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I. INTRODUCTION

Miniature computing devices are being embedded in an
increasing range of objects around us including home ap-
pliances, cars, buildings, and people. Furthermore, the net-
working of such embedded environments is enabling advanced
scenarios in which devices leverage off each other and exhibit
autonomous and coordinated behaviour. Recent developments
in wireless networking are pushing these trends even further
by simplifying deployment, and enabling new applicative
scenarios, as witnessed by the recent surge of interest in
wireless sensor networks.

However, research into such networked embedded envi-
ronments has focused almost exclusively on the develop-
ment of miniaturised devices with increasingly powerful and
general capabilities. As a result, the software fabric that
ultimately makes innovative applications possible has tended
to be overlooked. Instead, software is developed in an ad-hoc
fashion, with little or no provision for reusable services and
abstractions. Furthermore, even where attempts are made to
provide such features, the wide range of devices involved in
networked embedded environments inevitably leads to signif-
icant complexity in appropriately configuring, deploying, and
dynamically reconfiguring the software. There is therefore a
need for a programming platform with abstractions that are
able to span the full range of heterogeneous embedded sys-
tems, and which also offers consistent mechanisms with which
to configure, deploy, and dynamically reconfigure networked
embedded systems software.

The work discussed in this paper is addressing the need for
such a programming platform. The work is being carried out in
the context of the EU-funded RUNES project (Reconfigurable,
Ubiquitous, Networked Embedded Systems), which has the
general general goal of developing an architecture for net-
worked embedded systems that encompasses dedicated radio
layers, networks, middleware, and specialised simulation and
verification tools.

Our programming platform, which is at the heart of the
RUNES architecture, takes the form of a component-based
middleware that decouples and encapsulates the functional-

ity provided by its various constituents behind well-defined
interfaces. This decoupling not only enables one to deploy
different variants of the same component (e.g., tailored to
a specific device type), but also enables dynamic reconfig-
uration of component instances and their interconnections.
This provides support for dynamic adaptation to changing
conditions—a fundamental requirement in the context-aware
scenarios typical of networked embedded systems. Moreover,
the RUNES middleware reaches down into layers that typically
belong to the network and the operating system, therefore
providing a unified approach to configuration, deployment and
reconfiguration at multiple levels of abstraction. Finally, the
expertise of the involved partners in the related fields of mobile
computing, context-aware systems, and code mobility provides
the necessary knowledge and background for the design of
specific components customised for particular networked em-
bedded systems.

The rest of the paper is organised as follows. Section
II introduces the component model that is the foundation
of our middleware. Next, section III describes a number of
key middleware services that can be built in terms of the
component model. Finally, section IV offers our conclusions
and plans for future work.

II. THE COMPONENT MODEL

A. Overview

The RUNES approach to middleware provision is to
build the middleware in terms of a well-defined language-
independent component model which is supported by a min-
imal runtime API. The component model and its supporting
runtime API are discussed in Section II-B.

The required heterogeneous realisation of the component
model in various types of devices is achieved by providing
different implementations of the runtime API, and by imple-
menting components themselves in various ways. For example,
on a PDA running a standard OS we might implement com-
ponents as sets of Java classes or as Linux “shared objects”;
whereas on a sensor mote’s microcontroller, components might
be implemented simply as segments of machine code. This
is possible because the component model is a local model:



Fig. 1. Elements of the RUNES component model.

distribution is assumed to be built on top of this foundational
layer.

The component model itself is complemented by two further
architecture elements: component frameworks and reflective
meta-models. These are discussed in Sections II-C and II-D
respectively.

B. Elements of the Component Model

An outline of the component model, which is based on
Lancaster’s OpenCOM [1], is illustrated in Figure 1.

Components are encapsulated units of functionality and
deployment that interact with other components exclusively
through “interfaces” and “receptacles” (see below). Capsules
are containing entities that offer the above-mentioned runtime
API. As implied above, capsules can implemented differently
on different devices—e.g. they might be implemented as a
Unix or Windows process on a PDA or PC; or as a RAM
chip on a sensor mote. Components can be deployed at any
time during run-time, and their loading can be requested from
within any component within the capsule (this is called third-
party deployment). Interfaces are expressed in terms of sets
of operation signatures and associated datatypes; OMG IDL is
used for interface specification to give language independence.
(Note, however, that this does not imply the overhead of
CORBA-like stubs and skeletons.) Components can support
multiple interfaces: this is useful in embodying separations
of concern (e.g. between base functionality and component
management). Receptacles are “required” interfaces that are
used to make explicit the dependencies of a component on
other components: when deploying a component into a cap-
sule, one knows by looking at its receptacles precisely which
other components must be present to satisfy its dependencies.
Finally, bindings are associations between a single interface
and a single receptacle. Like deployment, the creation of a
binding is inherently third-party in nature. That is, it can be
performed by any party within the capsule, not only by the
first-party components that will themselves participate in the
binding.

