU from sleep to high-
power active state. To minimize the interactions between the two
processing units we set the synchronization period to 20 minutes
which is when the main CPU needs to be woken up to merge the
inferences in the database.

Strategically, the simple silence filter is performed on the Quark
so that whenever the environment is silent the energy hungry CPU
is kept at bay. The performance limitations of the pre-release Quark
MCU preclude us from deploying more complex pipelines such as
speech detection; yet, the silence filter proves immensely useful
given that a large proportion of the time users are in a silent con-
text, e.g. a night’s sleep. In the presence of noise, i.e. a non-
silent frame is detected, the Atom CPU is approached with the next
1.28 secs of raw microphone data which is when the second-order
speech/music/ambiance filter is applied.

6. IMPLEMENTATION

We conclude our description of ZOE by discussing implementation
specific details.

Source and Binaries. The source tree of ZOE spans 18,000
lines-of-code written in C++ and Python — excluding large trunks of
source code imported and modified for the components within the
Dialog Subsystem (primarily for Speech Recognition) or for any
model training toolkits utilized. The majority of the implementa-
tion runs on the Atom CPU of the Edison. Three separate cross-
compilers are used — two for each respective MCU which build
complete binary images and include MCU-specific OSs; with the
last being the Atom where software is more conventionally com-
piled and installed (within a Linux-like OS, Yocto [15]). Com-
plete binaries for each MCU are 48KB (daughter-board MCU) and
122KB (Quark MCU), respectively. In terms of workflow, the Atom
CPU acts as the primary orchestrator within ZOE, but will sleep pe-
riodically (governed by the Performance Controller — §5)) only to be
woken by interrupts from either MCUs based on sampled data.

Sensor Algorithms. For many of the more standard algorithms
such as GMM classification, Markov Models (MMs), Fast Fourier
Transforms (FFTs) and a few common feature extractors, we port
implementations from the HTK Speech Recognition Toolkit [4]].
Others such as Decision Trees and Adaboost are ported from the
Weka [31] toolkit. Lastly, for more domain specific features (MFCC,
Teo-Auto-CB, WiFi Place signatures etc.) we have custom imple-

mentations based on algorithm descriptions. Off-line training steps
utilize previously mentioned toolkits (HTK, Weka), along with the
scikit-learn Python library [13].

User Knowledge Store and Front-end. Primarily to service dia-
log queries — but also to maximize the information readily available
from inferences — ZOE maintains a User Knowledge Store. Instead
of only storing the raw timestamped output of inferences, the front-
end of the knowledge store generates information that is implied by
individual or combinations of inferences; often, a single inference
can generate dozens of new knowledge store records. Examples
include estimating the calories burned during various forms of ac-
tivities or the carbon footprint of transportation activity — both of
which can be coarsely estimated based on commonly used refer-
ence material that maps calories to the time spent on certain activ-
ities [[17]], with similar references available for pollution and trans-
port choices. Simple estimators are also built into the Knowledge
Store for predicting, for example, the duration of events like com-
muting home at certain times of day. Finally, the Knowledge Store
is encoded with simple common sense information such as: How
many calories should a user burn everyday? This information is
sourced from reference material.

Currently, effort has not been put into using the best predictors
or estimators. It is simply a framework to collect and organize in-
formation. As a result, the Dialog Reasoning is made easier with
essentially every dialog template being linked to code that under-
stands how to generate a query to the Knowledge Store. Queries
are parameterized by keywords spoken by the user. For example,
when a user asks: “How many conversations did I have today?”.
The word “today” is a keyword that defines the timespan. Dialog
Reasoning understands a limited number of such keywords. This
component is implemented currently as a local Sqlite database with
the front-end written in Python.

Dialog System. Our dialog system is a composite of code adapted
from three open-source projects. First, the inference runtime of
KWS that resides on ZOE hardware is a C++ DNN library imple-
mentation including many of the techniques described in [21]. To
train this DNN we use Kaldi [59] and build the necessary glue to
format the models generated. Second, we make extensive use of
Pocketsphinx [36] for both the training of acoustic and language
models, in addition to inference-time execution. Any necessary op-
timizations to speed up execution, were performed to the standard
open source code-base. Third, to realize our TTS the implementa-
tion of eSpeak [3|]] was adopted and modified to support the audio
driver of the Edison. Finally, template generation and links to the
User Knowledge Base were built with Python as required.

