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Abstract

In recent years there has been an explosion in the avaijabflidata sets about
colocation between individuals and connectivity with sfiecetwork infrastruc-

ture access points, from which user location can be inferfBuese traces are
usually collected through mobile devices equipped withrishenge radio inter-

faces, such as Bluetooth. Their potential is enormous asnuseement data can
be mapped onto the geographical space and the social itersof individuals

can be extrapolated from the colocation data. Quite intiewgly, some of these
data sets also contain a description of user profiles, sutheamterests of the
person, his/her age and gender and so on.

In this paper we show that mobility and colocation inforroat{i.e., social inter-
actions) can be used to infer user interests by applyinglatanmachine learn-
ing techniques. We evaluate a supervised and a semi-sapdnégchnique using
two different data sets containing information of intefr@aes amongst people at
conferences. We assume different degrees of availableniafiton for the infer-
ence problem and show that we are able to predict peopl&seists with good
accuracy also when only a small amount of information abaet interests is
available. While correlation of user interests with moveitrend proximity has
already been investigated in social network researchighti first work that uses
machine learning to show this quantitatively.

1 Introduction

While social network studies have established the corogldtetween human movement and prox-
imity with human interests [17], no quantitative large sasthave ever been attempted to consolidate
the credibility of this theory. With the soaring availabilof data sets containing information about
people’s contacts and movements, empirical studies of humahaviour, social interaction and mo-
bility have become possible [5, 7]. The available data sE3% ¢ontain traces of contacts between
mobile devices carried by humans, identifying the intecaxst between devices and the fixed in-
frastructure, thus giving the location of the individualSometimes, these data sets also contain
information about the user interests, gender, membersfsptutions and so on, allowing for an
analysis of the relationships between people social intiem@s and their (common) interests.

In this paper we investigate the problem of inferrimgr interests from information about their ge-
ographical location and social interaction over time, byameof supervised and semi-supervised



machine learning techniques. The goal of this work is notrtgppse new machine learning tech-
nigues but to adapt existing ones to this novel applicatmmain. First, we assume that full knowl-
edge about user interests is available and we appl¥ thearest neighbours [8] classification al-
gorithm to infer them, proving that a priori knowledge abthé movements and the interests of a
population can be used to infer the interests of a genericaigbat population given his/her move-
ment patterns. More specifically, our approach is based erexiploitation of a similarity graph
among the movement patterns of the individuals considetiffigrent representations based on fre-
guency and residence duration in a certain location (medsby means of proximity with base
stations) and close proximity (measured by means of skgittechnologies). Then, we assume
that partial knowledge on people’s interests is availablé &we apply a semi-supervised learning
solution based on Gaussian Fields and Harmonic Functid®isft label propagation in graphs.
Both approaches are evaluated on two large data sets eallectwo different conference environ-
ments (Infocom [18] and HOPE [2]) with the use of Bluetootiuipped mobile devices and RFID
transponders respectively. The data sets also contaimiattmn about the users, which was col-
lected through questionnaires. The evaluation shows thadne able to predict people’s interests
with good accuracy also when only a small amount of infororaiibout user interests is available.
We show that we are able to achieve an average accuracy ardd%dind 80% respectively for
the two data sets using the supervised learning tecniquigls.rgépect to semi-supervised case, we
demonstrate that 5 to 20% of information is sufficient to eehiresults comparable to the supervised
learning case for these two data sets.

2 Description of the Inference Algorithms

In this section we describe the algorithms that we use ta imder interests from colocation traces.
We choose to use well established techniques and demenktratthese can be employed in this
problem domain of inferring people interests given knowledf their interactions and geographical
positions over time.

2.1 Similarity Graphsand Mobility Representations

As we mentioned, starting from data about the user locagan (its proximity to an access point)
and users interaction (e.g., through the detection of edtwdr's Bluetooth signals), our approach
aims at identifying similarity of users and predicting thieterests.

We define a data s&® = {(x;,v;),i = 1,...,m} with m equal to the number of users. We use
a multi-dimensional vector; € R¢ to describe a person’s mobility and interaction behavieur a
explained belowy; € {+1, —1} indicates an interest label. The valueygfs equal to+1 if a user
has expressed that interest] otherwise. Using this model, we can construchanode similarity
graphG = (V, E). The weight associated to a generic edge between hadé nodej is equal to
the similarity values between two data poimtsz;. The similarity is defined as the inverse of the
Euclidean distance between these two data points. Morealtyrngonsidering two uselisandj we
define these quantities déstance; ; = ||x; — x;|| andsimilarity; ; = 1/ (distance; ; + 1).