An abstract of the runtime API offered by each capsule is
as follows:

template load(comp type name);

comp inst instantiate(template t);

status unload(template t);

comp inst bind(ipnt inst interface, ipnt inst receptacle);

status destroy(comp inst comp);

status putattr(ID entity, ID key, any value);

any getattr(ID entity, ID key);

Load() loads a named component “template” from a local
repository into the capsule, and unload() unloads a template.
Templates can be instantiated (using instantiate()) to yield
component instances (comp insts); this can be done multiple
times if desired. Bind() is used to third-party bind a pair
of “interaction points” (i.e. a receptacle and an interface). It
returns a comp inst that represents the binding; this, like any
other component instance, can be destroyed using destroy().

The putattr() and getattr() calls give access to a general
purpose registry facility. This allows allow arbitrary <key,
value> attributes to be associated with component model
entities (i.e. components and interaction points). It provides
the basic means by which components discover each other
at runtime: to this end, load() and instantiate() register the
existence of each new template or component instance under a
well-known key. It is also used to obtain the interaction points
associated with a component, and to associate QoS properties
etc. with component model entities.

C. Component Frameworks

A component framework [2] is an encapsulated composition
of components that addresses some focused area of function-
ality, and which accepts additional components as run-time
“plug-ins” that somehow modify or extend the component
framework’s behaviour (examples are given below). Crucially,
component frameworks (hereafter CFs) actively police at-
tempts to plug-in new components according to well-defined,
per-CF, it policies and constraints that are expressed in a
language such as OCL.

The benefits of CFs are as follows: i), they provide an
intermediate abstraction between components and whole sys-
tems and thus generally increase the understandability and
maintainability of systems; ii) they simplify component devel-
opment and assembly through design reuse and guidance to
developers; and iii) they enable lightweight components (plug-
ins) because plug-ins can assume shared CF-specific state and
services.

Specific examples of CFs are given in Section III-A.

D. Reflective Meta-Models

The essence of “reflection” is to establish and manipu-
late causally-connected meta-models of an underlying target
system [3]. Such meta-models are representations of some
aspect or view of the target system, and they expose a so-
called meta-interface through which the representation can be
inspected and manipulated. The main purpose of reflection is
to maintain an architectural separation of concerns between
system building or configuration (sometimes called base-
level programming), and system adaptation or reconfiguration
(sometimes called meta-programming).

Reflection is a powerful technique, and its use should ideally
be constrained to minimise programmer error. Our approach
is to deploy reflective meta-models in close association with



CFs. The idea is that CFs can encapsulate meta-interfaces,
and appropriately restrict access to them according to policy.
Furthermore, such encapsulation can also ensure that meta-
interfaces are accessed only when conditions are safe; for
example, a CF could restrict component replacement via
the architecture meta-model (see Section III-B) to situations
in which no invocations are currently being made across
interaction points owned by the “old” component. Further, a
CF can define a suitable state-transfer protocol to carry-over
essential state from the old component to the new one.

Specific examples of reflective meta-models are given in
Section III-B.

III. TOWARDS THE RUNES MIDDLEWARE

We now show how the abstract concepts offered by the
component model can be instantiated as specific RUNES soft-
ware elements. First, in Section III-A, we describe a number of
possible RUNES CFs; then, in Section III-B, we describe some
example reflective meta-models. Finally, in Section III-C, we
give an example of how multiple CFs can work together.

A. Examples of RUNES CFs

The following are examples of RUNES CFs:

Local OS services. This CF exposes as plug-ins functionality
(or abstractions of functionality) that is typically provided by
the host operating system running, such as local scheduling,
memory management, or MAC protocols. As an example, dif-
ferent thread scheduling policies can be provided by different
plug-ins.

Network Services. This CF supports an extensible set
of plug-in network communication services and provides
a uniform set of APIs to these. It accommodates both
ad-hoc networking and infrastructure-based networking (in
the latter the plug-ins tend to be overlays). Examples of
plug-ins that might be accepted by the CF are: flooding,
flooding with probabilistic pruning, anycast, multi-hop rout-
ing, application level multicast, tunnelling, clustering, delay-
tolerant routing, and distributed hash table protocols. Some
of the CF’s generic APIs are as follows: send(message,
address) is used for unicast; sendToAll(message)
for broadcast; sendToGroup(message, topic) for
multicast; sendByKey(message, key) for DHT; and
send(message) for content-based routing.