7. EVALUATION

In this section, we provide key insights with respect to the system
energy profile, the sensing algorithm accuracy and the dialog sub-
system performance characteristics. The main findings can be sum-
marized as follows:

e ZOE lasts 30 hours with a typical sensing/dialog load. A key
enabler for this is the 3-tier design which offers a more than
30% relative improvement in the battery lifetime to alternatives.

e The dialog subsystem is 87% accurate and is able to respond
within a second of finishing a 4-second long voice command.

e The oldest inferences a user may get are at most 20 minutes old
which equals the accelerometer personal sensing synchroniza-
tion period between the MCU and the Atom CPU. The sound-
related inferences performed by the sensing algorithms are ob-
tained largely in real-time on the Atom CPU.
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Figure 6: Percentage of the battery needed to handle the sensor processing
of a daily workload (8h of silence, 1h to 12h of speech, 20 questions per
day). Values higher than 100% indicate the battery needs to be recharged at
least one more time during the day to sustain the workload.

7.1 Energy Consumption

Here we detail the energy consumed by ZOE assuming a variety of
workload conditions and different mobile device costs. The most
notable results are 1) our design is practical as it allows the user
to wear the device for well over a day with a single battery charge;
and 2) compared to other off-the-shelf mobile devices, a dedicated
wearable proves to be the only solution to have a reasonable energy
drain and sustain common sensing workloads for at least a day.

System Lifetime. In this part of the analysis we show the total
system energy consumption and the benefits of incorporating addi-
tional sensor processing units (Intel Quark and an MCU). We com-
pare our heterogeneous design (Atom CPU + Quark co-processor +
MCU) against three baseline models that exclude either the Quark,
the MCU or both of the additional processing chips. In this ex-
periment we generate synthetic sensing workloads by varying the
amount of encountered speech. This is a prime determiner of the
sensing workload because the heavier sensor pipelines are triggered
by the presence of human voice: dialog subsystem interactions,
stress detection, as well as device owner recognition and conver-
sation analysis. We fix the time users are in a silent environment to
8 hours which roughly amounts to a night’s sleep. We also assume
20 questions per day on average submitted to the dialog system as
life logging inquiries. The battery used for the reported measure-
ments is a typical 1500mAh Lithium-ion model with 3.7 volts.

In Figure [f] we plot the percentage of the battery capacity re-
quired by ZOE to process a day worth of sensing as a function of
the number of hours users spend in conversations. The first critical
observation is that our system design is the only among the alter-
natives that is able to make the battery last at least one day with a
single charge. With 4.5 hours of speech, which is found to be an
average amount of time users spend in conversations throughout the
day [45]], the system needs 78% of the battery capacity to handle a
24-hour processing load. This leaves us with a system lifetime of
30 hours. In contrast, the 2-tier solutions as well as the bare bones
Atom-only deployment require 109% or more of the battery to han-
dle the same workload which means that the Edison wearable needs
to be recharged before the day expires. Overall, the 3-tier design
offers more than 30% improvement in the system longevity and this
is largely attributed to the fact that part of the sensor processing is
offloaded to the dedicated low-power co-processors.

