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ABSTRACT
Validation of mobile ad hoc network protocols relies almost ex-
clusively on simulation. The value of the validation is, therefore,
highly dependent on how realistic the movement models used in
the simulations are. Since there is a very limited number of avail-
able real traces in the public domain, synthetic models for move-
ment pattern generation must be used. However, most widely used
models are currently very simplistic, their focus being ease of im-
plementation rather than soundness of foundation. As a conse-
quence, simulation results of protocols are often based on ran-
domly generated movement patterns and, therefore, may differ con-
siderably from those that can be obtained by deploying the system
in real scenarios. Movement is strongly affected by the needs of
humans to socialise or cooperate, in one form or another. Fortu-
nately, humans are known to associate in particular ways that can
be mathematically modelled and that have been studied in social
sciences for years.

In this paper we propose a new mobility model founded on so-
cial network theory. The model allows collections of hosts to be
grouped together in a way that is based on social relationships
among the individuals. This grouping is then mapped to a topo-
graphical space, with movements influenced by the strength of so-
cial ties that may also change in time.

We have validated our model with real traces by showing that the
synthetic mobility traces are a very good approximation of human
movement patterns.
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1. INTRODUCTION
The definition of realistic mobility models is one of the most

critical and, at the same time, difficult aspects of the simulation of
applications and systems designed for mobile environments. Cur-
rently, there are very few and very recent public data banks cap-
turing node movement in real large-scale mobile ad hoc environ-
ments.

For example, researchers at Intel Research Laboratory in Cam-
bridge and the University of Cambridge distributed Bluetooth de-
vices to people, in order to collect data about human movements
and to study the characteristics of the co-location patterns among
people. These experiments were firstly conducted among students
and researchers in Cambridge [4] and then among the participants
of InfoCom 2005 [9]. Other similar projects are the Wireless Topol-
ogy Discovery project at the UCSD [16] and the campus-wide
WaveLan traffic measurement and analysis exercises that have been
carried out at Dartmouth College [6]. At this institution, a project
with the aim of creating a repository of publicly available traces
for the mobile networking community has also been started [13].

Until now, in general, real movement traces have been rarely
used for evaluation and testing of protocols and systems for mo-
bile networks, with the only exception of [26] and [8], in which
the authors used, respectively, the movement traces collected from
a campus scenario and direct empirical observations of the move-
ments of pedestrians in downtown Osaka as a basis of the design
of their models.

In general, synthetic models have been largely preferred [3].
The reasons of this choice are many. First of all, as mentioned,
the available data are limited. Second, these traces are related to
very specific scenarios and their validity is difficult to generalize.
However, as we will discuss later in the paper, these data show sur-
prising common statistical characteristics, such as the same distri-
bution of the duration of the contacts and inter-contacts intervals.
Third, the available traces do not allow for sensitivity analysis of
the performance of the algorithm, since the values of the param-
eters that characterize the simulation scenarios, such as the distri-
bution of the speed or the density of the hosts, cannot be varied.
Finally, in some cases, it may be important to have a mathematical
model that underlines the movement of the hosts in simulations, in
order to study its impact on the design of protocols and systems.

Many mobility models for the generation of synthetic traces
have been presented (a survey can be found in [3]). The most
widely used of such models are based on random individual move-
ment; the simplest, the Random Walk mobility model (equivalent
to Brownian motion), is used to represent pure random movements
of the entities of a system [5]. A slight enhancement of this is the
Random Way-Point mobility model [11], in which pauses are in-
troduced between changes in direction or speed. More recently,



a large number of more sophisticated mobility models for ad hoc
network research have been presented [2, 10, 14].

However, all synthetic movement models are suspect because
it is quite difficult to assess to what extent they map reality. It
is not hard to see, even only with empirical observations, that the
random mobility models generate behaviour that is most unhuman-
like. This analysis is confirmed by the examination of the available
real traces. As we will discuss later in this paper, mobility models
based on random mechanisms generate traces that show properties
(such as the duration of the contacts between the mobile nodes and
the inter-contacts time) very distant from those extracted from real
scenarios.