Hence, edges between points which are close to each other Buclidean space will be assigned
large weights in the graph. For our purposes, we define aneriexent with three different simi-
larity graphs which correspond to three mobility repreatans extracted from different movement
measurements and depending on different constructiomeafdctor:

Frequency: The definition of thefrequency representation involves adding to each feature af
value equal to the times a person has visited a specific totalihe latter implies that the dimen-
sionality of a vector is equal to the number of existing lamags. This information can be extracted
by means of fixed base stations.

Duration: Next, we build theduration representation where the frequency metric is replaceddy th
total residence time an individual has spent in a locatidso Ahis information can be extracted by
means of fixed base stations.

Colocation: Finally, we derive a third similarity metric, where eactgedn the mobility grapit is
being weighted according to the total time two users werlcated during the period of the experi-
ment (i.e. colocation). The latter captures a person’s close social interactidhis information can



be extracted by means of short-range radio technologi¢sau8luetooth (the transmission range
is under 10m).

2.2 Supervised Learning

Overview Supervised learning is a branch of Machine Learning thalsdeth the problem of
defining a predictor functiorf that relates two different data space®; which is defined as the
input space an@’ which is the output space. In general,and) are presented in the form of the
training set of input and output pait3 = {(x;, y;) ,¢ = 1, ..., m} with 2; andy; being members of
X and) respectively.

The assessment of the solutighi supervised learning requires two additional definitidesr any
point z; the solution off predicts an answef(x;). We are interested in how far this prediction is
from the actual output labegl. This distance is expressed through the loss funetigrix;) , y;). In
the context of binary classification the loss function cée tiavo values; O for correct prediction or 1
otherwise. The empirical error, which is the applicationhef loss function over the whole training
set, is then defined as follows:

m

Zf(f(l’i)ayi)

i=1

1
Remp - m
In addition, we define the generalization error for pointshich do not belong to the training sbt
as a mean for assessing the quality of the solufifor new inputs:R g, (f(x)) = Ex 4 [¢(f(z), v)].
whereE;, ,[.] is the expectation with respect to péir, y). The generalization error is the principal
metric used to assess the performance of a supervisedrigasolution. In the next paragraph we
describe the predictor functighand in Section 3 a method to estimate its generalizatiom.erro

k Nearest Neighbors Based Interest Inference The k nearest neighbors algorithm ¢-N N) [8]

is one of the simplest Machine Learning algorithms. The jotemh function f («;) for a given data
pointx; is equal to the average of the labels of khdosest points ta;;. We have implemented and
run the algorithm for the different values of the paramé&ter

We conjecture that a good strategy for inferring peopleterists is to consider those that have
similar mobility behaviour (i.e., the nearest to them immerof mobility patterns). In this work we
consider the prediction of each interest independent frach @ther, but the model can be extended
to include the other interests in the prediction model. Morenally, we predict a generic interest
of useri as follows:

i1
+1, if NG| ZjeN(i) y; 20
flx) =

—1, otherwise

wherey; is equal to+1, if userj is interested and-1 otherwise. N (i) is the set of the: closest
neighbours of.

2.3 Semi-supervised Learning

Overview In the semi-supervised learning scenario we investigae#se of predicting interest
preferences of individuals when only a subset of labelsadavle with respect to the population of
existing data points. This corresponds to the case whezeesttinformation is available only about
a (potentially small) portion of users.

Let us consider the data sdd and suppose that we have a detwith [ label points
(z1,41), .., (z;, y1) and a set with u unlabeled points;; 1, ..., z;+.,. Moreover, let us suppose
that we have a grapf = (V, E)) with nodesV including the set of alin data points\ = L + U).
The edges are weighted according to the similarity metrics defined.th Zrhe goal of a semi-
supervised learning algorithm is to exploit the connettief all nodes inG in order to predict the
labels of the unlabelled points .
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Figure 1: Performance of frequency representation oveighbeurs and distribution of interests in
population.

Label Propagation for Interest Prediction with Partial Availability of Information To solve
the problem of predicting the labels of pointslih we consider a solution proposed in [19] which
defines a Gaussian Random field model on the g@phhere the mean of the field is characterised
using a harmonic functiorf : V. — R. The intuition behind this approach is that the value
of neighbouring points in the graph have similar values. faemonic property of the function

f suggests that the predicted value of an unlabelled data pambe calculated considering the
average of the values of its neighbours:

1 .
f(zi)d—igwijf(zj), fori =141, l+u
i#]

whered; is the total sum of the weighted edges of node the graph, whilew;; is equal to the
similarity value between nodeésandj. Since the definition of our problem falls into the binary
classification paradigm anflreturns real values, we simply predict a lakdl (i.e., the person is
interested ) iff (x;) > 0 or —1 otherwise.

3 Evaluation

3.1 Data Sets

The two data sets (AMD HOPE and Infocom 2006) were collectddpendently and from different
organizations. In both cases, experimenters used motraitking technologies to monitor the pres-
ence of people in a conference environment. Hence, thesesttantain time-stamped information
about the location of each user throughout the period of timéezence. In addition to the mobility
information, participants at the conferences were askeesjpond on questionnaires relevant to the
topic of the conference. In other words, these traces reptesiique multi-dimensional data sets
for the evaluation of the proposed inference algorithms.