When either of the two additional chips (Quark or MCU) is left
out, the sensor sampling that would otherwise be performed there
will need to be delegated to the general-purpose Atom CPU. This
prevents the CPU from going to low-power standby mode and in-
stead keeps the processor active with an average current draw of
63mA. When the MCU is removed, the accelerometer sampling
keeps the CPU busy, whereas when the Quark is not used, the mi-
crophone sampling maintains the CPU awake. Both of the 2-tier
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Figure 7: Breakdown of the energy consumed by the various system com-
ponent computations for the workload scenario of 4.5h of speech, 11.5h of
ambient context, 15min WiFi duty cycle and 20 dialog commands per day.
The reported energy budget reflects the additional energy of the raw pro-
cessing on top of what the Atom CPU consumes in an active state.

designs do not offer significant energy improvement over the Atom-
only deployment because 1) their limited memory and performance
capabilities allow them to run only simple pipelines such as silence
filtering that on the Atom run in less than 2ms, and 2) in both cases
the Atom CPU is burdened with sampling one or both of the sen-
sors where the energy hog is maintaining a high-power active state.
As shown in Figure[7] the energy budget for the additional process-
ing of the system components remains cumulatively below 12%,
meaning that the majority of the system energy is spent in keeping
the CPU active to do the processing in the non-silent periods.

Effect of False Atom Wake-Ups. As discussed in the previous
paragraph, keeping the Atom CPU awake is a major source of en-
ergy consumption which is why it is vital that the times the CPU is
unnecessarily woken up to do processing are minimized. Such false
wake-ups may occur when the silence filter running on the Quark
co-processor errs and flags a silent frame as non-silent, i.e. the filter
introduces a false negative with respect to silence. To evaluate the
likelihood of such false wake-ups given our implementation of the
RMS threshold-based silence filter, we assemble a dataset with 10
minutes of noise, including speech, and 10 minutes of silence. The
silent samples are collected from smartphone recordings, whereas
the noise samples reuse part of the ambient context dataset [68]].

In Table [5] we list the confusion matrix for the silence filter ap-
plied on the prepared 20-minute dataset. The main result is that the
false wake-up rate remains relatively low at 2.76% which ensures
that the energy overhead of unnecessarily waking up the Atom is
kept acceptably low. Depending on the chosen silence filter thresh-
old, the false wake-up rate can be further reduced at the expense of
decreasing the 92.74% accuracy with which noise is detected. We
believe the current set-up provides a reasonable trade-off between
accuracy and false wake-up energy overhead.

Actual/Predicted  Silence Noise
Silence 97.23 % 2.76%
Noise 7.26% 92.74 %

Table 5: Confusion matrix for the silence filter running on the Intel Quark.

Projected Lifetime for Other Mobile Devices. In this next subsec-
tion we investigate the following research question: can we deploy
ZOE on another mobile device such as a smartphone and achieve
similar or better battery life? We perform back-of-the-envelope
energy analysis for several other mobile devices including a smart-
phone and Google Glass. The smartphone and Edison energy mea-
surements are performed with a Monsoon Power Monitor attached
to the corresponding device. For the smartphone case, we port
the sensing algorithms through the Android Native Development
Kit to a Qualcomm Snapdragon 800 Mobile Development Platform
(MDP) [12], a dedicated device for testing and debugging Android



applications. It features the popular Snapdragon 800 SoC avail-
able in many high-end smartphone models (e.g., Google Nexus 5,
Samsung Galaxy Note 3). We used energy estimates for Google
Glass provided by [49] and without loss of generality assumed the
pipeline processing runtimes to be similar to what is measured on
the smartphone MDP. Given this set-up we report the projected en-
ergy budget required by the system to sustain a daily workload with
4.5 hours of speech in Table[6]

Out of the mobile devices, the custom-built Intel Edison wear-
able with the larger 1500mAh battery is the only one to be able to
not fully drain the battery in a day. The second best alternative,
a smartphone with a sizable 3200mAbh, battery needs 151% of the
capacity to process the sensing workload presented in the previ-
ous subsection. The massive energy drain can again be attributed
to keeping the CPU active during the continuous sensor sampling.
This energy profile is unacceptable given that the smartphone can
and will be used for other tasks throughout the day such as phone
calls, text messages, camera photos, web browsing, games and so-
cial networking applications. Last on the energy efficiency list is
Google Glass, which according to our coarse projected measure-
ments will need multiple recharges in a day (more than 7) to meet
ZOE’s sensing demands. This can be explained by both the rel-
atively smaller battery and higher power consumption needed by
a powerful CPU that supports augmented reality applications. To
summarize, among the evaluated options, the only feasible solution
for supporting the application scenarios induced by ZOE proves to
be a dedicated wearable with the lower power characteristics of an
Intel Edison board.