Our work is based on a simple observation. In mobile ad hoc
networks, mobile devices are usually carried by humans, so the
movement of such devices is necessarily based on human deci-
sions and socialization behaviour. For instance, it is important to
model the behaviour of individuals moving in groups and between
groups, as clustering is likely in the typical ad hoc networking de-
ployment scenarios of disaster relief teams, platoons of soldiers,
groups of vehicles, etc. In order to capture this type of behaviour,
we define a model for group mobility that is heavily dependent on
the structure of the relationships among the people carrying the
devices. Existing group mobility models fail to capture this social
dimension [3].

Fortunately, in recent years, social networks have been inves-
tigated in considerable detail, both in sociology and in other ar-
eas, most notably mathematics and physics. In fact, in the recent
years, various types of networks (such as the Internet, the World
Wide Web and biological networks) have been investigated by re-
searchers especially in the statistical physics community. Theo-
retical models have been developed to reproduce the properties of
these networks, such as the so-called small worlds model proposed
by Watts and Strogatz [28] or various scale-free models [21, 27].
Excellent reviews of the recent progress in complex and social net-
works analysis may be found in [1] and [21].

However, as discussed by Newman and Park in [23], social net-
works appear to be fundamentally different from other types of
networked systems. In particular, even if social networks present
typical small-worlds behaviour in terms of the average distance be-
tween pairs of individuals (the so-called average path length), they
show a greater level of clustering. In particular, in [23] the authors
observe that the level of clustering seen in many non-social sys-
tems is no greater than in those generated using pure random mod-
els. Instead in social networks, clustering appears to be far greater
than in networks based on stochastic models. The authors suggest
that this is strictly related to the fact that humans usually organize
themselves into communities. Examples of social networks used
for these studies are rather diverse and include, for instance, net-
works of coauthorships of scientists [20] and the actors in films
with Kevin Bacon [28].

In this paper, we propose a new mobility model that is founded
on social network theory. One of the inputs of the mobility model
is the social network that links the individuals carrying the mo-
bile devices based on these results in order to generate realistic
synthetic network structures [28] . The model allows collections
of hosts to be grouped together in a way that is based on social
relationships among the individuals. This grouping is only then
mapped to a topographical space, with topography biased by the
strength of social ties. The movements of the hosts are also driven
by the social relationships among them. The model also allows
for the definition of different types of relationships during a cer-
tain period of time (i.e., a day or a week). For instance, it might
be important to be able to describe that in the morning and in the
afternoon of weekdays, relationships at the workplace are more
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Figure 1: Example of social network.

important than friendships and family one, whereas the opposite is
true during the evenings and weekends.

We evaluate our model using real mobility traces provided by
Intel Research Laboratory in Cambridge and we show that the
model provides a good approximation of real movements in terms
of some fundamental parameters, such as the distribution of the
contacts duration and inter-contacts time. In particular, the data
show that an approximate power law holds over a large range of
values for the inter-contacts time. Instead, contacts duration distri-
bution follows a power law for a more limited range. These char-
acteristics of distribution are also very similar to those observed
by the researchers at the University of California at San Diego and
Dartmouth College [4].

The proposed model is partially based on the work presented
in [17]. With respect to that short paper, targeted to the simulation
of mobile ad hoc networks, many aspects of the model have been
revised to try to map reality with more accuracy. More specifi-
cally, in this work the formation of the groups is based on an al-
gorithm for the detection of communities in social networks [19].
The placement of the groups and the dynamics of the hosts in the
geographic space have also been completely re-designed. Further-
more, this paper presents a thorough evaluation of the model and a
comparison with real traces, which is not presented in [17].

The paper has the following structure: Section 2 shows how
these results can be used to design a social network founded mo-
bility model. Section 3 illustrates the results of the evaluation of
the model based on the comparison with real traces. In Section 4
we compare the proposed mobility model with the current state of
the art. Section 5 concludes the paper, summarizing the original
contribution of our work.

2. DESIGN OF THE MOBILITY MODEL
In this section we show how we designed a mobility model

which is founded on the results of social network theories briefly
introduced. The description of the mobility model, mirroring its
conceptual steps, is organized as follows:

• Firstly, we describe how we model social relationships and,
in particular, how we use social networks as input of the
mobility model.

