Adaptive Resource Discovery for Ubiquitous Computing

Rae Harbird
Dept. of Computer Science
University College London
Gower Street, London
WCI1E 6BT, United Kingdom

r.harbird@cs.ucl.ac.uk

ABSTRACT

The terms pervasive and ubiquitous computing are used to
describe a smart space populated by hundreds of intelligent
devices that are embedded in their surroundings. Character-
istically, ubiquitous computing devices must blend into the
background, unobtrusively collaborating to provide value-
added services for users. Services are thus essential to the
success of this technology and, as a result, both service dis-
covery and service management will play a vital role in gen-
erating the revenue stream that is a prerequisite for sustain-
able ubiquitous deployment. On the one hand, the services
provided should be evident by their richness and variety
and on the other, the complexity inherent in the environ-
ment must be hidden from users. In this paper, we de-
scribe RUBI, a resource discovery framework for ubiquitous
computing. RUBI represents a novel approach to resource
discovery, because the primacy of the need for adaptive au-
tonomic behaviour is established within its design.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems— Distributed Applications; C.2.2 [Computer-
Communication Networks]: Network Protocols—Appli-
cations

General Terms
DESIGN, ALGORITHMS

Keywords

Resource discovery, ubiquitous computing, mobile ad hoc
networks, autonomous, adaptive

1. INTRODUCTION

*This work was supported by BT Labs, Martlesham, as part
of the UCL@Adastral Park, MARS project.

Stephen Hailes
Dept. of Computer Science
University College London

Gower Street, London
WCI1E 6BT, United Kingdom

s.hailes@cs.ucl.ac.uk

Cecilia Mascolo
Dept. of Computer Science
University College London

Gower Street, London
WC1E 6BT, United Kingdom

c.mascolo@cs.ucl.ac.uk

The pervasive computing vision is one in which the every-
day environment becomes populated with embedded micro-
processors, and where that computing is invisible to users.
It comes as a surprise to most people (and a testament to the
invisibility of these devices) that the average household in
the developed world already possesses in the order of 40-50
processors — some cars alone possess in excess of 60 separate
processors. Over 250 million 8 bit processors are sold every
month, dwarfing the sales of anything produced for conven-
tional computers: less than 2% of microprocessors are des-
tined for PCs, and that proportion is falling. Few of these
embedded microprocessors are currently networked; how-
ever, the decreasing cost of wireless networking and the de-
veloping range of different wireless technologies means that
this is about to change. Given the scale of deployment this,
in turn, opens a huge potential market, in which return on
investment will be driven by the provision of novel joined-
up services that enhance the capabilities of these devices'.
Consequently, service (or, more generally, resource) discov-
ery and management are necessarily vital components in the
realisation of the ubiquitous computing vision, and a key en-
abler for the generation of revenue streams.

Resource discovery is, conceptually, relatively simple. A
service advertises its attributes and location in some form of
a distributed directory; a client queries the same distributed
directory, specifying the attributes that it desires. Imple-
menting this simple dialogue is, however, complex. Amongst
many other things, there is a need to decide: how the at-
tributes should be expressed, [2]; what should be the form of
the distributed directory used; where to place information
about services and how that information should be moved
around the system, [3]; and how to secure access to that
information. More generally, ubiquitous computing systems
operate in a domain of uncertainty; huge heterogeneity, huge
scale, and great dynamicity are expected. Many devices are
likely to be very resource poor and yet will be complex to ad-
minister, since the number, types, and precise attributes of
the services in use will change frequently, as devices change
context of operation. As a result, autonomic mechanisms for
resource discovery and configuration are important in reduc-
ing the cognitive load on naive human users who would oth-

Permission to make digital or hard copies of all or part of this work for erwise be expected to select from a wide and ever-changing
personal or classroom use is granted without fee provided that copies aremnge of services and then manage dynamic access. Au-

not made or distributed for profit or commercial advantage and that copies tonomy is essential to fulfill the requirement of unobtrusive
bear this notice and the full citation on the first page. To copy otherwise, to Y a

republish, to post on servers or to redistribute to lists, requires prior specific OPeration.

permission and/or a fee. T~ .
2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing ~Given the current state of both radio and broadband tech-

Toronto, Canada nology, we do not expect large returns from simply providing
Copyright 2004 ACM 1-58113-951-9$5.00. connectivity.

