
An XML based Middleware for Peer-to-Peer Computing

Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{C.Mascolo|L.Capra|W.Emmerich }@cs.ucl.ac.uk

Abstract

An increasing number of distributed applications will
be written for mobile hosts, such as laptop computers,
third generation mobile phones, personal digital assistants,
watches and the like, with focus on peer-to-peer collabo-
ration. Application engineers have to deal with a new set
of problems caused by mobility, such as low bandwidth,
context changes or loss of connectivity. During disconnec-
tion, independently from each others, users will typically
update local replicas of shared data, possibly generated by
peers. The resulting inconsistent replicas need to be recon-
ciled upon re-connection. To support building mobile ap-
plications that use both replication and reconciliation over
ad-hoc networks, we have designedXMIDDLE , a peer-to-
peer middleware that targets mobile computing settings. In
this paper we describeXMIDDLE and give a flavour of how
reflection capabilities are used to allow application engi-
neers to influence replication and reconciliation techniques.
XMIDDLE enables the transparent sharing of XML docu-
ments across heterogeneous mobile peers, allowing on-line
and off-line access to data.

1 Introduction

The spread of mobile computing devices in the recent
years has been very fast. Mobile phones become increas-
ingly computationally powerful, are integrated with PDA
capabilities (e.g., Nokia’s 9210) and are equipped with ad-
hoc networking technologies (e.g., Ericsson’s T36 that im-
plements Bluetooth). These enable new classes of appli-
cations to exploit, for example, the ability to form ad-hoc
workgroups and share peer resources; but they also present
new challenges to the mobile application developer. In par-
ticular, resources, such as available main memory, persis-
tent storage, CPU speed and battery power are scarce and
need to be exploited efficiently. Moreover, network con-
nectivity may be interrupted instantaneously and network

bandwidth will remain by orders of magnitude lower than
in wired networks.

In distributed systems, the complexity introduced
through distribution is made transparent to the applica-
tion programmer by means of middleware technologies,
which raise the level of abstraction. Existing middleware
technologies, such as remote procedure call systems, dis-
tributed object middleware, and message- or transaction-
oriented systems hide the complexities of distribution and
heterogeneity from application programmers and thus sup-
port them in constructing and maintaining applications ef-
ficiently and cost-effectively. However, these technologies
have been built for wired networks and are unsuitable for
a mobile setting [3, 9]. In particular, the interaction prim-
itives, such as remote procedure calls, object requests, re-
mote method invocations or distributed transactions that are
supported by current middleware paradigms assume a high-
bandwidth connection of the components, as well as their
constant availability. In mobile systems, instead, unreacha-
bility and low bandwidth are the norm rather than a failure.
In Bayou [13] disconnection was contemplated as a rare and
occasional event. The system hides mobility from the appli-
cation layer in the same way as transparency for relocation
of object is used in modern middleware systems.

We rather believe that middleware systems for mobile
computing need to find different kinds of interaction primi-
tives to accommodate the possibility for mobile components
to become unreachable. Many PDA applications copy, for
example, agendas, to-do lists and address records from a
desktop machine into their local memory so that they can be
accessed when the desktop is unreachable. In general, mo-
bile applications must be able to replicate information in or-
der to access them off-line. Replication causes the need for
synchronization when a connection is re-established. This
need is not properly addressed by existing middleware sys-
tems. The commonly used principle of transparency pre-
vents the middleware to exploit knowledge that only the
application has, such as which portion of data to replicate
and which reconciliation policy to apply. It seems there-

fore necessary to design a new generation of middleware
systems, which disclose information previously hidden, in
order to make best use of the resources available, such as
local memory and network bandwidth.

Tuple space coordination primitives, have been em-
ployed to facilitate component interaction for mobile sys-
tems. Tuple spaces achieve a decoupling between inter-
acting components in both time and space by matching
the idea of asynchronicity with the mobile computing em-
bedded concept of disconnection and reconnection. Tuple
spaces do not impose any data structures for coordination
allowing more flexibility in the range of data that can be
handled. On the other hand the lack of any data structuring
primitives complicates the construction of applications that
need to exchange highly structured data.

