
Q-CAD: QoS and Context Aware Discovery Framework for Mobile Systems

Licia Capra, Stefanos Zachariadis and Cecilia Mascolo
Dept. of Computer Science, University College London

Gower Street, London WC1E 6BT, UK
{L.Capra |S.Zachariadis |C.Mascolo }@cs.ucl.ac.uk

Abstract

This paper presents Q-CAD, a resource discovery frame-
work that enables pervasive computing applications to dis-
cover and select the resource(s) best satisfying the user
needs, taking the current execution context and quality-of-
service (QoS) requirements into account. The available re-
sources are first screened, so that only those suitable to the
current execution context of the application will be consid-
ered; the shortlisted resources are then evaluated against
the QoS needs of the application, and a binding is estab-
lished to the best available.

1 Introduction

Technological advances, both in wireless networking
and portable device capabilities, have met social popularity,
so that we are now witnessing an increase in the number of
devices and services we use to accomplish our daily tasks.
Interaction with these services and devices is enabled by
means of various components, some located on the mobile
device, some available for download remotely. We refer to
these services, devices and components asresources.

Research in the area of resource discovery for pervasive
environments has been very intense in recent years. Its main
focus has been on the development of efficient algorithms
that take the pervasive network topology into account when
routing advertisements and queries (e.g., [4, 5]). However,
more effort is needed to improve the user experience, so
that the resources that the user considers most suited in the
current execution context and according to his/her quality-
of-service (QoS) needs are actually selected.

In this paper we present Q-CAD, acontextand QoS
awareresource discovery and selection framework for per-
vasive environments. Each application dynamically en-
codes in anapplication profilethe way context should in-
fluence the discovery of, and the binding to, resources; Q-
CAD uses this information to reduce the resources avail-
able to the application in the current context to a subset of

‘plausible’ ones. Each application also encodes the QoS
needs of the user into autility function that Q-CAD ap-
plies to select the most suitable resource among the plau-
sible ones. Q-CAD builds on the following assumptions:
the existence of a shared ontology to refer to context el-
ements and conditions, resource names and characteristics,
and non-functional requirements; the integration with an ex-
isting discovery protocol for pervasive networks on which
Q-CAD relies to route advertisements and queries.

The paper is structured as follows: Section 2 describes
Q-CAD application profiles and utility functions, and de-
tails the discovery and selection protocol; Section 3 presents
the Q-CAD architecture; finally, Section 4 compares Q-
CAD with related work and presents our conclusions. For
more detailed and up-to-date information about Q-CAD
please refer to [2].

2 Q-CAD Model

Q-CAD achieves context and QoS awareness by means
of application profilesandutility functionsrespectively. In
this section, we describe the information they encode and il-
lustrate how the discovery and selection protocol uses them.
Before doing so, we define what a resource is in this set-
ting, whatbinding to a resource implies and we introduce
the concept ofresource descriptor.

Q-CAD Resources, Descriptors and Binding.Central
to our model is the notion of aresource. The resources that
the Q-CAD model considers are:servicesprovided by re-
mote providers,sensorsfrom which an application may re-
trieve data, andcomponentslocated remotely and that can
be downloaded and deployed on the local host. We refer
to these resources asremote resources, to distinguish them
from those local to a device (e.g., battery, memory, CPU,
etc.). We assume remote resources are uniquely identified
by means of an addressable naming scheme that is resolved
by the underlying communication framework. We define
the binding to a resource (i.e., the last step of a resource
discovery and selection process) as the association of the
selected remote resource to acomponentthat is local to the

(component, displayVideo) (size, 70KB)
(code, display800600.jar) (cost, $10)
(resolution, 800x600) (memory, 2)
(version, 2.1) (battery, 4)
(platform, JVM2)

Figure 1. Example of Resource Descriptor.

device and that is able to interact with it. A remote resource
could itself be a component: in this case, binding refers to
downloading and deploying the component on the local sys-
tem. Every remote resource is also associated with a static
specification, orresource descriptor, that characterises the
resource by means of a list of attribute/value pairs. Figure 1
illustrates an example of a remote resource descriptor for a
component that displays video at a resolution of800x600;
besides implementation details, the descriptor contains in-
formation that can be used to assess the quality of the re-
source itself; this includes, for example, estimates of local
resources consumption.

Application Profiles. Application profiles specify how
the user wishes the context to influence the discovery of
remote resources. Discovery can be eitherproactive(i.e.,
the consequence of an explicit request of the user to locate
a service) orreactive(i.e., the result of context changes).
Both types of discovery demand a similar behaviour from
the discovery framework: locating and binding to a resource
(be it a service provider, a sensor, or a component) that is
best suited in the current context (context-awareness) and
according to the current non-functional requirements of the
user (QoS-awareness). In the remainder of the paper, we
provide examples of proactive discovery only1.

