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Abstract—Continuous respiratory rate (RR) monitoring is
essential for understanding physical and mental health, as well as
tracking fitness. However, performing reliable and non-obtrusive
RR monitoring across diverse daily routines and activities is still
an open research problem. In this work, we present RespEar, a
pipeline for robust RR monitoring across various sedentary and
active scenarios using earphones. RespEar relies solely on in-ear
microphones, repurposing them for continuous RR monitoring
purposes. Specifically, leveraging the unique properties of in-ear
audio, RespEar enables the use of respiratory sinus arrhythmia
(RSA) and locomotor respiratory coupling (LRC), physiological
couplings between cardiovascular activity, gait and respiration,
to determine the RR. This effectively addresses the challenges
posed by the almost imperceptible breathing signals encountered
during common daily activities. Additionally, RespEar uniquely
identifies and addresses three key practical issues for the RSA
and LRC-based solutions and introduces a suite of meticulously
crafted signal processing techniques to enhance the accuracy of
RR measurements. With data collected from 18 subjects over
8 activities, RespEar measures RR with a mean absolute error
(MAE) of 1.48 breaths per minute (BPM) and a mean absolute
percent error (MAPE) of 9.12% in sedentary conditions, and a
MAE of 2.28 BPM and a MAPE of 11.04% in active conditions,
respectively. To the best of our knowledge, RespEar is the first
earable-based system capable of accurately determining RR in a
variety of realistic settings.

Index Terms—earable, breathing rate, in-ear audio, respiratory
sinus arrhythmia, locomotor respiratory coupling

I. INTRODUCTION

Respiratory Rate (RR) is a fundamental vital sign that relays

pivotal information about health and fitness conditions of

the human body. Clinically, it is critical for diagnosing and

managing various pathologies, acting as an early indicator

of health deterioration, such as potential cardiac arrest or

respiratory illnesses [1]. In daily life, RR indicates the presence

of physical and mental stressors including emotional stress,

emotional response, and cognitive load [1]. Additionally, RR

is a key indicator of exertion levels during physical activities,

offering valuable insights for managing and optimizing workout

routines and detecting exercise-induced fatigue [2]. By integrat-

ing continuous RR monitoring into daily routines, individuals

can seamlessly track their health and fitness across diverse

settings, thereby enhancing the accessibility and practicality of

vital health insights.
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Existing RR monitoring solutions designed to facilitate RR

monitoring in daily life primarily rely on three principles,

all with limitations and applicable only in specific scenar-
ios. Namely, 1) methods that detect breathing-induced body

movements typically utilize IMUs [3], [4], [5], acoustic [6] or

wireless signals [7], [8], [9]. However, these approaches require

the user to remain still. Pressure sensors in chest straps [10]

function during active conditions but require the use of addi-

tional obtrusive wearable devices. 2) Studies monitoring airflow

through the nose and mouth typically use intrusive nose-worn

sensors [11], or employ microphones [12], [13], which only

work in the presence of audible breathing sounds. 3) For indirect

measurement, studies [14], [15] use the relationship between

RR and physical behaviors to indirectly estimate RR, but are

applicable only to specific running scenarios. Studies [16], [17],

[18] estimating RR indirectly from physiological signs only

work at rest and struggle to provide reliable estimates when

RR changes dynamically. Although existing RR monitoring

solutions perform well under specific conditions, there is

currently no unified system capable of operating seamlessly

and reliably across diverse daily activities. Integrating these

technologies to function consistently in various scenarios is

extremely challenging. Therefore, a new approach is needed
– one that transcends the limitations of existing technologies
to provide continuous, non-obtrusive RR monitoring that is
genuinely effective across a range of daily activities.

This work presents RespEar, an earable-based system offer-

ing robust RR monitoring across both sedentary (e.g., sitting,

standing, working, cooling down after exercise), and active

(e.g., walking, running, rowing, and step aerobics) activities.

Considering their widespread popularity and the promising

sensing location of the human ear (i.e., a stable part of the

human body close to the respiratory organs), we chose earbuds,

a mainstream consumer wearable device with daily usage (e.g.,

entertainment, exercise, and work), as our RR sensing device.

Moreover, we identified that in-ear microphones (measure

sounds inside the ear canal) are uniquely positioned to measure

breathing-related signals (e.g., breathing sounds, heartbeats,

and footsteps) (Section II-A), thus enabling our solution.