• Secondly, we present the establishment of the model: we
discuss how we identify communities and groups in the net-
work and how the communities are associated to a geograph-
ical space. Our observation here is that people with strong
social links are likely to be geographically colocated often
or from time to time.

• Thirdly, we describe the algorithm that is at the basis of the
dynamics of the nodes, that, again, is based on the strength
of social relationships. We argue that individuals with strong
social relationships move towards (or within) the same geo-
graphical area.



2.1 Using Social Networks as Input of the Mo-
bility Model

2.1.1 Modelling Social Relationships
One of the classic ways of representing social networks is weighted

graphs. An example of social network is represented in Figure 1.
Each node represents one person. The weights associated with
each edge of the network is used to model the strength of the inter-
actions between individuals [24]. It is our explicit assumption that
these weights, which are expressed as a measure of the strength of
social ties, can also be read as a measure of the likelihood of geo-
graphic colocation, though the relationship between these quanti-
ties is not necessarily a simple one, as will become apparent. We
model the degree of social interaction between two people using
a value in the range [0, 1]. 0 indicates no interaction; 1 indicates
a strong social interaction. Different social networks can be valid
for different parts of a day or of a week1.

As a consequence, the network in Figure 1 can be represented
by the 10×10 symmetric matrix M showed in Figure 2, where the
names of nodes correspond to both rows and columns and are or-
dered alphabetically. We refer to the matrix representing the social
relationships as Interaction Matrix.

M =

266666666666664

1 0.76 0.64 0.11 0.05 0 0 0.12 0.15 0
0.76 1 0.32 0 0.67 0.13 0.23 0.45 0 0.05
0.64 0.32 1 0.13 0.24 0 0 0.15 0 0
0.11 0 0.13 1 0.54 0.83 0.57 0 0 0
0.05 0.67 0.24 0.54 1 0.2 0.41 0.2 0.23 0
0 0.13 0 0.83 0.2 1 0.69 0.15 0 0
0 0.23 0 0.57 0.41 0.69 1 0.18 0 0.12

0.12 0.45 0.15 0 0.2 0.15 0.18 1 0.84 0.61
0.15 0 0 0 0.23 0 0 0.84 1 0.65
0 0.05 0 0 0 0 0.12 0.61 0.65 1

377777777777775

Figure 2: Example of an Interaction Matrix representing a
simple social network.

The generic element mi,j represents the interaction between two
individuals i and j. We refer to the elements of the matrix as the
interaction indicators. The diagonal elements represent the rela-
tionships that an individual has with himself and are set, conven-
tionally, to 1. In Figure 1, we have represented only the links asso-
ciated to a weight equal to or higher than 0.25.

The matrix is symmetric since, to a first approximation, inter-
actions can be viewed as being symmetric. However, it is worth
underlining that we are using a specific measure of the strength of
the relationships. It is probable that by performing psychological
tests, the importance of a relationship, such as a friendship, will
be valued differently by the different individuals involved; in our
modelization, this would lead to an asymmetric matrix. We plan to
investigate this issue further in the future.

The Interaction Matrix is also used to generate a Connectivity
Matrix. From matrix M we generate a binary matrix C where a
1 is placed as an entry cij if and only if mi,j is greater than a
specific threshold t (i.e., 0.25). The Connectivity Matrix extracted
by the Interaction Matrix in Figure 2 is showed in Figure 3. The
idea behind this is that we have an “interaction” threshold above
which we say that two people are interacting as they have a strong
relationship. The Interaction Matrix (and, consequently, the Con-
1Let us consider a family of three people, with one child. Dur-
ing the days, when the child is at school and the parents at their
workplaces, their social relationship is weak (i.e., represented with
low values in the matrix). During the evening, the social ties are
stronger as the family members tend to be co-located (i.e., high
values in the matrix). The relationship between two colleagues
sharing the same office will be represented with a value higher
than these family relationships during the working hours in week
days.

