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In recent years, there has been explosive growth in smartphone penetration. Today, more than 90 percent of the 
world’s population is covered by cellular networks, and nearly one quarter of the population uses smartphones.1 
This growth is set to continue as inexpensive devices become available and mobile phone users switch over to 
smartphones. This makes smartphones an ideal vehicle for large-scale sensing systems, because while a PC 
sitting on a desk doesn’t know much about its user, a phone accompanying its user can learn about the user 
through a range of embedded sensors. The persistent connectivity offered by smartphones also lets users access 
information from almost anywhere. 

Combining these two capabilities together can lead to interesting applications, especially when the user is 
away from home or work, without access to traditional devices. For example, consider a user traveling by car. 
He or she might wonder, “Are there any disruptions on my regular route that might cause delays? Will I be able 
to find parking when I arrive?” Furthermore, he or she might want to automatically send a message to someone 
saying, “I’m running late due to traffic.” Smartphones can help, enhancing the driving experience. 

In particular, we developed two smartphone-based prototype systems that address this scenario. Our first 
system, ParkSense, can sense on-street parking-space occupancy when coupled with electronic parking payment 
systems. Our second system can sense and recognize a user’s repeated car journeys to provide personalized 
alerts to the user. Both systems aim to minimize the impact of sensing tasks on the device’s lifetime so the user 
can continue using his or her smartphone for its primary purpose.  

Sensing On-Street Parking 

In metropolitan city centers and dense urban areas around the world, parking spaces are often a scarce resource. 
During busy periods of the day, drivers can spend a significant amount of time searching for available spots. 
Although off-street parking garages can usually estimate the amount of available spaces by counting incoming 
and outgoing vehicles, the lack of information on the availability of on-street spaces usually leads drivers to 
cruise around looking for vacant spots. This results in congestion, wasted fuel, and pollution in dense urban 
areas. A study of major downtown areas has shown that 30 percent of the traffic in these congested areas is due 
to cruising vehicles.2 

This situation can be alleviated by providing real-time occupancy information to cruising drivers. One 
approach to capture space occupancy is to embed an occupancy sensor in each parking space, as was done for 
the SFpark pilot program in San Francisco (http://sfpark.org). However, significant costs are involved in 
instrumenting large cities. 

Instead, we decided to exploit smartphone applications that let users pay for parking, such as PaybyPhone 
(http://paybyphone.co.uk). Such applications have recently seen wider adoption. For example, over 9,000 on-
street parking spaces managed by the local city council in central London accept only electronic payments, and a 
smartphone application is the predominant means of payment. However, the old model of prepayment for 
parking in coarse-grained time slots is still prevalent, even with electronic payments. Thus, while these 
applications can accurately capture the time a driver occupies a space, the main challenge is to discover when 
that space is vacated—in most cases, long before the payment has expired. 

Motivated by this trend, we developed a smartphone-based sensing system, called ParkSense,3 that can detect 
when a driver vacates a parking spot previously paid for through the smartphone, with minimal impact on the 
lifetime of driver’s mobile device. When coupled with payment systems, this approach can provide a complete 
system for sensing on-street parking-space occupancy at the urban scale in a cost-effective manner. 

Detecting that the user has vacated a parking spot can be decomposed into two subproblems: 

• sensing that the user has returned to the parked vehicle location, and 
• detecting that the user is in a moving vehicle after returning to the parking location. 

The requirement for minimal-impact sensing prevents us from using traditional location sensors available on 



 
smartphones, such as GPS or network-based location sensing, due to their high energy consumption. ParkSense 
thus relies only on the smartphone’s Wi-Fi interface. 

Similar to traditional systems (see Figure 1a), smartphone-based parking payment applications prompt the 
user to input a location number associated with the set of spaces for payment (see Figure 1b). These location 
numbers are displayed on nearby signs (see Figure 1c). A user must complete the payment before leaving the 
parked vehicle. ParkSense performs several Wi-Fi scans to capture nearby Wi-Fi access points while the user 
waits for the payment process to complete. ParkSense can then detect if a user has returned to parked car 
location by periodically comparing observed access-point Service Set Identifiers with those captured during the 
payment process. This coarse-grained location sensing only involves performing Wi-Fi scans. It is energy 
efficient because it doesn’t require communication with external databases, as with network-based location 
sensing or tracking satellite signals using GPS.  