While designing RespEar, we faced these challenges:

1) Almost imperceptible breathing sounds. The intensity

of breathing sounds is minimal when the user is sedentary and

overwhelmed by other sounds, like footsteps, when the user

is active (Section II-A). Thus, directly estimating RR using

breathing sounds proves unreliable (Section IV). To address



this, we proposed a unified RR monitoring system through

identifying in-ear audio for the following purposes:

• RSA-based RR monitoring: When clear heartbeat sounds

can be captured using the in-ear microphone (predominantly

when the user is sedentary), we can derive heart rate variabil-

ity (HRV) from in-ear audio. RR is then indirectly estimated

using the RSA-based physiological coupling between the

cardiovascular activity and respiration, i.e., the association

between RR and HRV;

• LRC-based RR monitoring: However, when clear heartbeat

sounds are not available (e.g., in the presence of footstep

sounds), RSA-based solutions are hindered due to unreliable

HRV estimation (validated in Section IV). Therefore, when

rhythmic footsteps are present (i.e., when the user is active),

we rely on the in-ear microphone to capture low-frequency

footstep sounds, which are used to derive the stride rhythm.

Alongside faint high-frequency breathing sounds, RR is

estimated by leveraging the LRC-based physical coupling

between gait and respiration, specifically the interaction of

RR with stride rhythm.

2) Accurate and reliable estimation. Based on the above

system, several technical challenges should be addressed to

achieve accurate and reliable RR estimation:

• RSA-based solutions under varying RRs: In the literature,

deriving RR from HRV using RSA has typically relied on a

fixed association between RR and HRV. However, we made a

key observation that this association should adapt to changes

in RR over time (Section III-B). To this end, we are the

first to propose a novel algorithm for dynamically extracting

the breathing signal from HRV by searching for the best

association through formulating and solving an optimization

problem, thereby adapting to the variability in the relationship

between RR and HRV.

• Respiration-related feature extraction for LRC-based RR
monitoring: Although LRC shows synchronization between

stride rhythm and RR, the variable and unknown LRC ratio

prevents direct RR estimation from stride frequency alone. It

necessitates extracting respiration-related features from in-ear

audio, combined with stride rhythm, to accurately estimate

RR. However, while the user is under active conditions, faint

breathing sounds are heavily interfered with by other sounds,

such as footsteps. To address this challenge, we propose an

advanced processing pipeline that estimates the probability of

each in-ear audio frame containing breathing by leveraging

our uniquely extracted audio features, compared against

a defined breathing template. This generates an effective

probability curve, which can then be decomposed to reveal

the underlying breathing pattern.

• Varying LRC ratio: RR is typically estimated for a window

during which the LRC ratio (i.e., the ratio of stride rhythm to

the number of breaths) may vary. We are the first to address

this variability by applying Singular Spectrum Analysis

(SSA) [19] to the generated probability curve to isolate

components related to breathing, and propose a method that

aggregates these breathing-related components from SSA

by considering a range of possible LRC ratios, rather than
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Fig. 1: In-ear audio under different activities.

choosing a fixed one.

We implemented RespEar with an earable prototype and mea-

sured the system overhead through deploying it on an iPhone

12 Pro. RespEar was evaluated across 8 different activities

involving 18 subjects, achieving an overall MAE of 1.71BPM

and MAPE of 9.68%, with errors of 1.48BPM (9.12%) and

2.28BPM (11.04%) under sedentary and active conditions,

respectively. We compared RespEar with recent earable-based

solutions using IMUs [20], out-ear microphones [21], [14], and

in-ear microphones [13], and found that RespEar outperformed

in both sedentary and active conditions while additionally being

able to cater for both sets of scenarios, unlike these recent works

limited to functioning only under specific conditions. Moreover,

we tested RespEar under a range of realistic conditions.

In summary, this paper makes the following contributions:

• We propose RespEar, the first wearable system offering

continuous and non-obtrusive RR monitoring across diverse

daily routines and activities.

• Leveraging solely the in-ear microphone, a sensor naturally

present in many earables, we present a holistic and optimized

solution for RR estimation which leverages intrinsic relation-

ships of our cardiovascular, gait and respiratory systems and

uniquely identifies and addresses three key practical issues.

• We implement RespEar and describes our extensive dataset

and evaluation. Our results demonstrate that RespEar out-

performs the state-of-art and is uniquely able to generalize

beyond what other systems have been able to do in terms

of activity intensity while remaining robust under different

environmental conditions.

II. PRELIMINARY INVESTIGATION

A. In-ear Microphone

We first investigate the signals captured by in-ear micro-

phones for RR monitoring, which are typically used for active

noise cancellation (ANC) in commercial earphones [22].

We collect in-ear audio when a subject was naturally breath-

ing under three conditions: sitting still, walking, and running

on a treadmill. The Zephyr BioHarness 3.0 chest strap [10] was

worn to collect reference signals. As spectrograms shown in

Figure 1, under stationary conditions, the faint breathing sounds

are undetectable by in-ear microphones. However, sounds of

heartbeats are clearly captured due to the occlusion effect [23].