C =

266666666666664

1 1 1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 1 0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1

377777777777775

Figure 3: Example of a Connectivity Matrix representing a
simple social network.

nectivity Matrix) can be derived by available data (for example,
from a sociological investigation) or using mathematical models
that are able to reproduce characteristics of real social networks.
As we will discuss in Section 3.2.1, the default implementation of
our model uses the so-called Caveman model [28] for the genera-
tion of synthetic social networks with realistic characteristics (i.e,
high clustering and low average path length). However, this is a
customizable aspect and, if there are insights on the type of sce-
nario to be tested, a user-defined matrix can be inputed.

2.1.2 Detection of Community Structures
The simulation scenario is established by mapping groups of

hosts to certain areas in geographical space. After the definition of
the social graph described above, groups, i.e., the highly connected
set of nodes in the graph, need to be isolated. Fortunately, some
algorithms can be exploited for this purpose.

We use the algorithm proposed by Newman and Girvan in [22]
to detect the presence of community structures in social networks
represented by matrices, like the Connectivity Matrix that we have
defined in the previous section. This algorithm is based on the
calculation of the so-called betweenness of edges. This provides
a measure of the centrality of nodes. For example, considering
two communities connected by few inter-community edges, all the
paths through the nodes in one community to nodes in the other
must traverse one of these edges, that, therefore, will be charac-
terised by a high betweenness. Intuitively then, one of the possi-
ble estimation of the centrality of an edge is given by the number
of shortest (geodesic) paths between all pairs of vertices that run
along it. In other words, the average distance between the vertices
of the network has the maximum increase when the nodes with the
highest betweenness are removed.

Therefore, in order to extract the communities from the network,
nodes characterized by high values of centrality are progressively
detected in subsequent rounds. At each round, one of the edges of
the host with the highest centrality is removed. The final result is a
network composed of (fairly distinguishable) groups of hosts (i.e.,
the communities).

The complexity of this algorithm is O(mn2), considering a graph
with m edges and n vertices. The calculation of the shortest path
between a particular pair of vertices can be perfomed using a breadth-
first search in time O(m) and there are O(n2) vertices. However,
in [22], Newman and Girvan proposed a faster algorithm with a
complexity equal to O(mn).

As we said, the algorithm can be run a number of times on the
graph, severing more and more links and generating a number of
distinguishable communities. However we also need a mechanism
to stop the algorithm when further cuts would decrease the qual-
ity of the results: this would mean that we have reached a state
when we have meaningful communities already. We adopted a
solution based on the calculation of an indicator defined as modu-
larity Q [22]. This quantity measures the proportion of the edges
in the network that connect vertices within the same community
minus the expected value of the same quantity in a network with



the same community division but random connections between the
vertices. If the number of edges within the same community is no
better than random, the value of Q is equal to 0. The maximum
value of Q is 1; such a value indicates very strong community
structure. In real social networks, the value of Q is usually in the
range [0.3, 0.7]. The analytical definition of the modularity of a
network division can be found in [22]. At each run the algorithm
severs one edge and measures the value of Q. The algorithm ter-
minates when the obtained value of Q is less than the one obtained
in the previous edge removal round. This is motivated by the fact
that Q presents one or, at maximum, but much more rarely, two
local peaks: therefore, we can stop when the first local peak is
reached. This is clearly an approximation since the value of the
other possible local peak (if exists) may be higher, but it has been
observed that the quality of the division that we obtain is, in the
vast majority of the cases, very good [22]. Also, by adopting this
technique, we considerably simplify the computational complexity
of the algorithm.

In order to illustrate this process, let us now consider the social
network in Figure 1. Three communities (that can be represented
by sets of hosts) are detected by running the algorithm: C1 =
{A, B, C}, C2 = {D, E, F, G} and C3 = {H, I, L}. Now that
the communities are identified given the matrix, there is a need to
associate them with a location.

2.2 Establishment of the Model: Placement of
the Communities in the Simulation Space

After the communities are identified, each of them is randomly
associated to a specific location (i.e., a square) on a grid2. We use
the symbol Sp,q to indicate a square in position p, q. The number
of rows and columns are inputs of the mobility model.