Mobile Device Battery Specs Energy Budget (%)
Intel Edison 1500mAh 8%
Smartphone (MDP) 3200mAh 151%
Intel Edison 400mAh 295%
Smartphone (MDP) 1500mAh 321%
Google Glass 2.1Wh (568mAh) T44%

Table 6: Energy expenditure required by ZOE to meet a daily workload
if it was running on alternative devices. Table entries are sorted by energy
budget. Measurements for the MDP and Edison are made with a Monsoon
Power Monitor, and power estimates for Google Glass are from [49].

7.2 Sensing Algorithm Accuracy

In this subsection we discuss the accuracy of the adopted sensing
pipelines that underlie the activity inferences performed by ZOE.
The basic components of the personal and place sensing pipelines
are largely unchanged from their original versions and here we
briefly summarize their accuracy on the datasets we have access to
while also detailing any differences. In addition, we provide prelim-
inary results about the effectiveness with which the social sensing
subsystem infers conversation patterns: device owner identification,
dominance and turn taking.

Most of the algorithms accuracies are in line with previously pub-
lished results: these include physical activity recognition [52], mo-
torized vs. non-motorized vehicle detection [32], stress detection
with a universal model [50]], place recognition [40]] and place ambi-
ent context analysis [[68]]. For correctness, we report results on the
listed datasets but detailed evaluation of how the algorithms fare in
more challenging conditions can be found in the original publica-
tions. One of the differences we find is the speaker identification
[[61]] accuracy which on our dataset reaches 95% (94%) when 5 (3)
seconds of audio data is used for the speech feature extraction. This
is likely attributed to two factors: 1) we use up to 9 minutes of train-
ing data for each user (and 1 minute is held out for testing); and 2)
the recordings are made in a clean environment.

Sensing Pipeline Sensor Dataset Accuracy
Physical Activity Accel 10 mins of activities 82%
Transportation Mode Accel 150h transportation data [32] 85%
Stress Periods Mic Emotional Prosody [48] 71%
Place Recognition ‘WiFi LifeMap [22] 90%
Place Context Mic local business ambience [68|) T4%
Speaker Id (5s) Mic 23 people, 230 mins of speech 95%
Speaker Id (3s) Mic 23 people, 230 mins of speech 94%

Table 7: Accuracy of the pipelines.
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Figure 8: Conversation pattern errors as a function of the utterance length
used to identify the wearable owner.

Social Sensing Accuracy. We recall that we adopt the speakerID
pipeline as a tool to monitor conversation patterns. Examples are
inferring the percentage of time a person is talking (dominance lev-
els) or the periods and durations of their turns. Here we shed light
on how effective speaker recognition is in deriving such inferences.
We perform a preliminary evaluation on a dataset of several conver-
sations each lasting between 4 and 5 minutes. In all of the conver-
sations one of the speakers is designated as a device owner with a
personalized speaker identification model. The rest of the partici-
pants are unknown and their speech data is not used in the training
of the sink GMMs representing other people. Given this setup, we
replay the conversations and perform owner identification once ev-
ery few seconds.

‘We repeat the above mentioned experiment for utterance lengths
ranging from 2 to 5 seconds inclusive and in Figure [§] report the
observed errors when speaker identification is adopted to estimate
two conversation patterns: the speaker dominance levels and turn
taking. An interesting result is that using shorter periods of audio
data for user recognition appears to reduce the dominance errors
but significantly increases the turn taking uncertainty. This phe-
nomenon can be explained by the fact that shorter audio segments
increase the temporal precision of understanding when someone is
talking even when some errors are introduced, hence the higher
dominance accuracy. However, those same errors tend to largely
overestimate the number of turns.