When walking or running, we observe that 1) footsteps can be

clearly detected because of the occlusion effect [24]; 2) due

to the variations in breathing intensity, only certain breathing

sounds are discernible, while the full breathing cycle cannot be



distinguished; 3) the in-ear microphone is resilient to ambient

noise as it resides inside the ear canal.

B. Design Primer

In-ear microphones can capture versatile audio data in

different conditions, yet the method to accurately correlate

these signals with RR estimation remains unclear. Inspired by

the physiological couplings between cardiovascular activity and

respiration [16], e.g., RSA, we are initially exploring methods

grounded on this physiological principle.

1) RSA-based RR Estimation: RSA is the natural variations

in HR that occur due to synchronization with the respiratory

cycle [16]. Due to RSA, HR increases during inhalation and

decreases during exhalation, resulting in a breathing related

modulation of the HRV (i.e., the variation in time interval

between successive heart beats) [25]. Rhythms in the low

frequency (LF) range of the HRV, spanning from near 0.04 to

0.15 Hz, serve as indicators of sympathetic modulation [26].

Those within the high frequency (HF) range (near 0.15 to 0.4

Hz) encapsulate rhythms governed by parasympathetic activity,

which is closely related to respiration [26].

The clearly captured heartbeat sounds from in-ear mi-

crophones under sedentary conditions offer the possibility

of monitoring RR using RSA. RSA exists under intense

full body motions [27] (i.e., in active conditions); however,

accurately extracting heartbeat locations from in-ear audio for

HRV estimation in such conditions remains an unsolved and

challenging issue [23], [28], [29], as validated in Section IV.

Thus, it is necessary to identify an alternative method for RR

monitoring in active conditions.

2) LRC-based RR Estimation: We observe that audio

from in-ear microphones under active conditions, such as

walking, running, or other activities with rhythmic footsteps,

is dominated by footstep sounds and breathing sounds are

not always discernible (Section II-A). Thus, we explore the

physiological couplings between gait and respiration here.

LRC is a universal phenomenon in activities that produce

and utilize energy rhythmically [30], such as walking, running,

swimming, and rowing [31], [32]. It reveals the interconnected

dynamics between RR and stride rhythm [33], indicating the

synchronization between an individual’s stride rhythm and

their RR. This implies that there will normally be a certain

number of steps for each breath (i.e., inhalation or exhalation).

In human locomotion, a number of LRC ratios are observed,

e.g., 4:3, 3:2, 2:1, where an LRC of 2:1 means two steps are

taken for one breath. Thus, the in-ear audio, containing clear

footsteps and partly discernible breathing sounds, offers the

possibility for estimating RR based on LRC.

III. SYSTEM DESIGN

Figure 2 shows the system architecture. RespEar uses 60s

estimation windows with 30s overlap to produce a RR estimate

per window. RespEar uses two paths for RR estimation

depending on the presence of rhythmic footsteps or clear

heartbeat sounds in the audio. If clear heartbeat sounds are

present (i.e., sedentary conditions), RR will be estimated
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Fig. 2: Illustration of the RespEar architecture.

through the RSA-based RR monitoring pipeline. If rhythmic

footsteps are present (i.e., active conditions), RR will be

estimated using the LRC-based RR monitoring pipeline.

A. Pipeline Selector

The pipeline selector determines which processing pipeline

should be selected for RR estimation, i.e., RSA or LRC-based,

based on the presence of either clear heartbeat sounds or

footsteps in the input signal. If the LRC-based pipeline is

selected, we further differentiate this into low-intensity and

high-intensity rhythmic footstep activities, so that the correct

algorithmic parameters can be applied to the pipeline.

We train our pipeline detector using support vector machines

(SVM). The in-ear audio is split into 5s segments and Mel-

frequency cepstral coefficients (MFCCs) are extracted from

each segment and used as the input features to the SVM.

We use a two-stage classifier whereby first we classify a

segment as sedentary (i.e., strong presence of heart sounds)

or active (i.e., strong presence of rhythmic footstep sounds).

If active, we further classify it into low-intensity and high-

intensity rhythmic footstep activities. Consequently, there are

12 detection results from one model during each 60s estimation

window, and we determine the scenario of the whole window

through majority voting. Specifically, we empirically determine

that only consistent results obtained for more than 75% of

segments leads to reliable pipeline selection. Voting aims to

handle transition windows between two states that could result

in inappropriate pipeline selection. If there is no convergence,

the window will be discarded.