Going back to the example, in Figure 4 we show how the com-
munities we have identified can be placed on a 3x4 grid (the di-
mension of the grid is configurable by the user and influences the
density of the nodes in each square). The three communities C1,
C2, C3 are placed respectively in the grid in the squares Sa,2, Sc,2

and Sb,4.
Once the nodes are placed on the grid, the model is established

and the nodes move around according to social-based attraction
laws as explained in the following.

2.3 Dynamics of the Mobile Hosts
As described in the previous section, a host is initially associated

to a certain square in the grid. Then, in order to drive movement,
a goal is assigned to the host. More formally, we say that a host i
is associated to a square Sp,q if its goal is inside Sp,q . Note that
host i is not necessarily always positioned inside the square Sp,q ,
despite this association (see below).

The goal is simply a point on the grid which acts as final des-
tination of movement like in the Random Way-Point model, with
the exception that the selection of the goal is not as random.

2.3.1 Selection of the first goal
When the model is initially established, the goal of each host

is randomly chosen inside the square associated to its community
(i.e, the first goals of all the hosts of the community C1 will be
chosen inside the square Sa,2).

2.3.2 Selection of the subsequent goals

2A non random association to the particular areas of the simulation
area can be devised, for example by deciding pre-defined areas
of interest corresponding for instance to real geographical space.
However, this aspect is orthogonal to the work discussed in this
paper.
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Figure 4: Example of initial simulation configuration.

When a goal is reached, the new goal is chosen according to the
following mechanism. A certain number of hosts (zero or more) is
associated to each square Sp,q at time t. Each square (i.e., place)
exterts a certain social attractivity for a certain host. The social
attractivity of a square is a measure of its importance in terms of
the social relationships for the host taken into consideration. The
social importance is calculated by evaluating the strength of the
relationships with the hosts that are moving towards that particu-
lar square (i.e., with the hosts that have a current goal inside that
particular square). More formally, given CSp,q (i.e., the set of the
hosts associated to square Sp,q), we define social attractivity of
that square towards the host, i SAp,qi

, as follows

SAp,qi
=

nP
j=1
j∈CSp,q

mi,j

w

where w is the cardinality of CSp,q (i.e., the number of hosts asso-
ciated to the square Sp,q). In other words, the social attractivity of
a square in position (p, q) towards a host i is defined as the sum of
the interaction indicators that represent the relationships between i
and the other hosts that belong to that particular square, normalized
by the total number of hosts associated to that square. If w = 0
(i.e., the square is empty), the value of SAp,qi

is set to 0.
The new goal is then randomly chosen inside the square char-

acterised by the highest social attractivity; it may be again inside
the same square or in a different one. New goals are chosen in-
side the same area when the input social network is composed
by loosely connected communities (in this case, hosts associated
with different communities have, in average, weak relationships
between each others). On the other hand, a host may be attracted
to a different square, when it has strong relationships with both
communities. From a graph theory point of view, this means that
the host is located between two (or more) clusters of nodes in the
social network3.

Let us suppose, for example, that host A has reached its first goal
inside the square Sa,2. The new goal is chosen by calculating the
social attractivities of all the squares that compose the simulation
space and then by choosing the highest. If, say, square Sc,2 exterts
the highest attractivity (for example, because a host with strong
relationship with node A has joined that community), the new goal
will then be selected inside that square.

2.3.3 Social Network Reconfigurations and their Ef-
fects on the Dynamics of Mobile Hosts

3This is usually the case of hosts characterised by a relatively high
betweenness that, by definition, are located between two (or more)
communities.



Like in everyone’s life, the day movement are governed by dif-
ferent patterns of mobility which depend on the people we need to
interact with. For example, most people spend a part of their day
at work, interacting with colleagues, and another part at home with
their families. In order to model this, we allow the association of
different social networks to different periods of a simulation.

Periodically, the social networks at the basis of the mobility
model can be changed. The interval of time between changes is
an input of the model. When the reconfiguration of the underlying
social network happens, nodes are assigned to the new communi-
ties that are detected in the network using the algorithms described
in Section 2.1.2. Communities are then randomly associated to
squares in the simulation space. This assignement does not im-
ply immediate relocation of the nodes, instead, it conditions the
choice of the next goal. In fact, goals are chosen inside the square
of the grid to which the community they belong to is assigned.
So hosts will move towards their destination gradually. The nodes
start moving towards the geographical region where other nodes
that have strong interactions with them will converge. This mir-
rors the behaviour, for instance, of commuters who travel home
every evening to join their families.