Overall, the algorithm for detecting dominance is off by 12%
to 16% depending on the utterance length which is sufficient for
coarse estimations of total speaking time. On the other hand, the
mean turn taking errors of 2 to 3 missed or additionally detected
turns per conversation are comparatively large given that the av-
erage number of turns the target speaker takes is 7. That speaker
identification algorithm on 3 to 5 second long utterances does not
prevent us from roughly inferring conversation dynamics but may
not be suitable for finer grained turn monitoring as has also been
highlighted by the authors of SocioPhone [46]. Their proposed
multi-device volume topography analysis for the same inference
task has limited applicability in our setting, however, because the
Edison wearable is supposed to be a self-contained personal sens-
ing assistant and in general we cannot rely on other people owning
the same device or having the same set of applications installed on
their smartphone/mobile device.



Users

Figure 9: Word error rate (WER) of the 11 users on whom the speech
recognition subsystem was tested.

7.3 Dialog Accuracy and Responsiveness

In this subsection we elaborate on the accuracy with which the di-
alog system interprets the commands issued by users as well as the
level of system responsiveness to those commands. The latter is
measured along two dimensions which we evaluate separately: the
time required to decode a voice command and the staleness of the
inferences when presenting aggregate results to users.

Dialog Accuracy. We begin by discussing the word-level accuracy
of the custom-built dialog language model as a preliminary indi-
cation to how well ZOE interprets commands. To evaluate this we
performed a controlled experiment on 11 speakers, 3 of which were
female and 7 of which were non-native English speakers. The par-
ticipants were required to read aloud a set of 25 command sentences
spanning the type of questions supported by ZOE, e.g. "What frac-
tion of my time do I spend listening to music?". We recorded the au-
dio files in an office environment with a sampling rate of 8kHz and
fed them as input to the CMU Pocket Sphinx batch analysis tool.
The word error rate (WER) is reported in Figure 0] Overall, we
observe a mean WER of 13.24% across users which corresponds
to an accuracy approaching 87%. We note that although the re-
ported numbers are showing the word-level error rate, the majority
of confused words are non-keywords which suggests the command-
level accuracy is not critically impacted. A key component enabling
these reasonably high figures is the custom-built language model
that targets a domain-specific restricted vocabulary of a few hun-
dred words related to daily activities. We find that the accuracy
may drop by as much as 30% or 40% when a generic language
model with a large dictionary is used.

Language Model Dictionary Size = Real-time Factor
ZOE’s custom 300 words 0.23x
CMU Sphinx HUB4 6000 words 1.98x
CMU Sphinx HUB4 133000 words 2.15x

Table 8: Dialog system runtime responsiveness as a function of the lan-
guage model and dictionary size. The real-time factor shows how much
time on average it takes ZOE to decode an utterance relative to its length.

Dialog Responsiveness. A major factor determining the real-time
responsiveness of ZOE is the time it takes the speech recognition
subsystem to decode the words in the voice commands. In Table |§|
we show the real-time delay of the decoding process running on
the Edison’s Atom CPU as a function of the language model and
number of words in the vocabulary. The key result is that using a
custom-built model with a domain-specific dictionary is necessary
to reach the real-time performance of the system. The real-time
factor of 0.23x means that an utterance of length 4 seconds, for ex-
ample, is transcribed in 0.92s so that a result can be delivered to the
user within a second of completing the voice inquiry. In contrast,
using larger general-purpose dictionaries significantly increases the
transcription time so that with 6K words, for instance, the same 4-

Sensing Pipeline Runtime (s) Inference Window (s)

Physical Activity 0.002 4.000
Transportation Mode 0.002 4.000
Stress Periods 0.353 1.280
Place Context 0.025 1.280
Speaker Identification 0.105 5.000
Keyword Spotting 0.236 1.000

Table 9: Runtime of the sensing pipelines as measured on the Intel Atom
500 MHz CPU and the MCU for the accelerometer ones. The inference win-
dow shows the amount of time raw data is accumulated before the pipeline
is run on the sensor samples.

second command will be decoded in almost 8 seconds after issuing
it, hardly a practical outcome.