B. RSA-based RR Monitoring

1) Design Principle: The high-level process of RSA-based

RR monitoring can be summarized in three steps: 1) HRV
signal estimation: Heartbeats are detected, and the HRV

signal is computed as the time difference between successive

heartbeats. 2) Breathing signal extraction: A bandpass filter

(BPF) isolates respiration-related rhythms in the HRV signal,

extracting the high-frequency (HF) range as the extracted

breathing signal. 3) RR estimation: The final RR is determined
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either by counting peaks in the breathing signal or by using Fast

Fourier Transform (FFT) to identify the dominant frequency.

Observation. Prior RSA-based methods using photoplethys-

mogram (PPG) or electrocardiogram (ECG) signals [16], [18],

[34], [17] typically use default and fixed cutoff frequencies for

the BPF. However, we observe that this leads to suboptimal RR

estimation when the true RR shifts. Since the HF range should

be centered around the true RR, when the true RR changes

over time, the HF range should change accordingly [26].

To validate this, we applied the RSA-based RR monitoring

method to in-ear audio data collected while sedentary, following

the steps outlined above. The distribution of the Ground

Truth (GT) RR (denoted as RRGT ) for this data is shown

in Figure 3(a), where the minimum RR is 6BPM (0.1Hz)

and the maximum is 29BPM (0.5Hz). We compared RR

estimation using: (i) a fixed BPF range from prior studies

(Fixed1 = [0.15, 0.35]Hz), (ii) a BPF covering the full

RR range (Fixed2 = [0.1, 0.5]Hz), and (iii) an adaptive

BPF centered on the true RR (RRGT -adapted). There is a

large performance gain by using the RRGT -adapted frequency

range (MAE = 1.45BPM) compared to the Fixed1 (MAE =

3.54BPM), and the Fixed2 (5.45BPM), as shown in Figure 3.

This is because the fixed BPF is effective only if RRGT falls

within the BPF range, but even then, a non-centered HF range

can degrade the performance.

Our design. We propose a novel approach whereby we

formulate and solve an optimization problem to dynamically

localize the HF range. To the best of our knowledge, RespEar

is the first work to achieve dynamic HF range localization

for RSA-based RR estimation. We believe our methodology

could also benefit other RSA-based solutions using various

sensing modalities, e.g., ECG and PPG. We also propose a

series of techniques to enable the full pipeline for RSA-based

RR monitoring using in-ear audio.

2) HRV Signal Estimation: Heartbeats detection. A low-

pass filter with 30Hz cutoff is used to remove high frequency

noise from the in-ear audio [23] (Figure 1). To obtain the HRV

signal (denoted as SHRV ), the heartbeats need to be identified

by detecting the peaks in the filtered audio (Figure 4(a)).

To accurately detect peaks while accommodating variations

in amplitude and morphology changes, RespEar uses peak

detection with an adaptive peak detection threshold. As shown
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in Figure 4(b), we first compute the smoothed Hilbert envelope

of the filtered audio. Next, a moving average is computed for

each point in the envelope, serving as an adaptive threshold

(Thresh. in Figure 4(b)). Regions of interest (ROIs) are

identified between the points where the envelope intersects

the threshold. Heartbeat peaks are marked at the maximum

point within each ROI (Max-ROI) between two intersection

points (Intsec.), provided the amplitude is greater than that

of the two surrounding intersection points. Finally, the HRV

signal, SHRV , is calculated as the time difference between

successive detected peaks (Figure 5(a)).
Automatic channel selection. Leveraging the unique ability

of earables to give two in-ear audio channels (i.e., left and

right ear), RespEar automatically selects the channel with lower

standard deviation (STD) in the estimated HRV signal from

each ear. This is because heartbeats are regular signals, so the

lower STD implies a less noisy and more robust signal due to

more regular heartbeat peaks.
3) Adaptive Breathing Signal Extraction: Design insight. To

enable adaptive HF range localization on SHRV , we formulate

an optimization problem: from a list of RR candidates, the best

RR candidate minimizes the difference between its estimate

and the true RR where its estimate is the one made using a

BPF with a frequency range centered around the candidate.
Our algorithm. To solve this optimization problem, we

propose the following algorithm:
i) RR candidate sampling: We filter SHRV using a BPF

with cutoffs [0.15,0.35]Hz, and perform a FFT on the filtered

signal. The frequency component with the highest amplitude

is converted to BPM to determine RRc, the central RR

candidate. The list of candidates (RRlist) is generated through

incrementing or decrementing RRc with a step of 0.5BPM until

the following conditions are met, where 7.5BPM and 42.5BPM

are the smallest and largest human RRs respectively [35], and

w is the predefined length of RRlist:

min(RRlist) = max(7.5, RRc − w/2) (1)

max(RRlist) = min(42.5, RRc + w/2) (2)

ii) Best RR candidate search: For each candidate (RRi
list),

filter SHRV using a BPF with low (li) and high (hi) cutoffs

defined by that candidate according to:

li = 0.65 ·RRi
list/60;h

i = 1.35 ·RRi
list/60 (3)