Peer-to-peer systems [12] have been usually developed
for fixed infrastructures. However, their rich paradigms
for resource and data sharing among peers can be natu-
rally extended to mobile settings. In this paper we present
XMIDDLE , which advances mobile computing middleware
approaches by firstly choosing a more powerful underly-
ing data structure and secondly by supporting application-
driven replication and reconciliation. XMIDDLE ’s data
structure are trees rather than tuple spaces.XMIDDLE al-
lows peer-to-peer sharing of data trees and off line manipu-
lation of peers information. More precisely,XMIDDLE uses
the eXtended Markup Language (XML) to represent infor-
mation and uses XML standards, most notably the Doc-
ument Object Model (DOM) to support the manipulation
of its data. This means thatXMIDDLE data can be repre-
sented in a hierarchical structure rather than, for instance,
in a flat tuple space. The structure is typed and the types
are defined in an XML Document Type Definition or XML
Schema.XMIDDLE applications use XML Parsers to vali-
date that the tree structures actually conform to these types.
The introduction of hierarchies also facilitates the coordi-
nation between mobile hosts at different levels of granular-
ity asXMIDDLE supports sharing of subtrees. Furthermore,
representing mobile data structures in XML enables seam-
less integration ofXMIDDLE applications with the Micro
Browsers, such as WML browsers in mobile phones, that
future mobile hosts will include.

The paper is organized as follows: in Section 2 we briefly
introduceXMIDDLE and the main characteristics of the sys-
tem. XMIDDLE makes extensive use of XML and we sketch
how we deploy XML and related technologies in Section 3.
Section 4 discusses the basic architecture ofXMIDDLE and
presents the primitives that this architecture provides for
mobile application. In Section 5 we discuss and evaluate
the XMIDDLE system and in Section 6 we conclude the pa-
per and list some future work.

2 An Outline of XMIDDLE

XMIDDLE allows hosts (i.e., PDAs, mobile phones, lap-
top computers or other wireless devices) to be physically
mobile, while yet communicating and sharing information
with other hosts. We do not assume the existence of any
fixed network infrastructure underneath. Mobile peers may
come and go, allowing complicatedad-hoc networkconfig-
urations. Connection is symmetric but not transitive as it
depends on distance; for instance hostHA can be connected
to hostHB , which is also connected to hostHC . However,
hostHA and hostHC may be not connected to each other.
Mobile network technologies, such as Bluetooth facilitate
these configurations with multiple so calledpiconetswhose
integration formsscatternetsin Bluetooth.

In order to allow mobile devices to store their data in a
structured and useful way we assume that each device stores
its data in a tree structure. Trees allow sophisticated manip-
ulations due to the different node levels, hierarchy among
the nodes, and the relationships among the different ele-
ments which could be defined.XMIDDLE defines a set of
primitives for tree manipulation, which applications can use
to access and modify the data.

When hosts get in touch with each other they need to be
able to communicate.XMIDDLE therefore provides an ap-
proach to sharing that allows on-line collaboration, off-line
data manipulation, synchronization and application depen-
dent reconciliation. On each device, a set of possible access
points for the private tree are defined so that other devices
can link to these points to gain access to this information;
essentially, the access points address branches of trees that
can be modified and read by peers. In order to share data, a
host needs to explicitlylink to another host’s tree. The con-
cept of linking to a tree is similar to the mounting of net-
work file systems in distributed operating systems to access
and update information on a remote disk. Access points to
a host’s tree are a set that we callExportLink. XMIDDLE

allows mobile hosts to share data when they are connected
or replicate the data and perform operations on them off-
line; reconciliation of data takes place once the hosts recon-
nect. A host also records the branches that it links from
other remote hosts in the setLinkedFrom, and the hosts
linking to branches of the owned tree in the setLinkedBy.
These sets contain lists of tuples(host, branch) that de-
fine the host that is linking to a branch, and from whom a
branch is linked, respectively.LinkedFrom does not mir-
ror the connection configuration, that is, hostHA can be in
theLinkedFrom list of HB also if the two hosts are not in
reach (specific primitives forlinking andunlinking trees
modify these sets). On the contrary, theLinkedBy set is
updated byconnectionanddisconnectionoperations and it
is used to know to whom to notify changes of parts of the
tree.