Freshness of Inferences. A critical aspect shaping the life logging
experience is what the amount of time is between the arrival of a
sensor event and obtaining an inference. In general, sensor events
trigger data processing requests which are queued in a FIFO manner
and the actual time of the processing may not be immediate. De-
pending on how busy the system is the accumulated requests may
be temporarily ignored. In our case, this scenario arises when the
user initiates a voice command and the Keyword Spotting applica-
tion detects the system name. ZOE servers the user with priority
in which case sensor tasks accumulate in the queue. However, as
shown in TableE[, all of the sensing pipelines run with sub-second
latency for a small fraction (up to 25%) of the time sensor data is
gathered. In effect, even in the busiest scenario for the system when
speech is detected, the keyword spotting, speaker identification and
stress detection can run all together and in real time. This prop-
erty allows inferences on the data to be obtained immediately in
the absence of dialog commands. The worst case is when the user
initiates a series of commands, one after another without pauses in
between, which is when the sensor data will be queued. Since long
command sequences are highly unlikely, the sub real-time nature of
the pipelines allows for the system to catch up with the sound in-
ferences within a minute of successively issuing a few commands.
Finally, the freshness of the WiFi localization and accelerometer
inferences are determined by the WiFi scan duty cycle (15 min)
and the update period when the MCU synchronizes accelerometer
inferences with the Atom (once every 20 min).

8. DISCUSSION AND LIMITATIONS

We briefly survey a variety of issues related to the design and eval-
uation of ZOE.

Absence of End-to-End User Study. ZOE currently uses features
of the Edison SoC (such as, MCU access) not publicly available.
Because of this we had access to only two pre-release versions of
this SoC, this precluded any meaningful user study. We plan to
build a number of ZOE devices in the coming months as soon as
this situation changes. Instead, the focus and contribution of this
work is the systematic study of the hardware capabilities under the
workload ZOE presents, along with series of proposed techniques
that allows this workload to achieve acceptable levels of energy ef-
ficiency and responsiveness.

Of particular interest in future user studies will be user reaction
to wearable-based dialog as a means of interaction. Dialog sys-
tems are generally gaining popularity and user acceptance in more
powerful form factors, such as smartphones; along with always-
on home targeted appliances like Amazon’s Echo [1f]. But clearly
there will be times such interaction will not be appropriate, such
as in public or within social groups (e.g., a meeting). While cer-
tainly the responses of ZOE may not be suitable for others to hear,



users may also be uncomfortable with what the questions they ask
indicate about themselves and their interests.

Is Custom Hardware Warranted? It is likely that a ZOE-like
software system could have been designed for a number of mo-
bile platforms. However, overall it would have failed to meet key
technical challenges described in §2.1] For example, as we dis-
cussed in §7.1 the energy efficiency on alternative platforms like a
smartwatch is significantly worse than ZOE’s due to lack of low-
power MCUs. More broadly, the mobile industry is shifting to in-
crease use of specialized computation; for example, Apple’s A7
motion co-processor (6] for interpreting primarily inertial sensors,
and more complex speech [14] and vision algorithms appearing in
Integrated Circuits providing leaps in performance that software ad-
vances alone struggle to match.

Battery Lifetime. Currently, ZOE has a lifetime comparable to
the more sensor-rich wearables already on the market (such as the
Microsoft Band). It is also likely that the energy efficiency of ZOE
will improve dramatically as soon as two key available, but still
inaccessible, Edison features are opened. First, the Edison CPU
can operate at a range of higher and lower clock speeds, yet cur-
rently this is fixed at 500 MHz. This speed is unnecessary for some
ZOE operations (and wasteful) while others would benefit from a
temporary increase; because the CPU consumes most of the device
energy, clock speed control will likely offer significant gains. Sec-
ond, the Edison-located MCU is based on a processor that is much
more capable than the tasks it currently performs. Due to limita-
tions in early Edison compiler support, we are only able to perform
a few basic inference stages on it, a situation that will be changed
subsequently.

Size and Form-factor. As shown in Table 2] ZOE achieves an
impressive ratio of inference capabilities to size/weight relative to
comparison devices. We also expect to be able to decrease the foot-
print of ZOE by half in the next version by relatively simple layout
optimizations to the daughter-board, allowing it to match the di-
mensions of the Edison. The more challenging issue in doing this
will be to cope with a similar reduction in battery capacity that such
changes would entail.