Let us imagine a tourist that wishes to print the pic-
tures she has taken with her digital camera. In order to
do so, she has to discover and select a photo develop-
ment service provider, among the many available. Differ-
ent parameters may influence this choice: for example, lo-
cation of the provider, cost of the service, quality of the
prints, and so on. For each remote resource the appli-
cation may be willing to bind to, the proactive encoding
of its profile contains an association between the resource
name (tag<BIND RESOURCE>) and the context condi-
tions that must hold for the binding to be enabled (tag
<REMOTECONTEXT>). For example, the encoding shown
in Figure 2 states that only printing service providers that
give customers at least 100MB of disk space should be con-
sidered. This condition acts as a filter over the possibly high
number of providers of the same service. Only one context
configuration (tag<REMOTECONTEXT id="1">), con-
taining a single condition (tag<CONDITION>) is specified.
More generally, multiple contexts can be associated to the
same binding resource, and more conditions may be asso-
ciated to the same context. The semantics of these encod-

1A discussion of reactive discovery is available at [2].

<PROACTIVE id="1">
<LOCAL_CONTEXT/>
<REMOTE_CONTEXT/>
<BIND>

<BIND_RESOURCE name="printPicture">
<REMOTE_CONTEXT id="1">

<CONDITION name="diskSpace" op="greaterThan" value="100MB"/>
</REMOTE_CONTEXT>

</BIND_RESOURCE>
</BIND>
<ADAPT>

<ADAPT_COMPONENT id="1">
<LOCAL_CONTEXT id="2">

<CONDITION name="battery" op="greaterThan" value="30%"/>
</LOCAL_CONTEXT>
<REMOTE_CONTEXT/>
<ATTRIBUTES>

<ATTRIBUTE key="component" op="equals" value="encryptedUpload"/>
</ATTRIBUTES>

</ADAPT_COMPONENT>
<ADAPT_COMPONENT id="2">

<LOCAL_CONTEXT id="3">
<CONDITION name="battery" op="lessThan" value="30%"/>

</LOCAL_CONTEXT>
<REMOTE_CONTEXT/>
<ATTRIBUTES>

<ATTRIBUTE key="component" op="equals" value="plaintextUpload"/>
<ATTRIBUTE key="location" op="equals" value="local"/>

</ATTRIBUTES>
</ADAPT_COMPONENT>

</ADAPT>
</PROACTIVE>

Figure 2. Example of Proactive Encoding.

ings are the following: the binding to the remote resource
is enabled if and only ifat leastone of the context configu-
rations is enabled (or semantics); a context configuration is
enabled if and only ifall the conditions associated to it hold
(and semantics). If more than one service provider passes
the filtering, the actual provider to bind to will be selected
using the application’s utility function.

Once a remote service provider has been discovered
and selected, the application has to decide how to in-
teract with it (i.e., what component to use), as differ-
ent behaviours/protocols may be available. The compo-
nent should be selected out of a list of desirable ones (tag
<ADAPTCOMPONENT>); the choice depends on the fol-
lowing information, that is attached to each of these compo-
nents: local context, remote context, and application pref-
erences. For example, the encoding of Figure 2 dictates
that pictures should be uploaded to the provider site using
a component that supports an encryption protocol when the
remaining battery is above30%, while using a plaintext up-
load otherwise. If multiple components match the criteria
given, the utility function will be used to select the one that
best satisfies the QoS needs of the user. Note that the cho-
sen component may not be available locally; in this case,
discovery, download and deployment of a component im-
plementation is required; this process is almost identical to
the one that has been discussed above, as components are
treated as yet another type of resource.

Utility Functions. Once the pruning operated by ap-
plication profiles has been completed, utility functions are
used to select the best resource out of the context-suitable
ones, according to the non-functional requirements of the
user. Similarly to profiles, a utility function exists for each
application, so that user preferences may vary depending

on the particular application. Figure 3 illustrates an exam-
ple of a utility function encoding. As shown, the encod-
ing is divided into two parts: a<MAXIMISE> part, and a
<RETURN>part. Under the tag<MAXIMISE>, the appli-
cation lists the non-functional parameters it is interested in,
together with weights that express their relative importance.
The <MAXIMISE> part of the utility function is executed
on a resource descriptor, as a summation of products (i.e.,
normalised estimates multiplied by weights, as found in the
resource descriptor and utility function, respectively); it re-
turns a single value that can be used to compare the quality
of different resources. However, there are cases in which
the selection process should not be fully automated. For ex-
ample, the user may not want to download a component that
maximises her non-functional requirements, if it is too ex-
pensive. We use the<RETURN>part of the utility function
specification when intervention on behalf of the application
or user is required. Figure 3 dictates that selection can be
automated if the cost of the component is less than$10; oth-
erwise, information has to be prompted to the application to
obtain the final decision. This information includes, besides
the result of the maximisation part, all the attributes listed
in the<FILTER> part of the utility function.

