Promile - A Management Architecture for Programmable Modular

Routers

M. Rio, N. Pezzi, L. Zanolin, H. De Meer, W. Emmerich and C. Mascolo
Dept. of Computer Science
University College London
Gower Street, London WC1E 6BT

{ m.rio, n.pezzi, l.zanolin, h.demeer, w.emmerich, c.mascolo }@cs.ucl.ac.uk

1 Introduction

In recent years the field of Active or Programmable net-
works has received much attention from the networking
community. The goal is to achieve flexible programma-
bility in routers and switches. This will be particularly
useful in the context of differentiated services [1] where
different functionalities may or may not be present.

This document describes a novel active router archi-
tecture that provides policy management and it is com-
pletely updatable and configurable at run-time provid-
ing the possibility of changing the packet flow inside
the router without significant traffic disruption. We
use XML to describe the behaviour of the router.

2 Architecture Overview

The architecture seen in figure 1 represents an active
router with two levels of functionality. On the lower
level resides the OS kernel and on the upper level the
XML based engine (described in [6]) , running in user
space, which will manage and configure the lower level.

The use of XML for high level management allows
flexibility defining router behaviour since XPath [2] al-
lows the insertion or modification of the rules that man-
age the router. Using XML Schema [4] the behaviour
grammar can be defined, checked and modified at run-
time providing extra flexibility, security and easy up-
grading. The existence of several off-the-shelf XML
tools and related technologies is another advantage of
following this approach.

Our router is built to run on different platforms with
different hardware architectures. In order to accom-
plish this we use Java to develop the XML based en-
gine. Assuming that all the platforms have a Java Vir-
tual Machine the code will be portable without need
for a new implementation. The use of Java also allows
dynamic downloading of configuration code of the low
level part of the architecture.

The XML based engine communicates with the lower
level through a set of primitives provided to the user

space in a special library. The manager inserts and
deletes modules in the kernel and connects them ac-
cording to the graph defined by the administrator. Af-
ter a module is inserted in the kernel and properly con-
nected to the graph, it can be configured in real time
by the XML engine depending on the rules defined by
the administrator.

XML based engine

send_message()

Promilelib

IP Forwarding

Packet
Reception

Packet
Transmission

Figure 1: Architecture

The modules will typically be the usual components
in a router and/or more specifically in a differentiated
services capable router. Examples include classifiers,
markers, droppers, shapers and schedulers.

After a packet is received it i1s passed to the first
module (in the example a classifier) which then passes
to the next module depending on the conditions ex-
pressed by the rules.

At some point the packet is passed to the forwarding
engine (more than one may exist in the router) which
decides which output port the packet is intended to. At
each output port the packet may find different modules
(a shaper or a TCP marker for example) and finally a
scheduler. The system allows different ports to run dif-
ferent schedulers and this is configured using our graph
mechanism. A different scheduler is implemented by a
different module which is inserted and connected in the



graph the same way as the other modules.

A similar functionality can be installed in the dif-
ferent input ports. Different modules can be installed
only in the path of packets arriving on a specific input
port (a dropper or a marker for example).

3 Module Management

Each module is defined by a set of input and output
gates. The internals of the module are not important
for the rest of the system. The module manager will
only have to know which connections will need to be
defined/established. For administration purposes each
module should include metadata explaining the seman-
tic of each gate.

When a module is loaded into memory it registers
with the module manager, registering its gates and
functions to update parameters.

The first thing the module manager does is to in-
sert a module. It inserts it in memory and keeps
the references to the gates in memory (as pointers
to functions). When receiving a graph command it
changes the pointer accordingly in order to implement
the definition of the graph. Packets are implemented as
structures being passed through these functions. This
doesn’t need to do major changes in the linux kernel
since it already uses these data structures (skbuff) all
over the packet forwarding process.

Upon insertion of a module it returns to user space
a module reference number so that the module can be
uniquely identified in future messages.

4 Graph and Rules definition

Graphs are defined by the administrator using XML as
seen in the example below

<\7xml version="1.0" encoding="UTF-8"\7\>
<message>
<action value='reset">
<module name="mark'>
<outputgate number="1">
<inputgate module="shape" number="2"/>
</outputgate>
<rules>
<rule InIP="123.125.126.129"
InPort="1269" mark="first"/>
<rule OutIP="123.125.126.129"
OutPort="1269" mark="second"/>
</rules>
</module>
</action>
</message>

Here we see the configuration of the module mark
which implements a differentiated services marker.

First the gate connections are defined, linking the
modules together (in this case with a shaper) building
the graph.