9. RELATED WORK

ZOE touches upon a wide range of topics, here we discuss the most
salient prior work in each area.

Smartphone Sensing and Activity Recognition. The design of
ZOE contributes to the area of human activity inference by inves-
tigating how a diverse set of existing techniques can be combined
into a single integrated sensing module; in turn this module can
run on a platform and form-factor where few have been previously
seen individually (and certainly not being all supported simulta-
neously). Along with the recent explosion of techniques targeting
smartphones (e.g., [58} 46| |66]), there is a long history of platform
agnostic algorithms from activity recognition (e.g., [19]). However,
even though many share building block components (features, re-
lated classes) few studies exist that investigate their usage together
(e.g., [39]). Towards wearables with a more complete understand-
ing of the life of users, ZOE incorporates more than 10 distinct
inferences from three different sensors that have previously been
often studied in isolation.

The few mobile systems that seek a more complete monitoring
of user behavior and environment often focus on health (e.g., [25,
57]). Other systems that have targeted a diverse set of inferences
have focused on a single sensor — the microphone being a popular
one [51, 28|]. DSP.Ear [28]], for example, also supports sensing al-

gorithms that cover a variety of activities but lacks the place- and
social- inferences of ZOE, and ignores modalities other than audio.

Wearables and Personal Sensing Hardware.  As surveyed in
§23] ZOE distinguishes itself, particularly from commercial sys-
tems, largely because of the depth and range of its user inferences
and exploration of features like dialog systems, heterogeneous com-
putation and constraints like operating without a cloud. Wearable
systems that seek the type of breadth as ZOE are almost always
based on vision or audio data because of the richness of the two
modalities. ZOE relies on multiple sensors but makes strong use
of the microphone which sets itself apart in terms of sensing algo-
rithms with wearables like [[30[][53]1[34]. Examples of microphone-
based wearables include [62] but this system has a specific narrow
focus on internal body sounds captured with a specially designed
microphone. Instead, ZOE has a number of commonalities with the
MSP [23]] that was also a heavy user of the microphone. However,
as described in @while ZOE monitors general user activities, as
the MSP does, it also provides: detailed measurements of user state
and social interactions; in addition to providing a dialog system
through which to offer the user this information.

Heterogeneity and Mobile Resource Bottlenecks. Energy has
been a considerable focus of a variety of mobile sensing systems [[44}
43| 38]]. Towards such challenges, low-power processors and multiple-
tiers of computational units are commonly used approaches [[18|
65]. ZOE adds to this knowledge by exploring the use of dual-
MCU s to allow a comparatively very heavy sensing and interaction
workload to remain feasible, especially in terms of energy. Archi-
tecturally similar approaches include [58] |60] that combine high-
and low-power processors for energy efficient sensing. Even com-
mercially, many smartphones today use DSPs and other processors
to continuously sense and wait for one specific keyword to be spo-
ken (a keyword) before initiating a dialog. Although the core of the
techniques we use have appeared in such systems, it is the first time
they have been applied to many of the more complex sensing algo-
rithms (e.g., seen in our social sensing monitoring) and especially
when they are integrated into a single system.

10. CONCLUSION

In this paper, we have presented the design, implementation and
evaluation of ZOE — a prototype wearable that leverages the type of
heterogeneous high-performance computation increasingly avail-
able to this class of mobile device. Through a mixture of hardware-
and software-based approaches, ZOE offers a first-of-its-kind user
experience by enabling the continuous sensing of a range of deep
inferences along with a near real-time dialog system through which
users can access captured information. All of this is provided with-
out cloud assistance, which provides significant privacy assurances
to the user by removing the need for third-party remote compu-
tation. We hope ZOE acts as an important reference example for
future investigations into the design of wearables, and also pro-
vokes further study of: heterogeneous computation in wearables;
in-situ dialog-based access to information for users; and, the limits
of cloud-free wearable functionality.
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