Figure 1. Parking payment systems: (a) traditional and (b) modern parking payment systems. Location numbers 
needed for payment are displayed on (c) nearby signs 

Sensing that a user has started driving after returning to the parked location involves performing continuous 
Wi-Fi scans. ParkSense computes the dissimilarity D between successive scans as D = 1 − J. The Jaccard index 
J is merely the ratio of the number of same access points observed in both scans to the total number of access 
points observed in the two scans. //What is the differences between the two underlined statements? First 
one refers to number of APs in the intersection of two scans, second one refers to number of APs in union 
of two scans// The dissimilarity D serves as proxy for the user’s speed, which is compared to the normalized 
GPS speed (see Figure 2). As the comparison shows, the dissimilarity between successive scans increases as the 
vehicle speeds up, and it decreases as the vehicle slows down. A vehicle moving in an urban environment moves 
in a start-stop fashion, as shown in Figure 2, so ParkSense uses these large variations in dissimilarity D to detect 
that the user is moving at high speed and has thus vacated his or her parking space.  

Figure 2. Comparison of a normalized vehicle speed and the dissimilarity D between successive Wi-Fi scans. 
The dissimilarity between successive scans increases as the vehicle speeds up, and it decreases as the vehicle 
slows down.  

In our trials of the prototype system, ParkSense successfully detected when a user had left a parking spot 34 
times out of 41 possible instances, at several locations and with different users. Furthermore, ParkSense 
achieved this using a fraction of the energy costs of traditional location sensors. For example, it consumed 
approximately 11 percent of the energy that network-based location sensing consumes, and approximately 21 
percent of the energy that GPS consumes.  

However, there were certain cases in which ParkSense couldn’t detect that the driver had vacated a parking 
space. Examples included when a user drove away from the parking space but couldn’t make progress due to 
traffic, and when a driver drove away in a vehicle parked and paid for by someone else (say, a family member). 
Another example was when a user returned to the vicinity of the parked vehicle but rode away in another 
vehicle. Although these types of situations are rare, their effect could be further mitigated by providing street- or 
block-level coarse-grained space availability to drivers looking for parking. //How would this address these 
particular issues? Coarse grained availability (high, medium or low) can mask small number of errors// 

ParkSense addresses an important problem of sensing on-street parking space occupancy, but several other 
issues must be overcome to operate such systems at an urban scale. For example, just providing occupancy 
information can lead to urban-scale dynamics in which all drivers move to regions with high space availability 
only to find full spaces by the time they arrive in these regions. It is also important to understand the supply-and-
demand conditions under which such recommender systems can properly function. 

Sensing Repeated Journeys 

For a smartphone to issue a personalized traffic alert to a user, it must first be able to learn and recognize routes 
that the user frequently drives. It can then monitor these routes using a traffic-advisory service and notify the 
user of any disruptions reported on these routes. After learning the routes, if a routine journey were to take 
longer than usual, the phone could also send a message to a preconfigured set of contacts, informing them of the 
delay. 

However, learning and recognizing these routine journeys requires continuous passive sensing that precludes 
traditional location services available on smartphones, such as GPS or network-based location sensing, due to 



 
their high energy consumption. Although it is possible to require the user to plug his or her phone in the 
charging port of the car for energy-hungry location sensing during journeys, it is a stringent constraint that the 
user might not always remember.  

Google Now, the context-sensing core of the Android OS, learns a user’s home and work locations and then 
informs the user of travel times between these based on the shortest route (www.google.co.uk/landing/now). 
However, there is usually more than one route available between different locations, and which one is relevant 
to the user can only be determined with continuous sensing during journeys, which most applications appear to 
avoid to reduce their impact on battery lifetime. Significantly reducing the energy consumption of sensing 
routine journeys on smartphones thus seems to be the key for making the aforementioned applications a reality. 

Our second system achieves this using low-energy microelectromechanical systems (MEMS) accelerometers 
and gyroscopes embedded in smartphones.4 The key insight that this system relies on is the fact when a car 
travels along a particular route, it executes a certain set of maneuvers (turns and bends) that form a unique 
signature of the route. These turns and bends can be easily detected by the phone carried inside the vehicle using 
its embedded gyroscope. 