Infocom 2006 This data set was collected at the IEEE Infocom 2006 conéerefhe event lasted

4 days. Scott et al. [18] distributed a set of imote devicesQstudents and researchers. Imotes
are Bluetooth capable devices, which are able to recordrsepce of other devices close to them.
Another set of long range static imotes were deployed at yAd@tions in the conference area.
As in the AMD HOPE data set, using data collected from thécsbatotes, user location is known
throughout the study. Additionally, a questionnaire (3&sfions) was provided to the participants,
calling them to express interests with respect to their afexpertise. As in the AMD HOPE data
set, only a subset of users filled the questionnaire. Fordhia set, however, we have a bigger
sample when compared to the total population (61 out of 70).

AMD HOPE AMD, or "Attendee Meta-Data”, is a project that aims to exglpotential uses of
RFID technology. The AMD Last HOPE ( Hackers On Planet Eadinference [2] was an attempt
to show how RFID tags could be used within a conference enrient to enhance the experience of
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Figure 2: Infocom data set interest prediction results f& 4nd 10 nearest neighbor cases.

Interest: "Ad Hoc Nets” "Multimedia” "Sensor Nets” "Sectyf "Traffic Analysis” (mean)

Colocation 0.54 0.85 0.83 0.62 0.67 0.78
Frequency 0.62 0.85 0.83 0.70 0.60 0.78
Duration 0.72 0.86 0.85 0.70 0.63 0.79
Random 0.50 0.77 0.72 0.58 0.55 0.71

Table 1: Infoconb-N N prediction performance for 5 interest samples & overallmea

the attendees. People wearing tags were tracked for theeotithree days. Moreover, participants
were asked to express their interests on an online form. R¥fiDexpressed interests were used
by the organizers of the conference to help people in netwgrkRFID readers were deployed at
21 locations throughout the conference area for trackiegptrticipants. The questionnaire form
contained a list of 21 interests and users were called tosghabmost 5 among those. Despite the
fact that the overall number of users who have used RFID tags %281, only 410 of them decided
to fill the questionnaire. Hence, for the purposes of thegirework, we have used only this subset
of users.

3.2 Experimental Results

We present our experimental results over the two data sethdécsupervised and semi-supervised
learning techniques. We solve a multi-label classificapooblem: for both cases the number of
binary classification tasks is equal to the number of interies each data set. That is 21 for AMD
HOPE and 35 for Infocom 2006.

Supervised Learning We estimate the generalization error of #eearest neighbours algorithm
with the leave-one-out error technique comparing it to alcen predictor (see also in [8]). The
technique is an unbiased estimator of the generalizatimr ef the learning algorithm. As the
name implies, we calculate the error of the loss functioarresponding to point; by training the
function f for all input-output pairs bufz;, y;). More formally, the leave-one-out error is defined
as:

Rioo(f) = o Zf(fi(fﬂi)a Yi)

wherem is the number of data points arfd suggests that was derived by excluding pait:;, ;)
from the training set. We use the notiongbbability of correct interest prediction which is com-
plementary to the leave-one-out error estimator.

We plot curves with results for the three representatioas éine used for the construction of the
mobility graphs:frequency, duration andcollocation. We compare the performance of those with a
random prediction case, in order to demonstrate how mobility infation can be used to improve

the accuracy of the inference task. Taadom prediction is calculated using the following equation:
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Figure 3: AMD HOPE data set interest prediction results {d &nd 10 nearest neighbor cases.

Interest: "New Technology” "Ethics” "Privacy” "Cryptogmhy” “Network Security” (mean)

Colocation 0.59 0.79 0.63 0.57 0.54 0.73
Frequency 0.49 0.83 0.61 0.61 0.58 0.74
Duration 0.53 0.84 0.65 0.65 0.52 0.74
Random 0.51 0.74 0.56 0.57 0.51 0.68

Table 2: AMD HOPE5-N N prediction performance for 5 interest samples & overallmea

Prandom (i) = (%)2 - (1 — %)2

with n number of users andhe number of times an intereswvas selected. The random predictor is
built according to a probability distribution based on thimpknowledge of selection frequency of
each interest; interests with unbalanced distributioméngopulation can be predicted more easily.
In Figure 1(right) we plot the cumulative distribution of interest selectioaquency in each data
set (i.e., how many times an interest was selected). We csarebthat some very popular interests
are selected by almost half of the two populations and thatallset of interests concern only a
few participants.