Interaction Services. This CF supports an extensible set
application-level “interaction paradigms” that may be layered
on top of the Network Services CF. Examples of plug-ins
accepted by this CF include: tuple spaces, reliable multicast,
publish-subscribe and event notification, remote procedure
call, etc. Many such plug-ins can coexist depending on ap-
plication needs. Furthermore, one plug-in may exploit another
(e.g. RPC may exploit a tuple-space component which in turn
may be built on top of publish-subscribe).

Location Services. This CF is responsible for elaborating the
physical or logical position of the host it is running on. It may

exploit data acquired by a GPS sensor if present. Otherwise
it may adopt other plug-in strategies; e.g. by interacting with
GPS-equipped nodes.

Advertising and Discovery Services. Analogously to the
way in which the runtime’s registry allows applications to
reason about the components available locally, the advertising
and discovery CF allows applications to reason about remote
components.

Components that wish to advertise their presence in the
environment are called Advertisable components. Examples
include codec repositories and general services. An Advertis-
able component implements the Advertisable interface, which
enables the component to export a message that can be used
for advertising. Plug-in advertising “strategies” (e.g. based on
uPnP, SLP etc) are then represented as Advertiser components.
These are responsible for taking the messages of advertisable
components and, after potentially transforming them into other
formats, using these as advertisements. There can be any
number of Advertiser components installed in the CF.

Similarly, discovery “strategies”, which allow clients to
reason about the advertisable components that have been found
remotely, are encapsulated as Discovery components.

Coordination Services. This CF hosts a range of plug-in
protocols that are used to coordinate in various ways between
RUNES nodes—especially between sensor network nodes.
Examples are as follows:

Wake-up Coordination and Clustering Sensor motes typi-
cally employ a range of strategies to reduce bandwidth and
save energy. Wake-up coordination strategies try to prevent
redundant transmissions by ensure that transmitting and re-
ceiving nodes are both powered up at the same time. Similarly,
a range of clustering strategies can be employed for data
aggregation and energy-efficient communication—e.g. based
on geographic proximity or other criteria such as battery
level and sensor types. All such policies employ distributed
coordination and can thus be provided as plug-ins under this
heading.

Distributed Task Scheduler These plug-ins are responsible
for allocating tasks on different nodes according to their
specific capabilities and energy statuses. Inputs from the
application include application structure, data/control flow, re-
source requirements, and constraints on latency, reliability and
energy use. Distributed task schedulers are also responsible
for managing the trade-off between energy consumption and
application performance.

B. Examples of RUNES Meta-models

We now give a number of examples of reflective meta-
models. Note that all of these meta-models can be loaded/
unloaded on demand and thus only consume resources when
and where actually needed.

First, here are three examples of generic meta-models
that are scoped within a single capsule: The architecture
meta-model exposes the compositional topology of a sys-
tem of deployed components in a capsule as a casually-
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Fig. 2. A RUNES Reconfiguration Meta-Model.

connected graph structure. It also exposes the nested structure
of composite components and CFs. It enables one to inspect,
adapt and extend component topologies through high-level
operations on nodes (components) and arcs (bindings). The
interception metamodel allows one to interpose interceptors at
bindings between component interfaces for purposes such as
monitoring, debugging or security. The interface metamodel
allows one to discover information about interface types at
runtime and to invoke interface instances that are dynamically
discovered at runtime. Note that these meta-models rely on
special support from the runtime API (e.g. the architecture
meta-model needs to be informed every time a component is
created or destroyed); we have glossed over these details in
this short paper.

As a more detailed example, we now describe a meta-model
that can be used to manage system reconfiguration in a dis-
tributed environment. A high level view of this reconfiguration
meta-model, which is based on [4], is given in Figure 2. The
meta-model is based on principles of code mobility [5] and can
be used to dynamically transfer code, state and data between
RUNES nodes. The meta-model is symmetric, meaning that
it allows nodes to act both as senders and receivers. The
meta-model defines a Logical Mobility Entity (LME), as a
generalisation of code, state, components or data. Code refers
to, for example, classes or scripts; state refers to the state of
executing code at a particular instance in time (for example,
the value of variables); components refer to the collection of
code elements and metadata that make up a component; and
data refers to resources that other LMEs may reference (e.g.
application profiles, files, etc.)

The meta-model also defines a Logical Mobility Unit (LMU)
which is a collection of an arbitrary number of LMEs, and
is the basic unit of deployment. As such, an LMU can
contain anything from an individual class, to a collection
of components. LMUs are described using a collection of
<key, value> attributes similar to those associated with the
RUNES component model entities, and are transfered and
deployed by so-called Deployers. These are responsible for
sending and receiving requests, and for packing, serialising,
transferring and deploying LMUs. LMUs do not necessarily
have to be requested by their intended recipients; they can
be imposed on the recipient by a controlling third party.
LMUs comprehend both physical and logical destinations.
The physical destination is the address of the recipient node.