3. IMPLEMENTATION AND EVALUATION
In order to evaluate our model we have performed a number of

tests, in particular, we have taken real mobility traces collected by
Intel Research Laboratory in Cambridge. We have then tested our
model using realistic social networks and compared the mobility
patterns with the Intel traces. In this section, we will present and
discuss the results of our simulations comparing them with these
data from real scenarios.

3.1 Implementation of the model
We implemented a movement patterns generator that produce

primarily traces for the ns-2 simulator [15], one of the most popu-
lar in the ad hoc network research community. However, the gen-
erator is also able to produce traces in a XML meta-format that
can be parsed and trasformed into other formats (for example, by
using XSLT) such as the one used by GlomoSim/Qualnet [29].
The model is available for downloading at the following URL:
http://ww.cs.ucl.ac.uk/staff/m.musolesi/mobilitymodels.

3.2 Validation of the Model using Real Move-
ment Traces

In this section, we present a comparison of the properties of the
movement patterns generated by our mobility model with those
of the real traces provided by Intel Research Laboratory in Cam-
bridge. The description of these measurement exercise is presented
in [4]. In that paper, the authors also compare their results with
other publicly available data sets provided by McNett and Voelker
from University of California at San Diego [16] and by Henderson
et alii from Dartmouth College [6] showing evident similarities
between the patterns movements collected by the three different
groups. For this reason, we decided to compare the traces obtained
by using our mobility model only with the data provided by the
researchers in Cambridge.

3.2.1 Description of the Simulation
We tested our mobility model using several runs generating dif-

ferent mobile scenarios and we compared the results with the real
movement patterns provided by Intel and synthetic traces gener-
ated using a Random Way-Point model.

We tested our model considering a scenario composed of 100
hosts in a simulation area of 5 km × 5 km, divided into a grid
composed of 625 squares of 200 m (i.e., the numbers of rows and

ba

Figure 5: Generation of the social network in input using the
Caveman model: (a) initial configuration with 3 disconnected
‘caves’. (b) generated social network after the rewiring pro-
cess.

columns of the grid were set to 25). We chose a relatively large
simulation scenario, with a low population density, in order to bet-
ter see the differences in the results obtained with a Random Way-
Point model. In fact, in small simulation areas, the limited possible
movements and the higher probability of having two nodes in the
same transmission range may affect the simulation results intro-
ducing side-effects that are not entirely due to the mobility model.

We also assumed that each device is equipped with an omni-
directional antenna with a transmission range of 250 m, modeled
using a free space propagation model. The speeds of the nodes
were randomly generated according to a uniform distribution in
the range [1 − 6] m/s. The duration of the simulation is one day
and the reconfiguration interval is equal to 8 hours. These values
have not been chosen to reproduce the movements described by
the traces provided by Intel, rather, we were more interested in ob-
serving if similar patterns could be detected in synthetic and real
traces. In other words, our goal has mainly been to verify whether
the movement patterns observed in Intel traces were reproduced by
our mobility model.

A key aspect of the initialization of our model is the selection
of the social network in input. We implemented a generator of
synthetic social networks using the so-called Caveman Model pro-
posed by Watts [28]. The social network is built starting from K
fully connected graphs (representing communities living in isola-
tion, like primitive men in caves). According to this model, every
edge of the initial network in input is re-wired to point to a node of
another cave with a certain probability p. The re-wiring process is
used to represent random interconnections between the communi-
ties. Figure 5.a shows an initial network configuration composed
by 3 disconnected communities (caves) composed by 5 individu-
als; a possible social network after random rewiring is represented
in Figure 5.b.

Individuals of one cave are closely connected, whereas popula-
tions belonging to different caves are sparsely connected. There-
fore, the social networks generated using this model are character-
ized by a high clustering coefficient and low average path length.
It has been proved that this model is able to reproduce social struc-
tures very close to real ones [28]. We generated social networks
with different rewiring probabilities, also considering the case of
disconnected communities (i.e., p = 0).