The effects on resource discovery are severalfold:

e An ubiquitous computing resource discovery protocol
must be distributed, available at many points in the
network, and highly scalable, in order to cope with the
potential number of resources available.

e Users can be expected to possess a variety of devices
that range from very resource poor to resource rich.
They will expect largely device independent interac-
tion using common interfaces in which human inter-
vention must be minimal to reduce confusion. Clearly,
capabilities such as memory, processor speed and band-
width should be exploited where these exist.

e The communication model will influence the design
of the resource discovery protocol. There is no sin-
gle communication paradigm for ubiquitous computing
and the communication model in operation depends
upon several factors: the network technology used, the
relative mobility of the nodes and the availability of a
fixed infrastructure. In a situation where nodes have
low relative mobility and there is a base station in the
vicinity then the most obvious configuration is that of
a wireless Local Area Network (LAN). Mobile Ad hoc
Networks (MANETS) do not require the presence of a
base station and, in some circumstances, it is feasible
to form a MANET even if nodes have relatively high
mobility, or are failure-prone, provided that there is
cooperation (which can be negotiated on-the-fly). In
reality, and particularly in less well developed areas,
the network is unlikely to conform to one model or
the other: the communication model might be mixed,
with areas of the network that have fairly good sta-
bility and reachable infrastructure, and other areas in
which there are neither.

Following from the requirements outlined above, a re-
source discovery protocol must be adaptive, providing up-to-
date resource information over a range of network topologies,
despite the frequent failure or unavailability of devices, ser-
vices and the links between them. It must accommodate and
exploit the heterogeneity of participants, whilst still serving
information about a large number of fast-changing resources.

In the remainder of this paper, section 2 contains an anal-
ysis of current approaches to resource discovery. Following
this discussion, section 3 contains a description of RUBI, our
resource discovery protocol, which has been designed to ad-
dress the requirements identified above. Section 4 contains
a critical analysis of RUBI compared with the service dis-
covery protocols reviewed in section 2. Section 5 concludes
the paper with an outline of proposed future work.

2. PREVIOUS WORK

Existing resource discovery protocols can be categorised
according to whether a global index of resources is main-
tained centrally, a distributed index is maintained, or re-
sources are discovered as they are needed. The main pur-
pose of maintaining a central directory is to provide efficient
management of a large number of resources. Jini [16] con-
forms to this architecture, assuming a stable, fully routed,
underlying network and the presence of a reliable node to
act as the directory. These assumptions are valid for Jini as
it was developed for use in fixed networks but it may not

fit an ubiquitous computing environment where the topol-
ogy of the network is volatile and the directory may not be
reachable at all times.

Resource location mechanisms developed for peer-to-peer
networks provide interesting examples of distributed indexes.
A series of distributed filesystems based on hash tables,
known as Distributed Hash Tables (DHTs), has been in-
dependently developed, for example, [12]. INS/Twine, [1]
is a resource location service based on a DHT with nodes in
the DHT responsible for maintaining part of the hash range
which represents an index to available resources. The prin-
ciple advantages of DHT's are their scalability and efficiency.
A relatively small amount of state is maintained per node
in order to route queries; query resolution path lengths are
short, only increasing logarithmically with the number of
nodes in the network. However, it is unlikely that the in-
tegrity of a DHT can be maintained easily where there is a
high node or link failure rate without a significant message
transmission overhead. This issue is addressed in the search
protocol used in JXTA [15] which is based on a DHT but
differs in that it is ’loosely-consistent’. A certain amount
of inconsistency is tolerated because hash table indexes are
replicated at neighbours and, if a node fails, a request re-
solver can inspect the indexes closest in range to the target.
Although this algorithm can tolerate a certain level of node
failure, the message overhead increases as the distributed
index becomes increasingly inconsistent. The DHT may be-
come unusable in conditions of high relative node mobility
that characterises some ubiquitous computing operations.