The parametek, defining the number of neighbours, plays a key role in theiawy of the algo-
rithm. We experiment witkk = 1, ..., 10. Figure 1(left) shows that the biggest improvement in
terms of prediction performance correspond to the valuegual to 3 and 5. There is no significant
increase in performance beyordV N for both data sets. An explanation of this behaviour is that
as we go beyond-N N, although the information over the distribution of inteseis a population
increases, we move away from a person’s social ties whickexgpected to share similar interest
preferences.

By comparing results presented in Figures 2 and 3 for thesaafsé, 5 and 10 nearest neighbours,
we can observe that the accuracy increases as the numbegbbaers increases. The predictor
based ork-N N outperforms the random one for valuesidbigger than 2 (with: equal to 1 and 2
we have an underfit). Another common observation for all sag that the three different mobility
representations offer very similar performance. This isbpbly due to the fact that nodes that
these three representations are highly correlated. Thadses mostly met inside the conference
venue. Therefore, there is a high proportion of the contdetscted by means of the short-range
technologies (i.e, colocation information) that is alsocareled by the access points (i.e., residence
interval duration information). Moreover, it is possible abserve a proportionality between the
duration of the contacts and their frequency. However, weeole small variations on a per interest
basis: in Tables 1 and 2 we provide a comparison of the thneeesentations and the random
predictor for a subset of interests. An additional obseplretacteristic in Figures 2 and 3 is that the
curves related to the three mobility representations atttetcandom predictor overlap in two cases.
First, as mentioned above there are a few interests withlanbed distributions whose prediction is
easy even for the random predictor. For example in the Infodataset we have prediction accuracy
higher than 90% for 20% of the interests. The second scendméoe random and mobility curves
overlap is related to a subset of interests that are verytogscedict as their choice of preference is
evenly distributed in the population and therefore the wagety associated with them is high.
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Figure 4: Semi-supervised Learning performance compafisoinfocom and AMD HOPE data
sets.

We also observe that we achieve better results for the Infid@@06 traces. This is due to the fact
that the AMD HOPE data set is relatively sparse, since maaysudid not fill the questionnarie and
were removed from the data set.

Semi-supervised Learning As far as the semi-supervised learning algorithm is corexgrior
each run we calculate an evaluation score, which is equiaétoumber of unlabelled nodes that were
predicted correctly over the total number of unlabeled sod#ith respect to the semi-supervised
learning methodology we assume that only a portion of ther@st labels are available in the data
set. The availability percentages we have experimented naiige from 1% for AMD HOPE and
3% for Infocom to 90% of the two populations. For each run efélperiment, we randomly select
a subset of the nodes in our mobility graph and assign labetisetm. We run the classification
task 50 times for each interest for the different levels ofipbknowledge available. There are two
notable points with respect to the experimental resultsgred in Figure 4. First, even with small
number of labels available high performance can be achjevieidh remain steady as we increase
the label availability ratio. That is 20% for the Infocom (tbbels out of 61 users) and 5% of labels
for the AMD HOPE (20 labels out of 410 users) dataset. Seatiedhree mobility representations
offer almost identical performance, as observed for thesuped learning case.

4 Reated Work

We view our work as part of the broader research areas of thlysis interconnections between
social and technological networks [12] and learning ovaipys [4, 9, 19]. Data from technolog-
ical networks have been exploited to investigate small dvptienomena in social networks [16],
influence of friends in purchase decisions [10, 14] and dyoswf spread of information [1]. More

specifically, machine learning techniques have been ssittlysapplied in a number of cases of
social network analysis solving problems on various aspsath as link prediction [15], group

problem solving [11] and evolution of communities [3]. Masthese works focus on online social
networks. Recently, there has also been an increasingstter the analysis of mobile networks.
The Reality Mining project [6] is a representative exam@mart phones were given to staff and
students of the MIT Media Lab and Sloan Business School tddoation and proximity data over

the course of 9 months. The authors use the information aleit movements to infer social
relationships and routines [5].

Our work investigates for the first time quantitatively tharrelation between mobility and user
profiles: we have shown how machine learning techniques eapplied to extract not only infor-
mation about relationships among users but also aboutghadites from social interactions detected
by means of short-range radio technologies.

5 Conclusions

We have presented an investigation about how machine featachniques can be used to infer
user interests from mobility patterns in conference emriments. Our approach is based on the
construction of similarity graphs of mobility patterns amgothe users. We have considered two



different cases, characterised by different percentageaifable information as a priori knowledge
for the inference algorithms and we have appliédearest neighbours algorithm for the case of full
knowledge and a label propagation technique for the casartibpknowledge. We have evaluated
the techniques using two real-world data sets from two diffe conference environments. We
have shown that we can achieve an average accuracy aroundrntt80% respectively for the two
data sets using the supervised learning tecniques. Wigeceso semi-supervised case, we have
demonstrated that 5 to 20% of information is sufficient toiew results close to the supervised
learning case for these two data sets.
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