2

The link operation is, however, not enough for data shar-
ing among mobile hosts; in order to share data, hosts needs
to beconnected. A hostHA becomesconnected with an-
other hostHB when it is “in reach”. When two hosts are
connected they can share and modify the information on
each other’s linked data trees. Each host has full control
over its own tree, however it is obliged to notify other con-
nected hosts that link to the modified part (branch) of its
tree (i.e., all theHi which are in itsinReach set and listed
in theLinkedBy set as linking the modifiedbranch) about
the changes introduced. IfHi wishes to modify abranch
linked from a remote hostHj which is in reach, it requests
Hj to perform the desired changes.Hj then notifies the
changes to all the hosts (in reach) that link to the modified
branch, includingHi.

Hosts may explicitly disconnect from other hosts using
thedisconnect primitive, even though these hosts may be
“in reach”. XMIDDLE supports explicit disconnection to en-
able, for instance, a host to save battery power, to perform
changes in isolation from other hosts and to not receive up-
dates that other hosts broadcast. Disconnection may also
occur due to movement of a host into an out of reach area,
or to a fault. In both cases, the disconnected host retains
replicas of the last version of the trees it was sharing with
other hosts while connected and continues to be able to ac-
cess and modify the data; a versioning system is in place to
allow consistent sharing and data reconciliation (more de-
tails in [11]).

3 XMIDDLE and XML

In the previous section we have described the motivation
and main characteristics ofXMIDDLE . We now give the
details on how we use XML for structuring the device in-
formation as trees, and how the XML related technologies
are exploited in order to achieve linking and addressing.

XML documents can be semantically associated to trees.
We therefore format the data located on the mobile de-
vices as XML trees. The applications on the devices are
enabled to manipulate the XML information through the
DOM (Document Object Model) [1] API which provides
primitives for traversing, adding and deleting nodes to an
XML tree. The implementation of this API, however, is
XMIDDLE specific.

Furthermore, XML related technologies such as
XPath [4] and XLink [10] are used inXMIDDLE to format
the linking and addressing of points in a tree and reference
remote trees.LinkedFrom, LinkedBy andExportLink
sets are formatted using the XPath and XLink syntax. The
XPath syntax is very similar to the Unix directory address-
ing notation. For instance, to address a node in an XML
tree the notation used is/root/child1/child2 . XLink
builds on top of XPath; it allows the addressing of specific

Mobile Application
Application Layer

Xmiddle
Presentation layer

Session Layer

Transport Layer

Network Layer
IP

connect/disconnect
XmiddleDOM API

Bluetooth WaveLan

link/unlink

UDP

Data-link Layer
Physical Layer and MAC

Figure 1. The protocol stack for mobile envi-
ronments using XMIDDLE .

nodes in remote XML documents without affecting the doc-
uments at all (the links are stored in a separate document
called “linkbase”). We use XLink technology to define the
links between devices and remote tree entry points.

The reconciliation of XML tree replicas which hosts use
to concurrently and off-line modify the shared data, exploits
the tree differencing techniques developed by IBM. IBM
XMLTreeDiff is a package that implements this algorithm
and thatXMIDDLE uses to handle reconciliation. We note,
however, that reconciliation cannot in all cases be com-
pleted by theXMIDDLE layer alone. Similarly to merging
text files, tree updates may lead to differences which can be
solved only using application-specific policies or may even
need end-user interaction. The use of XML as an underly-
ing data structure, however, enablesXMIDDLE to both high-
light the differences and define reconciliation policies spe-
cific to particular types of document elements, and therefore
to specific applications (more details in [11]).

4 The XMIDDLE Architecture

We now present an overview of theXMIDDLE architec-
ture, which follows the ISO/OSI reference model.XMID -
DLE implements the session and presentation layers on top
of standard network protocols, such as UDP or TCP, that are
provided in mobile networks on top of, for instance, a Blue-
tooth data-link layer (i.e., Logical Link Control and Adap-
tation Protocol) and MAC and physical layer (i.e., Blue-
tooth core which is based on radio communication). Our
current prototype is however based on UDP upon Wireless
Lan, which is an other possible option. The protocol stack
for XMIDDLE is shown in Figure 1.