We also implemented a movement patterns generator based on
the Random Way-Point model. We generated traces with the same
simulation scenarios in terms of size of the area and characteristics
of the mobile devices, with hosts that move with a speed uniformly
distributed in the range [1− 6] m/s and stop time equal to [1− 10]
m/s. We repeated the experiments using a number of runs sufficient
to achieve a 10% confidence interval.

3.2.2 Simulation Results
The emergent structure of the network derived by analyzing the

Intel traces is typically exponential [1]; in fact, the degree of con-
nectivity shows a local peak near the average. Our mobility model
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(indicated with CM) produces a similar type of distribution as shown
in Figure 6. The peak shifts to the right as the density of the
squares increases. We analyzed two further properties of the move-
ment patterns, the contact duration and the inter-contacts time. We
adopt the same definitions used by the authors of [4] in order to be
able compare the results. We define contact duration as the time
interval in which two devices are in radio range. We define inter-
contacts time as the time interval between two contacts. These
indicators are particularly important in ad hoc networking and, in
particular, in opportunistic mobile networks, such as delay tolerant
mobile ad hoc networks [18, 12]: inter-contacts times define the
frequency and the probability of being in contact with the recipi-
ent of a packet or a potential carrier in a given time period.

Figure 7 shows the comparison between the inter-contacts time
and the contact duration cumulative distributions4 using log-log
coordinates. These distributions are extracted from the real and
synthetic traces generated by the Random Way-Point (indicated
with RWP) and our Community based mobility model with differ-
ent rewiring probabilities p.

With respect to the inter-contacts time, our traces (excluding the
case with p = 0 that we will discuss separately) shows an approxi-
mate power law behaviour for a large range of values like those ex-
tracted from Intel data. A similar pattern can be observed in UCSD
and Dartmouth traces [4]. The cumulative distribution related to
Random Way-Point, instead, shows a typical exponential distribu-
tion. The same behaviour can be observed for the traces generated
using our Community based mobility model with a probability of
rewiring equal to 0. In fact, in this case, the only movements of
the hosts outside the assigned square happen when a reconfigura-
tion takes place (i.e., a new generation of the social networks takes
place and a consequent new assignment to different squares in the
grid are performed). However, the case of disconnected and iso-
lated communities is not so realistic. As far as the contacts time
distribution is concerned, we observe a power law behaviour for a
much more limited range of values and, in general, with a lower
angular coefficient of the interpolating line. The traces from Dart-
mouth College and UCSD also show a power law distribution with
different angular coefficients [4]. It seems that data related to dif-
ferent scenarios are characterized by different types of power law
distribution.

By plotting the same distributions using semi-log coordinates

4Cumulative distributions are generally used instead of frequency
distributions to avoid the issues related to the choice of the bins
of the plot. It is possible to prove that if a set of data shows a
power law behaviour using a frequency histogram, its cumulative
distribution also follows the same pattern.

(see Figure 8), the differences between the curves corresponding
to real traces and those generated using the Random Way-Point
mobility model are even more evident. The exponential nature of
the cumulative distribution of the inter-contacts time5 extracted by
the latter is clearly reflected by the approximated straight line that
is shown in the figure.

Figure 9.a and 9.b show the influence of the speed respectively
on the cumulative distributions of the inter-contacts time and con-
tacts duration. We simulated scenarios with host speed uniformly
distributed in the range [1 − 6], [1 − 10] and [1 − 20]m/s. The
cumulative distributions related to all these scenario can be approx-
imated with a power law function for a wide range of values.

In many of our experiments, the coefficient of the power law of
the distribution of the Intel traces is different from those related to
synthetic traces generated using our model. Different coefficients
can be observed in the available sets of real traces. In a sense,
it seems that the values of these coefficients characterize the var-
ious mobile settings. It is worth noting that currently there are
not available theoretical models that justify the emergence of these
distributions.