Discovery Protocol. The discovery protocol that Q-
CAD realises so to achieve QoS and context awareness con-
sists of three main steps:matching, evaluationandselec-
tion. On behalf of the application, Q-CAD sends a discov-
ery message containing details about the wanted resource
(e.g., component type, resolution, platform, etc.). This in-
formation can be found in the application profile and is
used to prune the number of potential matches. The re-
mote resources receiving this message evaluate it locally
against their resource descriptors, and only those matching
the query will reply (matchingstep). The resources that
have survived the pruning now receive a message contain-
ing the application’s utility function; each remote resource
evaluates the function over the relevant resource descriptors
and returns an answer to the querying application (evalua-
tion step). Note that a resource may refuse to perform this
computation, either because it does not have the capabilities
to do so, or because it does not want to consume local re-
sources. On the other hand, the application may not be will-

<UTILITY_FUNCTION id="uf1">
<RETURN>

<EVALUATE>
<ATTRIBUTE key="cost" op="greaterThan" value="10$"/>

</EVALUATE>
<FILTER>

<ATTRIBUTE key="cost"/>
</FILTER>

</RETURN>
<MAXIMISE>

<ATTRIBUTE key="battery" weight="10"/>
<ATTRIBUTE key="memory" weight="5"/>

</MAXIMISE>
</UTILITY_FUNCTION>

Figure 3. Example of a Utility Function.

 PolicyRepo

 Application

NotificationService

Discovery

RemoteRepository

Information Decision Action

Deployer

 Evaluation

Local

Remote

Application

Profile UtilityFunction

Application Meta-Interface

LocalRepository

==

RemoteEvaluation

CodeOnDemand

ContextSensing

Figure 4. The Q-CAD Architecture.

ing, for privacy reasons, to disclose its utility function. In
these cases, the resource descriptor may be returned instead,
and the application itself will compute the utility function
over the descriptor locally. Finally, if no application inter-
vention is required, the resource that maximises the applica-
tion utility is automatically selected, based on the answers
received and/or the local computation performed; if inter-
vention is required instead, the returned values are passed
to the application to obtain a final choice (selectionstep).

3 Q-CAD Architecture

As shown in Figure 4, the Q-CAD architecture is or-
ganised into four conceptual layers: the Application Meta-
Interface layer, the Information layer, the Decision layer
and the Action layer.

The Application Meta-Interface Layer encapsulates
the interaction of the applications with the Q-CAD architec-
ture. It is composed of thePolicyRepoandNotificationSer-
vice components: PolicyRepo represents thereflectiveas-
pects of the application, as it allows for the dynamic inspec-
tion and modification of the application profile and utility
function; the NotificationService is responsible for extract-
ing the information from the profile and passing it on to the
components in the Information layer, as well as returning
the result of a resource discovery to the application.

The Information Layer is responsible for the manage-
ment of local and remote context-related information. In
particular, theContextSensingcomponent is responsible for
monitoring the state of the local system (e.g., remaining
battery power, etc.), while theDiscoverycomponent is re-
sponsible for detecting the remote resources (in particular,
services and sensors) currently available to the local host,
that the application is interested in. The two repository
components are responsible for encapsulating information

about components already deployed locally (LocalReposi-
tory), or available for download and deployment on remote
hosts (RemoteRepository).

The Decision Layerencapsulates the evaluation and se-
lection aspects of the Q-CAD protocol. After the Infor-
mation layer has performed its pruning, the Decision layer
evaluates the utility function against the shortlisted resource
descriptors, and selects the one that maximises the applica-
tion’s utility. It comprises both aLocal and aRemotecom-
ponent, for local and remote evaluation of the utility func-
tion respectively. The execution of the Evaluation compo-
nent may generate events that need application input; if that
is the case, the NotificationService component in the Appli-
cation Meta-Interface layer is used to pass the events to the
application and get the required input.