The presentation layer implementation maps XML doc-
uments to DOM trees and provides the mobile application
layer with the primitives to link, unlink and manipulate its
own DOM tree, as well as replicas of remote trees. The
session layer implementation manages connection and dis-

3

Xmiddle_DOM Xmiddle Primitives

Java

ControllerXmiddle
XLink and XPath Processors
XML DOM

Figure 2. The XMIDDLE architecture.

connection.
Figure 2 refines the presentation and session layer im-

plementations ofXMIDDLE . The Xmiddle Controlleris a
concurrent thread that communicates with the underlying
network protocol and handles new connections and discon-
nections, triggers the reconciliation procedures and han-
dles reconciliation conflicts according to application spe-
cific policies. AsXMIDDLE is entirely implemented in Java,
it relies on a Java Virtual Machine (JVM). A large variety
of JVMs have been implemented for mobile devices. The
Symbian operating system for the third generation of mo-
bile phones, for example, has a Java Virtual Machine built
in. Likewise, Sun provides a minimal kernel virtual ma-
chine (KVM) implementation for Palm PDAs.

The Xmiddle PrimitivesAPI provides mobile applica-
tions with operations implementing theXMIDDLE primi-
tives, such as link, unlink, connect and disconnect. The
ability to link to trees from other devices introduces a
client/server dependency between mobile hosts. We refer
to the host which a tree is linked from as theserver hostand
the host that links the tree as aclient host. The XMIDDLE

implementation maintains this client/server relationship in
theLinkedFrom andLinkedBy tables that are kept on each
host (they correspond to the sets with the same names de-
fined in Section 2). TheLinkedFrom table also needs to
keep track of the host that owns a subtree in order to allow
the application to be able to request updates from that host;
this is done using XLink. It is also necessary to the hosts
that have linked to a tree for being able to broadcast updates
when the hosts are in reach.

The XmiddleDOM component provides theXMIDDLE

implementation of the DOM to mobile applications.

5 Discussion and Related Work

We have describedXMIDDLE and shown its architecture.
Synchronization and data locking have been described as
main problems in wireless environments by Imielinski and
Badrinath in [8].XMIDDLE offers a possible solution.

We focus our interest on ad-hoc networks where host
configurations are relative and dynamic. No discovery ser-
vices are set-up as in Jini as all the hosts have the same
capabilities. They are able to reconfigure their own con-

nection groups while they move, through connection and
disconnection with the other hosts.

Tuple space based systems for logical and physical mo-
bility such as JavaSpaces [6], Lime [14], TSpaces [7], and
Mars [2] exploit the decoupling in time and space of these
data structures in the mobility context where connect and
disconnect are very relevant and frequent operations. How-
ever, tuple spaces are very general and loose data structures,
which do not allow complex data organizations and there-
fore do not fit all the application domains. XML allows us
to introduce hierarchy of data and to address specific paths
in the structure so that more elaborated operations can be
performed by the applications.

An additional disadvantage of tuple-space based systems
is in term of synchronization capabilities. Tuple-spaces are
multi-sets, which means every tuple can be duplicated in
the space. Whenever two or more devices, which replicate
a piece of data (represented as a tuple), disconnect and mod-
ify it the reconciliation process of rejoining the tuple spaces
during reconnection becomes an unnatural operation (due
to the multi-set property of tuple spaces).

The issue of data replication and synchronization has
been addressed in the context of distributed file systems
by Coda, which adopts an application-transparent adapta-
tion technique, and its successor Odyssey[15], which en-
ables application-aware adaptation. Compared to these ap-
proaches,XMIDDLE firstly defines a different level of gran-
ularity of the data that can be moved across mobile devices,
that is, parts of an XML document, as small as we wish,
as opposed to whole files. This may have a relevant im-
pact when dealing with slow and/or expensive connection.
Moreover, we do not assume the existence of any server
that is more capable and trustworthy than mobile clients, as
we target pure ad-hoc network configurations. Finally, the
use of XML adds semantic to the replicated data, against
the uninterpreted byte streams of files; this added semantics
can then be exploited to provide better conflict detection and
resolution policies from an application point of view.