During a repeated journey along the same route, the phone observes the same unique signature, as the car 
executes the same sequence of turns. Because the phone can be carried in any arbitrary orientation in the car 
during different journeys, we propose a mechanism that uses the smartphone’s accelerometer to sense the 
direction of gravity; the gyroscope is then used to measure angular velocity around an axis parallel to gravity. 
This lets our system capture a route’s unique signature as variations in angular velocity. 

Figure 3 shows two such angular speed patterns captured by the smartphone carried in a vehicle from a 12km 
long route in a typical urban city when the route is driven on two different days. The upper red trace is from a 
journey that took place on a weekend, and the lower blue trace is from a second journey on the same route on a 
weekday with evening traffic. It shows that angular speed variations originating from repeated journeys along 
the same route bear strong similarity. 

Figure 3. Sensing repeated journeys. Two angular speed patterns captured by a smartphone carried in a vehicle 
from a 12km long route in a typical urban city, when the route is driven on two different days. 

The nonuniform scaling of time axis in Figure 3 arises due to the vehicle traveling at different speeds along 
different road segments of the route. We use dynamic time warping (DTW) to compute the similarity between 
these angular speed traces under this nonuniform scaling. For example, Figure 4 shows the mapping created by 
DTW between samples of the two angular velocity traces shown in Figure 3. During a bootstrap phase, our 
system captures angular variations from all car journeys the user takes. These are then clustered using pairwise 
DTW similarities, and clusters containing numerous members are identified as routes that the user frequently 
takes. Using open-ended DTW, our system can recognize a previously identified frequent route during the 
course of the journey. This lets the system capture geographic trajectories of frequently used routes by switching 
on location sensing during any of the repeated journeys after the bootstrap phase. 

Figure 4. Dynamic time warping (DTW) comparison. The mapping created by DTW between samples of the two 
angular velocity traces shown in Figure 3 

In a prototype evaluation of 43 journeys originating from over 400km of driving under normal conditions, 
our system achieved similar performance as one that used GPS trajectories to identify repeated journeys. Our 
prototype implementation on a typical Android smartphone and a microcontroller board that emulated a motion 
coprocessor achieved an energy consumption of an order of magnitude less than the GPS-based system. Motion 
coprocessors are common in modern devices, such as Apple’s iPhone and Google’s Nexus smartphones, for 
continuous sensing using inertial sensors. However, software APIs that access these aren’t yet available to 
application developers. We thus relied on an external microcontroller board to demonstrate the energy efficiency 
of our prototype system. However, the popularity of continuous motion-sensing applications means that it is 
likely that software APIs for motion coprocessors will become available in near future. 

Driver Analytics 

We now discuss other areas in which smart sensing can be used in cars for novel car-based applications. One 
such area is driver analytics—that is, gaining insight into a user’s driving behavior using sensor data, which is of 
particular interest to vehicle insurance providers. Until now, insurers have relied on factors such as the driver’s 
age, experience, and profession to assess risk. However, smart sensing can offer detailed sensor data on speed, 



 
acceleration, and braking, which can be used to adjust these risk models to individual users and driving styles. 

The vehicle insurance industry has incentivized users with reduced premiums to use either black-box devices 
in cars or smartphone apps to collect this data. Both of these approaches offer advantages as well as challenges. 
Black-box devices are free from energy and arbitrary device orientation issues. However, the use of dedicated 
hardware adds costs and presents a barrier to wide spread adoption. 

Another challenge with this approach is vehicles that are shared between different users—such as a family 
car. In this case, robust driver identification algorithms are required to accurately label trips driven by different 
drivers. A smartphone-application-based approach is suitable for widespread adoption; however, high energy 
consumption and arbitrary device orientation are still major hurdles. Current applications thus require the user to 
attach the smartphone to a phone holder and only collect a sample of several miles of driving, rather than 
perform continuous sensing. Addressing these challenges can potentially lead to significant impact on vehicle 
insurance industry and other commercial applications of in-car sensing. 
 

Smart in-car sensing systems present an emerging and exciting research area. Drivers increasingly carrying 
smartphones, with their plethora of embedded sensors, creates new opportunities for in-car sensing. Such in-car 
smart sensing systems can immensely improve the driving experience by reducing travel times and offering 
novel context-based applications. In addition, these systems can help with urban-scale issues of congestion and 
pollution and offer business opportunities based on new streams of sensor data. These opportunities present new 
challenges, including energy efficiency and novel knowledge extraction from existing low-level sensors, which 
the research community must tackle to unlock the immense potential of in-car smart sensing. 
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