We then perform a FFT on the filtered signal (Breathi) to

estimate the respiratory rate (RRi
est) by selecting the frequency
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component with the highest amplitude and converting the

frequency to BPM. Figure 5(a-b) illustrate the calculation of

RR1
est. The difference between each candidate and its estimated

respiratory rate is calculated by |RRi
est −RRi

list|.
This process is repeated for all candidates, and used to create

the frequency difference list (F-difference list), which is then

min-max normalized as shown in Figure 5(c). Finally, the

candidate with the smallest difference is selected as the best

RR candidate (RRF
est in Figure 5(c)).

iii) Calibration from time domain: As shown in Figure 6(a),

sometimes we find RRF
est, yet is not the optimal RR candidate,

likely due to the lower quality of SHRV . To enhance robustness,

we further repeat Step ii) but we estimate RR of Breathi

in the time domain by counting the zero-crossing points, as

shown in Figure 5(b). This generates a time difference list

(T-difference list). We observe that the optimal RR candidate

typically appears among the three candidates with the top-3

smallest local minima in the F-Difference list (Figure 6(a)).

Furthermore, the T-Difference list suggests the trend leading

towards the optimal candidate. Therefore, we first smooth the

T-Difference list to highlight its underlying trends, and then

sum the T-difference value and the F-difference value of these

three candidates respectively. We select the candidate with the

smallest sum as the estimated RR as depicted in Figure 6(b).

4) Interference Artefact Filtering: While the body is un-

dergoing non-full body motions (i.e., the user is sedentary),

in-ear audio is prone to interference artefacts. Examples of

these include head motions (drinking, speaking etc.), motions

of the arms, movement of the trunk, respiratory-related sounds

(swallowing, coughing, etc.). It must be noted that breathing

adapts to speaking (inhalation at syntactic pauses and exhalation

during speech [36]), which eliminates the need for respiratory

rate estimation while speaking. To ensure accurate sedentary

RR estimation even in the presence of interference artefacts,

we present an interference filtering approach.

Interference artefact detection. Without interference arte-

facts, in-ear audio maintains a consistent waveform with clear

heart sounds and thus stable statistics over time. Conversely,

artefacts, such as one-time head motion, cause significant

statistical variations. Hence, we propose a statistics-based

mapping

T

Fig. 6: (a) Best RR candidate searching on the frequency domain. (b)
Calibration from the time domain.

approach to detect the presence of artefacts. For each 60s

window, we segment the audio signal into 3s segments. We

compute STD of each segment (to measure signal dispersion)

and if it is larger than an empirical threshold, this segment is

marked as an interfered segment.

Adaptive filter. If an interfered segment is detected, we use

an adaptive filter implemented using the recursive least squares

(RLS) algorithm [37] to remove the interference artefact.

The RLS algorithm recursively finds filter coefficients that

minimize a least squares cost function with a reference signal.

For the interfered segment, we select the nearest segment

without interference as the reference signal. After filtering, the

interference artefacts in the segment are mostly removed for

reliable RR estimation.

C. LRC-based RR Monitoring

1) Design Challenges.: Although LRC indicates synchro-

nization between stride rhythm and RR, the LRC ratio between

stride rhythm and RR is variable and unknown. Inspired by

previous studies [14], [15] which linked stride frequency with

breathing signals to estimate LRC ratio (but only under running

scenarios with assuming a fixed LRC ratio per estimation

window), we propose our pipeline. This pipeline addresses two

unique challenges identified in RespEar working scenarios:

• Respiration sounds are strongly interfered by other sounds

in in-ear audio, especially footstep sounds which are strong

and amplified due to the occlusion effect [24] (Figure 1).

• The LRC ratio varies within an estimation window, e.g., for

walking and non-regular runners, as demonstrated in Figure 7.

We analyze in-ear audio from two participants (User A, a non-

regular runner, and User B, a regular runner) by segmenting

their audio into 10-second intervals and calculating the mean

LRC for each. We then compute the changing ratio of mean

LRC values between adjacent segments to gauge irregularity.

As shown in Figure 7, this variability is especially evident

in non-regular runners and during walking. Thus, a constant

LRC ratio cannot be assumed, requiring our system to adapt

to changing LRC ratios within a single estimation.

We elaborate on our pipeline in the following sections.
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2) Stride Frequency Estimation: We first conduct footstep

detection, which is done using the same approach as heartbeat

detection, as discussed in Section III-B2, while we filter with a

50Hz low pass filter [23]. By counting the number of detected

footsteps, the stride frequency can be estimated.

3) Breathing Extraction: The breathing-related features are

then extracted from the in-ear audio as follows.