In [8] the resource discovery protocol maintains a dis-
tributed index of resource information but global resource
information is replicated in each directory. The protocol is
designed for use in a MANET and is integrated with the un-
derlying, proactive routing protocol. Nodes with the great-
est transmission range are used as both directory agents and
routers. The routing algorithm may not be suitable where
nodes have a high link failure rate as the overhead of electing
and maintaining the directories will be too great.

Konark [6], UPnP [9] and SLP [4] allow discovery of re-
sources on demand. They are all adaptive in the sense that
they can make use of a pre-configured, centrally located
server, although they do not rely on the presence of such an
entity; any node may choose to act as a directory and pub-
lish requests. The resource discovery algorithms are simple
but again, they rely on a fully routed network infrastruc-
ture which may not be available in a pervasive computing
environment.

3. RUBI

RUBI, our resource discovery framework for ubiquitous
computing, represents a novel approach. This is primar-
ily because it encapsulates an overarching adaptive process,
controlling the way that information is disseminated and
retrieved, based on local views of the structure of the net-
work. The design of RUBI is founded on the hypothesis that
there are significant similarities between resource discovery
in a network and the operation of a routing algorithm, since
both are fundamentally concerned with the dissemination of
information about the availability and efficiency of access to
resources. It is, therefore, our contention that the lessons
learned in this domain can be applied more generally and,
indeed, that the regular exchange of routing information can
form the basis for the exchange of more general information

about services.

Within the field of mobile ad hoc networking, there are,
broadly, two different approaches to the dissemination of
routing information. The first is proactive, in which tables
of forwarding paths are periodically exchanged, as in fixed
network routing algorithms such as OSPF, [10]; the second is
reactive, in which information about routes is determined on
an as-needed basis such as in DSR and AODV, [7, 11]. These
different approaches are useful in different circumstances.
Thus, for example, in areas of high relative mobility, routing
information becomes outdated rapidly, so reactive discovery
is more likely than proactive to give a good answer. In areas
of low relative mobility, proactive dissemination of informa-
tion is more efficient, since little changes. Unsurprisingly, a
range of hybrid approaches to dissemination have also been
developed; ZRP, [5] is an example.

The same distinction between high and low relative mo-
bility is important in more general service discovery: the for-
mer means that efficient placement of service information is
difficult and expensive, the latter that it is reasonable to ex-
pend cycles in order to ensure efficient lookup. In line with
this, in areas of low relative mobility, RUBI uses a discov-
ery mechanism based on a proactive routing algorithm and
resources are advertised throughout the network. In regions
of high relative mobility, where it is possible to guarantee
neither the availability of a node that will act as a directory
nor the accuracy of resource information, RUBI initiates dy-
namic resource discovery using a reactive protocol and dis-
covers resources as they are needed. It is important to note
that RUBI allows nodes to make local decisions about which
of these approaches it will adopt at any given point: in other
words, within a large connected network, there are expected
to be dynamically defined and dynamically changing areas
of proactivity and of reactivity that must interwork to al-
low seamless service discovery for clients. This approach is
reflective of the fact that it is unreasonable to expect net-
working environments to be either entirely static or entirely
free moving.

The ability to adapt also means that RUBI is resilient
to failure over the wide range of network conditions that
may be found in an ubiquitous computing environment and
can operate in both infrastructure-based and mobile ad hoc
network types, migrating seamlessly between both. RUBI
has been designed to operate at either the network layer
of the OSI model or above the transport layer. It relies
on the services provided by a link layer protocol such as
802.11 but does not require a routing protocol or a reliable
transport service: as RUBI is based on routing protocols, it
can provide this functionality if needed.

In the following section, we examine the detailed opera-
tion of RUBI. For the sake of clarity we break this down
into four key aspects: the proactive and reactive discovery
mechanisms themselves; the local decision procedure that
determines which type of service advertisement and discov-
ery to use; the issues in ensuring interoperation between the
different discovery mechanisms; and the issue of failure.

3.1 Discovery operation

The two ad hoc network routing algorithms selected as a
basis for RUBI are OLSR [14], which is a proactive algo-
rithm suited to fairly stable, densely populated networks,
and AODYV, a reactive protocol suited to networks of up to
thousands of nodes in size, where the population of nodes

may have a relatively high mobility rate. These algorithms
have been chosen because they integrate well in situations
where both are running in close proximity: both algorithms
allow nodes to cache resource information and requests can
be answered by an intermediary that is not the resource
provider yet has up-to-date cached information. There are
four message types used in RUBI and these are resource ad-
vertisements, resource cancellations, resource requests and
replies.