The impact of the density of the population in the simulation
scenario is presented in Figure 10. We simulated scenarios com-
posed of 100, 200, 300 nodes with a starting number of groups
for the Caveman model, respectively equal to 10, 20, 30, and a
rewiring probability of 0.2. Also in these scenarios, the inter-
contacts time and contacts duration distributions follow a similar
pattern. As discussed previously, our aim was not to exactly repro-
duce the traces provided by Intel. However, quite interestingly, we
observe that the inter-contacts time distribution lie in between the
curves representing the scenario composed of 100 and 200 nodes.
The number of nodes recorded in the Intel experiments was in fact
140. Instead, the contacts duration distribution is bounded by the
curves extracted by these two synthetic traces for a smaller range
of values.

4. RELATED WORK
Many mobility models have been presented with the aim of al-

lowing scalability testing of protocols and algorithms for mobile
ad hoc networking. A comprehensive review of the most popular
mobility models used by the mobile ad hoc research community
can be found in [3]. However, it is interesting and, at the same
time, surprising to note that even the best solutions and approaches
have only been tested using completely random models such as the
Random Way-Point model, without grouping mechanisms.

The work most directly related to ours can be found in [7]. This
model is predicated upon similar assumptions, but is considerably
more limited in scope. In that model hosts are statically assigned to
a particular group during the initial configuration process, whereas
our model accounts for movement between groups. Moreover, the
authors claim that mobile ad hoc networks are scale-free, but the
typical properties of scale-free networks are not exploited in the
design of the model presented by the authors. With respect to this
work, we allow the setting of the initial social network, which con-
ditions the movement patterns, this enables different kinds of net-
works to emerge, including small world and scale free.

In recent years, many researchers have tried to refine existing
models in order to make them more realistic. In [10], a technique
for the creation of a mobility models that include the presence of
obstacles is presented. The specification of obstacles is based on
the use of Voronoi graphs in order to derive the possible pathways
in the simulation space. This approach is orthogonal to ours; this

5This behaviour has been theoretically studied and predicted by
Sharma and Mazumdar in [25].
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seconds; (b) cumulative distribution of contacts duration in seconds.

 0.01

 0.1

 1

 5000  10000  15000  20000  25000  30000

Cu
m

ul
at

ive
 d

ist
rib

ut
io

n

Time (s)

Inter-contacts time

CM p=0.0
CM p=0.05

CM p=0.1
CM p=0.2

RWP
Intel traces

 0.01

 0.1

 1

 0  1000  2000  3000  4000  5000  6000  7000

Cu
m

ul
at

ive
 d

ist
rib

ut
io

n

Time (s)

Contact Duration

CM p=0.0
CM=0.05
CM p=0.1
CM p=0.2

RWP
Intel traces
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would be an interesting extension of the model as discussed in the
next section.

Tuduce and Gross in [26] present a mobility model based on real
data from the campus wireless LAN at ETH in Zurich. They use
a simulation area divided into squares and derive the probability
of transitions between adjacent squares from the data of the access
points. Also in this case, the session duration data follow a power
law distribution. This approach can be a refined version of the
Weighted Way-Point Mobility Model [8], based on the probabil-
ity of moving between different areas of a campus using a Markov
model. Moreover, Tuduce and Gross’ model represents the move-
ments of the devices in an infrastructure-based network and not ad
hoc settings. In [14], the authors try to reproduce the movements
of pedestrians in downtown Osaka by analysing the characteris-
tics of the crowd in subsequent instants of time and maps of the
city using an empirical methodology. In general, the main goal of
these works is to try to reproduce the specific scenarios with a high
degree of accuracy. We focus, instead, on the cause of these move-
ments, trying to capture the social dimensions that lead to general
emergent human movement patterns.

5. CONCLUSIONS
We have presented a new mobility model based on social net-

work theory and predicated on the assumption that mobility pat-
terns are driven by the fact that devices are carried by humans and
that the movements are strongly affected by the relationships be-

tween them.
The paper has described the generation of the mobility model,

its implementation and an evaluation based on the comparison be-
tween our approach, existing random mobility models and real
movement traces. We have shown that our mobility model gener-
ates traces that present characteristics similar to real ones, in terms
of inter-contacts time and contacts duration.
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