XMIDDLE uses only XML trees as data structures and
exploits the power of the nature of the data structure with
specific operations; for instance, the linking primitive facil-
itates off-line sharing of information, which is very valu-
able in mobile computing contexts where hosts have the
need to move away from the source of information even if
they may want to continue to work on the downloaded data.
Reconciliation mechanisms are needed to maintain a certain
level of consistency and to support synchronization. Exist-
ing mobile computing middleware systems do not address
this issue and a consortium (i.e, SyncML) has been estab-
lished in order to provide standards for synchronizing data
in mobile computing. SynchML provides a set of specifica-
tions for the standardization of synchronization of data (in
any format) between different devices, using WSP, HTTP,

4

or Bluetooth protocols.XMIDDLE uses tree structures for
representing data and defines protocols that take advantage
of this format. SyncML focuses on peer-to-peer synchro-
nization, where a client/server relationship is always estab-
lished among the devices. No ad-hoc networking setting
is supported by SyncML, whereasXMIDDLE also supports
reconciliation of different clients that possess replicas of
specific branches of an XML tree. SynchML also defines
reconciliation policies for data synchronization. However,
the polices are either on the server or client side. The case in
which the client wants to indicate how to reconcile data to
the server is not supported. Hosts sometimes need to specify
different reconciliation policies and some priority structure
among the policies is needed to actually choose which pol-
icy to apply. Unlike SyncML,XMIDDLE avoids the need for
application to log every change they apply to shared data.
InsteadXMIDDLE uses a versioning system to make this as-
pect transparent [11]. SyncML, on the contrary, leaves the
logging to the application level. Security and authentication
aspects are investigated in the SyncML specification which
XMIDDLE does not tackle yet. However some authentica-
tion mechanisms similar to the one of SyncML could we be
put in place inXMIDDLE , too.

TheXMIDDLE strategy for data synchronization exploits
well established techniques and tools for replication and
reconciliation on trees. In [16] some formal work on
application-independent reconciliation has been carried out,
which also focuses on a structured way for applications to
influence data reconciliation choices.XMIDDLE exploits
semantic knowledge about element types; a set of recon-
ciliation primitives is defined inXMIDDLE and the mobile
application engineer can specify the way these primitives
are combined to determine an application-specific reconcil-
iation policy. In this way we can ease the burden of applica-
tions, relying as much as possible on the middleware, while,
at the same time, providing for the application semantics
and user policies. This differentiatesXMIDDLE from sys-
tems like CVS and Bayou. CVS is a source code versioning
tool that leaves everything in the hands of the user; conflicts
are detected based on updates done in the same line of the
file by different users, and the conflict resolution is left to
the user. Bayou reconciles application-specific information
in an application-independent way, preventing the applica-
tion from influencing the outcome of the reconciliation pro-
cess. Bayou’s philosophy is the traditional middleware one,
which calls for completetransparency.

6 Conclusions

The growth of the recent mobile computing devices and
networking strategies call for the investigation of new mid-
dleware that deal with mobile computing properties such as
disconnection, low/expensive bandwidth, scarce resources

and in particular battery power, in a natural way.XMIDDLE

is one possible answer to these needs that focuses on data
replication and synchronization problems and solves them
exploiting reconciliation strategies and technologies.

The implementation of the current prototype ofXMID -
DLE [17] is based on Wireless LAN and UDP, however we
plan to migrate the system to Bluetooth for more testing.

XMIDDLE is an example of a reflective middleware [5].
XMIDDLE abandons replication transparency as we believe
that in the challenging mobile computing environments
middleware systems have to take advantage of application-
specific information to achieve an acceptable performance,
usability and scalability. We consider our effort onXMID -
DLE to be just the first step in that direction and believe that
a number of other forms of transparency have to be given
up, too. Location transparency, for example may have to
be discontinued to provide location aware services. In gen-
eral, this will lead to a new class of context-aware appli-
cations [3, 9], which can influence the way middleware im-
plements interactions between mobile components based on
the context in which the components operate.