The two resource discovery algorithms process these mes-
sages differently. The proactive resource discovery algo-
rithm uses information from the neighbour establishment
process described in section 3.2 and each node elects a sub-
set of its neighbours as relays. Relays are highly-connected
nodes responsible for propagating resource information fur-
ther through the network using other relay nodes in turn.
In this way, the use of relays enables optimised flooding of
messages, reducing the transmission costs of distributing re-
source information as compared with classic flooding.

Key:
IE Node acting as a relay

O Node

Figure 1: Proactive Resource Advertisement

Figure 1, shows proactive resource advertisement as a se-
ries of steps with the arrows representing message transmis-
sion. In Figure 1(a), node a broadcasts a resource advertise-
ment which will be received by relay E. The relay may not
forward the advertisement immediately but will periodically
construct and forward composite advertisements that con-
tain details about all the resources available at those nodes

directly connected to it. Figure 1(b) shows the resource ad-
vertisement being forwarded in turn by relay E to its own
relay set. Finally, in Figure 1(c), an advertisement is for-
warded to all the neighbours of relay F' and relay I. At this
point nodes in the network will know about every resource
available through relay E. Although resource advertisements
are distributed periodically, the period may vary in length
depending on whether there have been any changes in ei-
ther the neighbour membership or the resources available.
If changes are detected by a relay then the resource adver-
tisements will be more frequent. The overhead of caching
resource information is only incurred by relays, although any
node may store the resource details it receives. In the case
where a node has chosen not to cache resource information
then it will send a resource request message to its relays as
needed and the relay nodes will respond with reply message
if the resource exists.

A resource cancellation message received from a resource
owner will be treated in the same manner as an advertise-
ment. The relay receiving the message will update its cache,
this time deleting the resource details, and subsequent re-
source advertisements will reflect the change.

Proactive discovery is a good strategy for regions where
nodes have low mobility. The primary reason for this is that
current information about resources is maintained at many
points: in this case, wherever there exists a relay.

Reactive resource discovery is achieved by maintaining re-
source information in the network for recently queried re-
sources only. Unlike proactive discovery, all nodes are re-
sponsible for maintaining their own caches of resource infor-
mation. A client needing to locate a resource initiates a re-
quest that is flooded through the network. The scope of the
request, in terms of the number of hops it traverses, is con-
trolled by a time-to-live (T'TL) value and nodes can perform
an Expanding Ring Search (ERS) by repeating the request
with a higher TTL if there is no response initially. In this
way, the overhead of finding a resource in terms of the total
number of messages generated is reduced in circumstances in
which a resource is available nearby. Any node that receives
a request and owns, or has learnt about, a matching resource
may reply to a request; this reply is then unicast back to the
client with information about the distance of the resource
holder in hops from the responder. Any node operating the
reactive discovery algorithm will ignore resource advertise-
ment and resource cancellation messages, only processing
requests and replies. Reactive discovery is a good strategy
for areas where nodes are fairly mobile and the overhead of
maintaining accurate resource information throughout the
region would carry a high message transmission overhead.

For both algorithms, routes to nodes serving resources
could be constructed if necessary just as they would be
in the normal operation of the routing algorithms used as
a basis for RUBI. In the case of the proactive algorithm,
routes would be calculated as resource advertisements travel
through the network; whereas for the reactive algorithm,
routes would be calculated at the same time as request mes-
sages are forwarded.

3.2 Neighbour establishment and algorithm
selection
Having seen that RUBI can operate in individual areas
of proactivity or reactivity, we need to consider how a node
determines to which such area it belongs. Each node must

be capable of making this decision in an autonomous fash-
ion, based on the information it is able to glean from its
immediate locality. A node will only use a proactive re-
source discovery algorithm if the links with its neighbours
are sufficiently stable, that is to say, they have remained
neighbours for at least the duration of a given threshold
value. For RUBI, the optimum range for this threshold will
be determined through simulation.