The second part is module dependent and describes
its specific rules. In this case we define how the packets
should be marked (first or second class) according to
their IP addresses and TCP ports.

When receiving data with information about gate
connection in the graph the engine connects modules
using the connect_modules() function.

connect_modules(input module,output gate, output
module, input gate)

The graph manager is kept at user space in order
to minimise the work and memory executed in kernel
space. The only thing the module manager does is to
connect the modules in memory which is something
that cannot be done in user space.

5 Implementation

The system is implemented using the linux kernel 2.4.4.
On a first stage we defined as a requirement that the
kernel should not needed to be recompiled. The mod-
ule manager 1s inserted as a normal module and the
promale.lib library is implemented in user space using
the Netlink functionality to communicate with the
manager.

Modules are inserted in the kernel and linked to the
packet flow using Netfilter (a linux kernel feature that
allows code to be inserted in some points of the packet
flow).

The XML engine is implemented in Java and com-
municates with promaile.lib via JNI. The use of Java
allows the portability of the XML engine to different
platforms having the same high layer architecture in
all router types. Moreover Java permits the download
of more complex functions to update the rules at run-
time. Performance at the higher level is not a rele-
vant issue since policy decisions are not made often
and some latency is acceptable.

The use of a “glue” library is needed because netlink
requires complex data structures to be exchanged be-
tween kernel and user space.

6 An Example

Let’s suppose that a particular provider wants to con-
figure a router with the f following requirements:

e Some traffic should be dropped on entering the
router

e Some traffic should be remarked on entering the
router



XML based engine

send_message()

Promilelib

IP Forwarding

RED CBQ CB.Q

Figure 2: A simple example

e Traffic going to provider D should be scheduled
using RED (the link is often congested). The oth-
ers are scheduled using CBQ. RED and CBQ are

two well-known packet schedulers.

a clas-
sifier that selects which packets should be dropped, a
dropper that just drops packets and a remarker that
remarks packets according to rules specified in XML.
The connections between modules are made according
to the rules also specified in the XML message.

Three modules are installed in the router:

7 Related Work

An important source of inspiration for our work was
MIT’s Click router [7]. Click is also configured through
a graph where nodes are units of router processing and
edges, or connections, between two elements represent
a possible path for packet transfer. Contrary to our
approach Click compiles all the elements in one module
that then is installed in the router. Promile approach
1s more dynamic.

Router Plugins [3] follows a similar modular ap-
proach to ours in that it can install and uninstall plug-
ins at run-time. But plugins always return the packet
to a PCU (Plugin Classifier Unit) which makes the im-
plementation of a packet flow graph much more com-
plex.

The Pronto router [5] which also uses linux gave us
some ideas for the implementation.

8 Conclusions

The use of XML for high level management in our so-
lution allows flexibility defining router behaviour since
it is portable and it is a well-known markup language
that is easy to create using existing application tools.

Using XML Schema the behaviour grammar can be de-
fined, checked and modified at run-time.

The choice of Java provides portability of the XML
based engine and allows dynamic downloading of con-
figuration code of the low level part of the architecture

Our architecture allows the insertion and removal at
run time of modules inside the active router. It allows
the modules to be connected to any place inside the ker-
nel and it provides a uniform interface to parameterise
and configure the modules at any time after they are
inserted into the kernel. It uses the linux kernel with-
out any need for recompilations. We believe that the
final active router does not present significant efficiency
overhead compared with a normal linux router.

References

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss. RFC 2475 - An Architecture for
Differentiated Services. December 1998.

[2] J. Clark and 8.
Language  (XPath).
http://www.w3.org/ TR /xpath,
Web Consortium, November 1999.

DeRose. XML Path
Technical  Report
World  Wide

[3] D. Decasper, Z. Dittia, G. Parulkar, and B. Plat-
tner. Router Plugins: A Software Architecture
for Next-Generation Routers. IEEE/ACM trans-
actions on Networking, 8(1), July/August 2000.

[4] David C. Fallside. ~ XML Schema.  Techni-
cal Report http://www.w3.org/TR/xmlschema-0/,
World Wide Web Consortium, April 2000.

[5] Gisli Hjalmtysson. The Pronto Platform. Technical
report, AT&T Labs Research, 1999.

[6] C. Mascolo, W. Emmerich, and H. De Meer.
XMILE: An XML based Approach for Pro-
grammable Networks. In Symposium on Software
Mobility and Adaptive Behaviour. Aisb, March
2001.

[7] Robert Morris, Eddie Kohler, John Jannotti, and
M. Frans Kaashoek. The Click modular router. Op-
erating Systems Review, 34(5):217-231, December
1999.