Acknowledgements: We would like to thank Stefanos
Zachariadis for his participation in the implementation of
XMIDDLE and for his suggestions.

References

[1] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Ja-
cobs, A. L. Hors, G. Nicol, J. Robie, R. Sutor,
C. Wilson, and L. Wood. Document Object Model
(DOM) Level 1 Specification. W3C Recommenda-
tion http://www.w3.org/TR/1998/REC-DOM-Level-1-
19981001, World Wide Web Consortium, Oct. 1998.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple
Spaces for Mobile Agent Coordination. InProceedings of
the 2nd International Workshop on Mobile Agents (MA 98),
number 1477 in LNCS. Springer, 1998.

[3] L. Capra, W. Emmerich, and C. Mascolo. Middleware for
Mobile Computing: Awareness vs. Transparency (position
paper). InInt. 8th Workshop on Hot Topics in Operating
Systems, May 2001.

[4] J. Clark and S. DeRose. XML Path Language (XPath). Tech-
nical Report http://www.w3.org/TR/xpath, World Wide Web
Consortium, Nov. 1999.

[5] F. Eliassen, A. Andersen, G. S. Blair, F. Costa, G. Coulson,
V. Goebel, O. Hansen, T. Kristensen, T. Plagemann, H. O.
Rafaelsen, K. B. Saikoski, and W. Yu. Next Generation Mid-
dleware: Requirements, Architecture and Prototypes. InPro-
ceedings of the7th IEEE Workshop on Future Trends in Dis-
tributed Computing Systems, pages 60–65. IEEE Computer
Society Press, Dec. 1999.

[6] E. Freeman, S. Hupfer, and K. Arnold.JavaSpaces[tm] Prin-
ciples, Patterns, and Practice. Addison-Wesley, 1999.

[7] IBM. T spaces. http://almaden.ibm.com/cs/TSpaces.
[8] T. Imielinski and B. R. Badrinath. Mobile wireless comput-

ing: challenges in data management.Communications of the
ACM, 37(10):18–28, Oct. 1994.

5

[9] L. Capra and W. Emmerich and C. Mascolo. Reflective
Middleware Solutions for Context-Aware Application . In
3th International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns (Reflection 01), LNCS,
September 2001. To Appear.

[10] E. Maler and S. DeRose. XML Linking Language (XLink).
Technical Report http://www.w3.org/TR/1998/WD-xlink-
19980303, World Wide Web Consortium, Mar. 1998.

[11] C. Mascolo, L. Capra, and W. Emmerich. XMIDDLE: A
Middleware for Mobile Ad-Hoc Networking . Technical re-
port, University College London, Dept. of Computer Sci-
ence, 2001. Submitted for Publication.

[12] A. Oram.Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly, 2001.

[13] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and
A. J. Demers. Flexible Update Propagation for Weakly Con-
sistent Replication. InProceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP-16), pages
288–301. ACM Press, 1997.

[14] G. Picco, A. Murphy, and G.-C. Roman. LIME: Linda meets
Mobility. In Proc. 21st Int. Conf. on Software Engineering
(ICSE-99), pages 368–377. ACM Press, May 1999.

[15] M. Satyanarayanan. Mobile Information Access.IEEE Per-
sonal Communications, 3(1), Feb. 1996.

[16] M. Shapiro, A. Rowstron, and A. Kermarrec. Application-
independent Reconciliation for Nomadic Applications. In
Proceedings of European Workshop:”Beyond the PC: New
Challenges for the Operationg System”, Kolding, Denmark,
2000. SIGOPS.

[17] S. Zachariadis. Implementing XMIDDLE, an XML-bsed
Platform for Mobile Computing and Ad-Hoc Networking.
Technical report, University College London, Dept. of Com-
puter Science, 2001. Final year project.

6

	Introduction
	An Outline of XMIDDLE
	XMIDDLE and XML
	The XMIDDLE Architecture
	Discussion and Related Work
	Conclusions