Although neighbour establishment represents an overhead
in terms of the resource discovery process, in that it does not
directly contribute to it, it serves an important purpose. The
objective of neighbour establishment is twofold. Firstly, as
with OLSR, it enables nodes to ascertain the most efficient
method of disseminating the protocol, (resource discovery)
messages through the network. Essentially, this is achieved
by electing nodes with the greatest transmission capability
and the highest number of links in the locality to act as re-
lays thus ensuring that messages are propagated through the
network with the minimum number of retransmissions, an
important consideration for power-constrained nodes. Sec-
ondly, in RUBI, neighbour establishment allows each node
to monitor the longevity of links in its immediate locality
and, based on the perceived stability, to autonomously se-
lect the most efficient resource discovery algorithm to use.

In RUBI, the neighbour establishment process used is ex-
actly the same as that used in the OLSR routing algorithm.
A RUBI node broadcasts HELLO beacons periodically and
the receiving nodes use these as a way of building up a pic-
ture of the local topology to a 2-hop distance. Each HELLO
message contains a willingness value and a list of the node’s
neighbours. Willingness is expressed as a numeric value be-
tween 0 and 7 representing the amenability of the sender
to fulfill the role of a relay by forwarding messages, caching
resource location information and responding to resource
discovery requests. A limited amount of information about
neighbours is also passed on with their identity and neigh-
bours are categorised according to whether the sender has
selected the neighbour as a relay. In this way, each node
can build up a picture of both its immediate neighbours,
and those neighbours 2 hops away (that is to say, its neigh-
bours’ neighbours). It will also learn whether it has been
selected as a relay by the originator of the HELLO message
and should fulfill the relay function for that neighbour. In-
formation about both immediate and 2-hop neighbours is
stored by nodes in a neighbour table and a 2-hop neighbour
table and these tables are updated with every HELLO mes-
sage received. Entries are associated with an expiry time
and will be removed from the table if no update arrives.

The heuristic used by each node to select the subset of its
neighbours to use as relays can be summarised in 3 steps.
Firstly, all neighbours advertising the maximum willingness
value are automatically selected as relays. Secondly, neigh-
bour nodes that are the only nodes through which a 2-hop
neighbour is (or neighbours are) reachable are added to the
set. Finally, neighbours through which the remaining nodes
in the 2-hop group can be reached are included in the relay
set. If there is more than one neighbour node that fulfills
this condition then the one with the greatest number of links
is chosen.

Relay selection is illustrated in Figure 2 and in this ex-
ample, the selection process for node Z is described. It is
assumed that neighbouring nodes have bi-directional com-
munication. The transmission coverage for node Z is shown

as a circle with a solid circumference and node Z’s neigh-
bours are w, x and A. The circle with a dotted circumference
represents the transmission coverage for node A. Node A is a
base station and has much greater transmission capabilities
than the other nodes surrounding it. node A’s neighbours
are b,c,d,e,f,w and Z. Assuming that node A sends node Z a
HELLO beacon containing the maximum willingness value
it will be selected by Z as a relay. Using the neighbour
information contained in the HELLO beacon from node A,
node Z can tell that it can reach all of its 2 hop neighbours
apart from node Y, through A. Assuming that node Y can
only be reached through node z, node x will be added by Z
to its relay set. At this point, calculation of the relay set
is complete as all neighbours and 2-hop neighbours can be
reached. When node Z constructs its own HELLO beacon
it will set a flag indicating that it has chosen node A and
node x to act as relays on its behalf.

o0

Key:

o Node

é Base Station

Figure 2: Neighbour Establishment for Node Z

{4 The transmission range of node A

O The transmission range of node Z

() The transmission range of node Y

3.3 Coexistence of proactive and reactive pro-

tocols

In order for a global system to operate, the areas in which
the different approaches to service discovery are deployed
must interwork. Since, by definition, such areas will bor-
der one another, there must be adjacent hosts that consider
themselves part of different types of area and can act as
gateways between the areas. In most cases, operation be-
tween the proactive and reactive regions at gateway nodes
is seamless, but there is one scenario in which the proactive
protocol must be modified. A simple alteration is proposed
in the first instance.