Fig. 3. Publish/Subscribe

Valid logical destinations of an LMU are CFs, which allows
for deploying components in particular CFs, and individual
components, which allows for dynamically updating a single
component.

An LMU can optionally encapsulate a Handler which
represents code that can be used by the recipient node to
deploy the contents of the LMU in a customised manner.

C. Example: Event Notification

To show how CFs can work together we now describe how
an Event Notification service may be implemented, deployed
and adapted in our system (see Figure 3).

The key component is an Event Notification component
that is encapsulated within the Interaction Services CF. This
exposes application interfaces to publish events and to sub-
scribe to classes of relevant events. It also has receptacles
for an appropriate network service (provided by the Network
Services CF) to enable network level communication.

On deployment, the Event Notification component uses
the architecture and interface meta-models to discover which
network services are currently available, and to establish an
optimal strategy accordingly. For example, it might bind to a
content-based routing component that happens to be present,
which will directly support the required content-based routing.
Otherwise, it might have to directly deal with events and
subscriptions itself, and rely for network communication on
a more primitive network service such as generic multi-hop
routing. Or, alternatively, if a flooding-based network service
is available, events can be delivered to all nodes in the network
and the Event Notification component itself can be responsible
for performing the matching against its own subscriptions.

The architecture and interface meta-models might also be
used to check whether a clustering component is available in
the Coordination Services CF and, if so, to investigate which
interfaces it provides (e.g. it may or may not offer location-
based aggregation, depending on whether the host is equipped
with a GPS-sensor). Given this information, the Event No-
tification component may refine its application interfaces by
enabling the application to specify a subscription scope or a
desired form of event aggregation.

Finally, in the operational phase, dynamic aspects of the



architecture come into play. For example, the interception
meta-model might be used to detect a change in context from
an ad-hoc networking environment to an infrastructure-based
environment. On this basis, the Event Notification component
might decide to use the architecture or reconfiguration meta-
model to switch to a new and more appropriate network
service.

IV. RELATED WORK

There is a substantial body of literature on reconfigurable
middleware systems. For example, Gravity [6] is a component
model built on top of the Open Services Gateway Initiative
(OSGi) Framework [7] (OSGi is a commercial framework for
the Java platform which allows providers to deliver services
to consumer devices attached to a residential network and to
manage those devices remotely). P2PComp [8] is a lightweight
service-oriented component model for mobile devices, which
is also built using OSGi; it provides location independent
synchronous and asynchronous communication between com-
ponents. The Dynamically Programmable and Reconfigurable
Software (DPRS) architecture [9] is a component-based design
for dynamically programmable and reconfigurable systems.
PCOM [10] is a distributed component model for pervasive
computing. It allows for designing applications as a collec-
tion of potentially distributed components, which make their
dependencies explicit. If those dependencies are invalidated,
PCOM can attempt to automatically adapt by detecting al-
ternatives according to various strategies. FarGo-DA [11] is
a distributed component model that uses logical mobility to
allow disconnected operation. The Software Dock [12] is an
agent-based software deployment network that allows negotia-
tion between software producers and consumers. THINK [13]
presents an approach for building component-based operating
system kernels. And finally, one.world [14] is a system for
pervasive applications that supports dynamic service compo-
sition, migration of applications and discovery of context.

The main difference between RUNES and the approaches
outlined above is generality: RUNES is a generic software
fabric that is designed from the ground up to be implementable
on a wide range of devices, and the primitives we provide are
not limited to, for example, disconnected operation or software
deployment, but can indeed be used to build such services.

V. CONCLUSIONS

In this position paper we have described the RUNES ap-
proach to the development of software for networked embed-
ded systems. This employs a uniform “software component”
abstraction which can be variously realised in various types
of devices. Then, on top of the basic component model, we
layer the notions of reflective meta-models and component
frameworks. We have shown in the paper how these abstract
notions can be instantiated as useful and general functionality,
both local and distributed, in adaptive networked embedded
environments.

In our future work, we want to investigate the practicality
of our approach in a range of environments. In particular, we

want to implement the runtime API on top of the Contiki
OS [15] on sensor motes and thereby validate that the approach
is viable even in extremely resource-constrained environments.
Then we want to use the approach to develop application level
functionality in terms of a emergency fire-fighting scenario
that we have developed which employs at least three types
of device: sensor motes, mobile PDAs and central control
computers on the fixed network.
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