Pre-processing. Human breathing sounds typically fall

within the range of 300Hz to 1800Hz [38]. Therefore, a BPF

with cutoff frequencies from 300Hz to 1800Hz is used on the

input audio during low-intensity rhythmic footstep activities,

such as walking. For high-intensity rhythmic footstep activities,

where step sounds severely overwhelm the breathing sounds

in this frequency range, such as during running, we use a BPF

with cutoffs of 2000Hz to 9000Hz to capture harmonics of

breathing sounds in these higher frequencies.

Breathing template generation. We generate a breathing

template (i.e., signal features of a strong, clear breathing sound)

to identify the probability of each frame containing breathing

within the estimation window. To generate this template, we

collected in-ear audio from a single user while sitting stationary

and breathing loudly in a quiet environment. We conduct Pre-
processing and performed FFT feature generation on it to

generate the breathing template.

FFT feature generation: We divide the audio window into

40ms frames with a 20ms overlap and calculate the periodogram

of each frame. Thereafter, we subdivide the breathing frequency

range into 15 bins and sum the signal power in each bin from

the periodogram. We therefore generate a feature vector with 15

features for each frame, one corresponding to each frequency

bin. The breathing template is finally calculated by averaging

the feature vectors of all frames.

Probability curve generation. For each estimation window,

we perform the FFT feature generation for all frames within it.

For each feature vector (i.e., corresponding to each frame), we

calculate its similarity (S) with the breathing template using

the cosine similarity [14]. Then, the probability of this frame

containing breathing (P (f)) is computed as:

P (f) =

{
S−T
1−T if S > T

0 if S ≤ T
(4)

where T is a predefined threshold. The probabilities of all

0 2 4 6 8 10
0.5

0.75

1

Pr
ob

ab
ili

ty

(a)
Probability Inhalation Exhalation

0 2 4 6 8 10
-0.03

0
0.03

(b)
Component-7 GT-acc

0 2 4 6 8 10
Time (s)

-0.08
0

0.08A
m

pl
itu

de

(c)
SSA output Detected peaks Inhalation Exhalation
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Extracted breathing pattern with peak detection.

frames within the estimation window generate a breathing

probability curve as shown in Figure 8(a).

Probability curve decomposition. Due to the low SNR from

strong interference from footstep sounds and light breathing

sounds, the breathing pattern is overwhelmed by patterns

of interference (Figure 8(a)). To remove the interference

patterns, we decompose the probability curve into its constituent

components using the SSA algorithm [19]. SSA is able to

effectively separate the underlying components of the curve,

allowing for the isolation of periodicity occurring at various

time scales, in order of significance, even within highly

noisy time series data. Figure 8(b) shows component 7 of

the decomposed probability curve which corresponds to the

steps taken while the user is walking (i.e., GT accelerometer

data in Figure 8(b) - “GT-acc”). Once the probability curve

is decomposed into periodic components, we exclude the

components related to interference and aggregate the breathing-

related components for respiratory rate estimation.

4) Breathing-Related Components Aggregation: RespEar

leverages a loose constraint which adapts to changes in the LRC

ratio to exclude respiration-unrelated components. Specifically,

for each decomposed component of the probability curve, we

count the number of peaks using peak detection. If the number

of peaks falls outside the range of the minimum possible

breathing rate (RRmin) to the maximum possible breathing rate

(RRmax), this component is regarded as respiration-unrelated

and removed. RRmin and RRmax can be computed as:

RRmin = (SFest ∗ (N/fs))/LRCmax (5)

RRmax = (SFest ∗ (N/fs))/LRCmin (6)

where SFest, fs and N are the estimated step frequency,

sampling rate, and number of samples in the estimation

window, respectively. LRCmax and LRCmin are the largest

and smallest values of the LRC ratios in humans.

We use the LRC range of 1.9 to 4.9 for low-intensity

rhythmic footstep activities [39], and 1.8 to 5.6 for high-

intensity rhythmic footstep activities [40]. These ranges cover

common LRC ratios in humans under each set of scenarios [39],



Fig. 9: (a) Custom hardware prototype and (b) one participant wearing
the device.

[40], and fully cover the LRC ratios appearing in our collected

dataset. After excluding all breathing-unrelated components,

we sum the remaining components into the extracted breathing

pattern. Peak detection is then applied to this signal to estimate

the final RR (Figure 8(c)).

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

1) Prototyping: Although in-ear microphones are becoming

ubiquitous in ANC earbuds for active noise cancellation, no

commercial earbud grants access to the raw data. As such, we

developed our own custom earbud prototype to collect data

which consists of 3D printed earbuds containing microphones

facing inside the ear canal. On the left earbud, we embedded

a speaker behind the microphone to enable audio playback.