In Figure 3, there is a user at node a in the region where
the proactive resource discovery protocol is used that wishes
to know about a printing service. Thus, as node a is already
aware of all the resources available in the area, (or can find
this out from relay D), it is aware that that there is no such
resource available. In this case, it is necessary to forward the
query into the reactive region and node a attempts to search
beyond the bound of the immediate area by forwarding the

request according to the rules of the reactive algorithm. This
is achieved by setting a flag in the resource request message
to indicate that it should be dealt with in the same way as
the reactive protocol and the request is broadcast onwards.
At node g, the request is satisfied, and a reply is constructed
and returned along the route of the request.

Key:

@ Node acting as a relay

Reactive Region

Figure 3: Integrated Discovery Protocols

3.4 Recovery from failure

Failures can be categorised as those in which a resource
ceases to be available, and those where a node, and there-
fore all the resources it offers, is no longer available for some
reason. The freshness of resource information in RUBI is
maintained in the same way as in Jini. That is to say, any
resource information cached is associated with an expiration
period, after which it is deleted. If a resource becomes un-
available before the expiration period has elapsed then the
information served will be incorrect. Where a reactive al-
gorithm is in operation, there is no simple way to detect
whether the resource remains available throughout the ex-
piration period. This is because a resource request may be
answered by nodes that have recently cached information,
rather than by the resource owner. If a proactive algorithm
is used, resource failure detection may be more accurate as
it is possible for a resource owner to distribute a resource
cancellation message. As a result, a relay can delete re-
source information and will not distribute it with the next
advertisement. RUBI has no special recovery procedure for
resources that go offline and return a short while later and in
this case, resource owners will register resources with relays
in the usual way if a proactive algorithm is in use.

A node that notices a change in its local topology, such
as the disappearance of a link to its neighbour, will perma-
nently delete the neighbour from its database along with
any resources hosted on it. Incorrect information regarding
the availability of the failed node and its resources will re-
main in the network until either, a resource advertisement
is propagated that reflects the change or, information about
the node and its resources expires.

In terms of resource information availability, the proactive
algorithm is resilient in the face of relay failure and if one
or more of a client’s relays fails, a client can still have its
queries answered by any remaining relays in its set. In the

situation in which a relay comes back online after a short dis-
appearance, there are several possible recovery mechanisms.
A relay that temporarily loses connectivity could request
resource information from one of its own relay set when it
comes back online and if the RUBI node is also providing
route information for the resources it has then this can also
be requested.

4. DISCUSSION

In this section, RUBI is compared with the other resource
discovery protocols described previously in section 2 and
the advantages and disadvantages of the RUBI framework
are evaluated. Unlike the other resource discovery proto-
cols reviewed, RUBI has been designed with an ubiquitous
computing environment in mind. The novel design of RUBI
reflects a tradeoff between the ability to adapt dynamically
based on knowledge of local conditions and the efficiencies
gained by assuming a fairly stable environment. Adaptabil-
ity comes at a cost and RUBI must periodically monitor the
duration of neighbour links to assess the stability of its lo-
cality. This represents an overhead in terms of bandwidth
consumption that the resource discovery protocols reviewed
do not incur as they assume a fully routed infrastructure.
Furthermore, RUBI will not achieve the efficiency of those
service discovery protocols that cache information centrally
(Jini) in terms of the number of messages transmitted in
order to maintain an up-to-date view of resources. Neither
will it attain the scalability of those protocols that maintain
a distributed index such as INS/Twine. In RUBI, informa-
tion is cached at many more places in the network, incurring
additional resource overhead to update the information in
each cache.

5. CONCLUSIONS AND FURTHER WORK

Resource discovery will be a key factor in enabling the
ubiquitous computing vision where the devices embedded in
our surroundings autonomously cooperate to discover and
provide services with minimal human intervention. By iden-
tifying the features that typify operation in such an envi-
ronment, it has been possible to design a resource discovery
framework that is well-suited to it, namely RUBI. Primarily,
the applicability of a resource discovery algorithm depends
on the features of the network in which it is operating. For
ubiquitous computing, the network is characterised by re-
gions that are fairly stable possibly coexisting with regions
where nodes are highly mobile and failure-prone. RUBI rep-
resents a novel approach because it is based on routing algo-
rithms, thus ensuring the efficient dissemination of resource
information. Furthermore, RUBI is adaptive and, by moni-
toring the network in the locality, nodes autonomously select
the most suitable routing algorithm to use.