The Action Layer encapsulates the logical mobility
techniques [3] required by the Decision layer (i.e., code-
on-demand and remote evaluation). It consists of theDe-
ployercomponent, which comprises: theRemoteEvaluation
component, used by the Remote component in the Deci-
sion layer to deploy the utility function on a remote host,
and theCodeOnDemandcomponent, that is responsible for
downloading any remote component locally needed to per-
form adaptation. The downloaded components are reg-
istered with the LocalRepository, so that the Information
layer maintains an up to date status of the system.

4 Discussion and Conclusions

In recent years, research has been very active in the area
of service discovery for pervasive systems. Most of the
work has concentrated on designing protocols and architec-
tures that could fit the mobile network topology. Examples
include: directory-based approaches, such as Jini, UPnP,
the Service Location Protocol, the Salutation Architecture,
and the Bluetooth Service Discovery Protocol; totally de-
centralised approaches based on flooding algorithms, such
as SSDP; approaches for single-hop ad-hoc networks (e.g.,
IBM DEAPspace [8]), multi-hop (e.g., Lanes [5]), and P2P
(e.g., JXTA-Search [9]). A common limitation of these ap-
proaches is that they concentrate on providing a commu-
nication infrastructure, while supporting only primitive ser-
vice matching mechanisms based on the exact match of sim-
ple pre-defined attributes.

Approaches that move a step closer to our goal include:
the Intentional Naming Scheme [1], an overlay that allows
each node to intelligently choose the nodes to which to for-
ward queries based on the semantics of the request; MAG-
NET [6], a trading framework that has been proposed to
allow user-customised service matching, based on service
types, rather than on service names, and [7], a QoS-aware
service selection framework that takes both the user per-
spective and resource consumption into account. However,

the semantics of service queries and matching is still not
rich enough.

In this paper we have described Q-CAD, a resource
discovery and selection framework for pervasive environ-
ments that supports semantically rich descriptions of both
the current context and QoS needs. The Q-CAD architec-
ture has been implemented using Java 2 Micro Edition and
the SATIN [10] component model and middleware system
for adaptive mobile systems. In total, the Q-CAD imple-
mentation occupies 127KB (compressed), making it suit-
able for mobile devices. We have implemented a bench-
mark application to evaluate Q-CAD performance in terms
of: overhead imposed by the evaluation of context infor-
mation (as encoded in application profiles), and overhead
imposed by the evaluation of QoS information (as encoded
in utility functions). Experimental results (available at [2])
demonstrate that Q-CAD supports rich queries and match-
ing, while imposing a low overhead on the device.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley. The Design and Implementation of an Intentional Nam-
ing System. InProc. of the 17th ACM Symposium on Oper-
ating Systems Principles, pages 186–201. ACM Press, 1999.

[2] L. Capra, S. Zachariadis, and C. Mascolo. Q-CAD: QoS and
Context Aware Discovery Framework for Mobile Systems.
http://www.cs.ucl.ac.uk/staff/l.capra/projects/qcad, 2005.

[3] A. Fuggetta, G. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering,
24(5):342–361, May 1998.

[4] R. Harbird, S. Hailes, and C. Mascolo. Adaptive Resource
Discovery for Ubiquitous Computing. InProc. of the2nd

Int. Workshop on Middleware for Pervasive and Ad-Hoc
Computing, pages 155–160. ACM Press, Oct. 2004.

[5] M. Klein, B. Konig-Ries, and P. Obreiter. Lanes - A
Lightweight Overlay for Service Discovery in Mobile Ad
Hoc Networks. InProc. of the 3rd IEEE Workshop on Ap-
plications and Services in Wireless Networks (ASWN2003),
Berne, Switzerland, July 2003.

[6] P. Kostkova and J. McCann.Adaptive evolutionary informa-
tion systems, chapter Support for dynamic trading and run-
time adaptability in mobile environments, pages 229–260.
Idea Group Publishing, 2003.

[7] J. Liu and V. Issarny. QoS-aware Service Location in Mobile
Ad Hoc Networks. InProc. of the 5th IEEE Int. Conf. on
Mobile Data Management, Berkeley, USA, Jan. 2004.

[8] M. .Nidd. Service Discovery in DEAPspace.IEEE Presonal
Communications, pages 39–45, Aug. 2001.

[9] S. Waterhouse. JXTA Search: Distributed Search for Dis-
tributed Networks. http://search.jxta.org/.

[10] S. Zachariadis, C. Mascolo, and W. Emmerich. SATIN: A
component model for mobile self-organisation. InInter-
national Symposium on Distributed Objects and Applica-
tions (DOA), volume 3291, pages 1303–1321, Agia Napa,
Cyprus, October 2004. LNCS, Springer.

	Introduction
	Q-CAD Model
	Q-CAD Architecture
	Discussion and Conclusions