We capture microphone signals using a Raspberry Pi 4 with

an audio codec hat and a custom PCB. To make the system

portable, we placed the Raspberry Pi into a chest-worn bag

and power it with a portable power bank (Figure 9).

2) Data Collection: 18 participants (9 male and 9 female)

participated in our data collection which was approved by

the Ethics Committee of Department of Computer Sciencec

and Technology, University of Cambridge (No. 2029). The

participants’ ages ranged between 22 and 51. The participants

underwent sedentary and active activities, with each activity was

performed for 5 minutes. The sedentary activities are: (1) sitting;

(2) standing; (3) lying down; (4) listening to music (performed

for the duration of one song); (5) working in the wild; (6)

uncontrolled cooldown after exercise. The active activities

are (7) walking; and (8) running. The activities encompass

typical scenarios when a person uses earables and requires RR

monitoring. Our data collection involved controlled activities

and also in-the-wild scenarios to ensure the applicability of our

methods to real-world use. No breathing rates were imposed,

and participants were free to breathe as they wished. Breathing

after exercise was performed immediately after running to

capture natural cool-down breathing. While sitting and standing,

(a)

(b)

Fig. 10: Bar plot of (a) MAE and MAPE. (b) Bland-Altman plot of
RespEar.

users were asked to move their heads three times to capture head

motions to assess the impact of our interference artefact filtering

algorithm. Active activities were performed on a treadmill and

participants chose their comfortable paces to walk/run. We

use the Zephyr BioHarness 3.0 chest strap [10] to collect GT

RR with 25 Hz sampling rate and the audio data from in-ear

microphone is collected at 22050 Hz.

B. Evaluation

1) Metrics: We evaluate system performance using the Mean

Absolute Error (MAE) [13], [20] which is the average absolute

error between the GT RR and the calculated RR for each

estimation window. We also use the Mean Absolute Percentage

Error (MAPE), the average percentage absolute error.

2) RespEar Overall Performance: Overall performance.
We present the overall performance of RespEar in Figure 10(a).

RespEar achieves an overall MAE of 1.71BPM (MAPE of

9.68%), with a MAE of 1.48BPM (9.12%) and 2.28BPM

(11.04%) for sedentary and active respectively. The Bland-

Altman plot for RespEar is provided in Figure 10(b). We

achieve a very low mean error of -0.02BPM with narrow

limits of agreement of -4.8 to 4.76. This indicates very good

agreement between RespEar and ground truth breathing rate

measurements, highlighting the strength of our system.

Performance per activity. Figure 11(a) provides a boxplot

of the overall performance of RespEar for each activity. The per-

formance of each sedentary activities are comparable. Slightly

higher errors exist while listening to music (MAE=1.98BPM),

and working (1.56BPM). This is because working is an

uncontrolled activity and thus participants were more active

during this task, leading to more interference artefact. The

estimation errors while walking and running are satisfactory,

i.e., walking (MAE = 1.75BPM; MAPE = 9.17%), and running

(MAE = 3.12BPM; MAPE = 14.01%). The slightly higher

running errors are due to the higher footstep interference.

Individualised performance. Figure 11(b) reports the

overall performance of RespEar for each participant. It is
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Fig. 11: RR estimation errors for (a) different activities and (b)
different users.

evident that the MAE while sedentary is consistent amongst

users, with no user exceeding 2.3BPM error. There is more

variation amongst estimation errors while active: the smallest

MAE is 1.26BPM for user 16, with the largest MAE being

5.25BPM for user 7. The majority of error comes from 2

users (user 7 and 12). User 7 ran at 5KPH, which has slightly

worse performance than faster running speeds. This may be

attributed to the lower SNR of low-speed running, which

causes similar interference from running footsteps but induces

weaker breathing sounds compared to higher speeds. User 12’s

running generated large noise because their feet kept hitting

the side of the treadmill, resulting in high-energy noise across

all frequencies in the in-ear audio. However, regardless of this,

the system still generalizes well for the majority of users.

3) Baseline Comparison: Earable-based RR estimation.
We first compared RespEar with the state-of-art earable-

based RR estimation solutions using IMUs [20], out-ear

microphones [14], [15], and in-ear microphones [13], re-

spectively, which are designed to function under specific

conditions. We collected data from 11 users in both indoor

and outdoor settings. The data was gathered during a range

of activities, including sitting still and cooling down after

running (sedentary), as well as walking and running (active). We

implemented the three IMU based algorithms for RR estimation

under sedentary conditions in [20]: an FFT approach (FFT),

a peak detection approach (Peak) and a zero-crossing rate

(ZCR) approach (Figure 12(a)). For the in-ear and out-ear

microphones, we implemented the state-of-art algorithm for

sedentary estimation in [13] (Figure 12(b)). For active, we

implemented the algorithm employed by [14], [15] (LRC),

and expanded upon it to calculate RR (Figure 12(c)). From

Figure 12 , it is evident that under both sedentary and active

scenarios, our system significantly outperforms these methods,

while additionally being able to cater for both sets of conditions,

unlike these recent works limited to functioning only under

specific conditions.
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Motion-resilient heart rate (HR) estimation. We then

reproduced two motion-resilient HR estimation methods [23],

[29] to assess their applicability in RespEar while active.