In the future, the performance of RUBI will be evaluated
through simulation under different network conditions, vary-
ing the network size, node degree and node mobility level
and the number of resources and requests. Furthermore, a
series of design improvements will be assessed. As a starting
point, the protocol integration in RUBI is too simplistic with
relays flooding requests through the proactive region if they
cannot be resolved. It would be more efficient to unicast re-
quests to a gateway node that borders the proactive region
and a means of achieving this will be explored. Finally, the
security of the RUBI protocol will be addressed by integrat-

ing it with it with ADAM [13], a middleware architecture
for distributed access-control.

6 REFERENCES

[1] M. Balazinska, H. Balakrishnan, and D. Kargar.
INS/Twine: A scalable peer-to-peer architecture for
intentional resource discovery. In Proc. of the International
Conference on Pervasive Computing (PERCOM 2002).
Springer-Verlag, 2002.

[2] D. Chalmers, M. Sloman, and N. Dulay. Map adaptation for
users of mobile systems. In WW W10, pages 735744, 2001.

[3] K. Cheverst, N. Davies, K. Mitchell, and A. Friday.
Experiences of developing and deploying a context-aware
tourist guide: the GUIDE project. In Mobile Computing
and Networking, pages 20-31, 2000.

[4] E. Guttman. Vendor Extensions for Service Location
Protocol, Version 2, Network Working Group, Request for
Comments: 3224. http://www.ietf.org/rfc/rfc3224.txt,
2002.

[5] Z. Haas. A new routing protocol for the reconfigurable

wireless networks. In Proc. of the IEEE Int. Conf. on

Universal Personal Communications, 1997.

S. Helal, N. Desai, V. Verma, and C. Lee. Konark A

Service Discovery and Delivery Protocol for Ad-hoc

Networks. In Proc. of the Third IEEE Conference on

Wireless Communication Networks (WCNC), New

Orleans, 2003.

(7] D. Johnson, D. Maltz, and Y.-C. Hu. The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR),
IETF draft. http://www.ietf.org/internet-drafts/
draft-ietf-manet-dsr-10.txt, 2004.

[8] U. C. Kozat and L. Tassiulas. Network Layer Support for

Service Discovery in Mobile Ad Hoc Networks. In Proc. of

IEEE INFOCOM, San Francisco, USA, 2003.

Microsoft. Understanding UPnP: A White Paper. http:

//www.upnp.org/download/UPNP_UnderstandingUPNP.doc,

2000.

[10] J. Moy. OSPF Version 2, Network Working Group, Request
for Comments: 1583.
http://www.ietf.org/rfc/rfc1583.txt, 1994.

[11] C. Perkins, E. Belding-Royer, and S. Das. Ad Hoc
On-demand Distance Vector (AODV) Routing, Network
Working Group, Request for Comments: 3561.
http://www.ietf.org/rfc/rfc3561.txt, 2003.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scaleable content-addressable network. In
Proc. of ACM SIGCOMM 2001, San Diego, California,
2001.

[13] A. Seleznyov, M. Ahmed, and S. Hailes. ADAM: An
Agent-based Middleware Architecture for Distributed
Access Control. In The Twenty-Second International
Multi-Conference on Applied Informatics: Artificial
Intelligence and Applications, pages 200 — 205, Innsbruck,
Austria, 2004. IASTED, ACTA Press.

[14] E. T. Clausen and E. P. Jacquet. Optimised Link State
Routing Protocol (OLSR), Network Working Group,
Request for Comments: 3626.
http://www.ietf.org/rfc/rfc3626.txt, 2003.

[15] B. Traversat, M. Abdelaziz, and E. Pouyoul. Project
JXTA: A Loosely-Consistent DHT Rendevous Walker.
http://www. jxta.org/project/www/docs/jxta-dht.pdf,
2004.

[16] J. Waldo. The Jini architecture for network-centric
computing. Communications of the ACM, 42(7):76-82,
1999.

6

[9