Specifically, we derived HRV from the generated “ECG” signal

by [23] during walking and running, integrating it into our

RSA-based RR monitoring pipeline (Heart-1). Following [29],

we eliminated walking/running frequency components from

in-ear audio and then applied a [0.1, 0.8]Hz band-pass filter for

RR estimation (Heart-2). Figure 12(c) shows that these methods

cannot be applied for RR monitoring while active, necessitating

our LRC-based pipeline. This is because, although HR can be

estimated in active conditions, accurately estimating HRV by

identifying precise heartbeat locations during activity remains

an unsolved and challenging issue. Moreover, simply removing

motion-related frequency components is not sufficient for RR

estimation due to the faintness of the breathing sounds.

4) Benchmark Evaluations: Other Active Activities. We

assessed RespEar’s performance when users engaged in other

activities of varying intensities involving rhythmic footsteps,

including step aerobics (StepA), climbing up and down stairs

(StairUD), and rowing on an indoor rower (Row). We recorded

5 minutes of data per activity per participant, with activities

performed in an uncontrolled manner. Figure 13(a) indicates

RespEar works properly during different rhythmic activities

using the LRC-based pipeline, demonstrating RespEar’s effec-

tiveness for activities with rhythmic footsteps.

Outdoor Performance. We also assessed performance

outdoors in an uncontrolled environment. The tests were

performed on a concrete pavement outside an academic building

next to a building site with active construction happening. We

assessed the performance under different activities, including

sitting, walking, running and cooling down. We recorded 5

minutes of data per activity for each participant. When walking

and running, participants were free to select their preferred

pace and move around the area. There were thus natural



MAEwalk = 1.83BPM

MAEwork = 0.97BPM WalkWork

(c)

Fig. 13: Errors of (a) other rhythmic activities, (b) outdoors, (c) in-
the-wild tracking.

changes in pace throughout the experiment to test whether

our system functions under both controlled and uncontrolled

speeds. Figure 13(b) shows the results, indicating RespEar

achieves robust performance outdoors.

5) In-the-Wild Performance: We asked users to wear the

device for near an hour in a busy office while undergoing

standard daily activities. The users worked at their desks,

listened to music, walked around the office, and performed other

activities as they wished, such as sipping coffee or using their

cell phones. Figure 13(c) showcases the tracking performance

for one user, i.e., continuously estimated RR from RespEar

(one RR estimation per 30s) compared with GTRR. This user

achieved a MAE of 0.97BPM and 1.83BPM while working

and walking respectively. These errors are consistent with the

results obtained in the laboratory study for this user, proving

that RespEar has excellent performance both in controlled

laboratory settings and uncontrolled, real-world settings. It is

also clear that RespEar can accurately track RR longitudinally,

even in an uncontrolled setting.

6) System Components Evaluation: Pipeline Selector. Fig-

ure 14(a) provides the results of our pipeline selector using

SVM on 5s segments. The SVM is trained on 13 users’ data

(randomly chosen during training) and tested on the remaining

5 users to ensure user independence of the train and test

sets. We implemented 5-fold cross validation and report the

average results over 5 folds. Our system is able to select

pipelines with excellent performance, achieving 100% accuracy

for determining whether a window is active or sedentary (SVM-

Stage-I), and 99% accuracy for determining whether an active

window is low- or high-intensity footstep activities (SVM-

Stage-II). With majority voting of results across an estimation

window, the detection accuracy on both tasks is 100%.

Accuracy of HRV Estimation and Stride Detection. To

assess the accuracy of our HRV estimation, we compute the

MAPE between the GT HRV from ECG and our estimated HRV

on beat-to-beat level (Figure 14(b)), where we compare perfor-
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mance on the left channel, right channel and automatic channel
selection. Using automatic channel selection, we achieve the

best performance with a MAPE of 3%, which is competitive

with reported results for ECG on well-known datasets, e.g.,
the MIT-BIH Arrhythmia Database [41]. Our results for stride

frequency estimation are provided in Figure 14(c). Our system

detects strides with a MAPE of less than 3% for both walking

and running using channel fusion, again competitive with

literature on in-ear step counting [24].

7) System Overhead on Smartphone: To create a portable

solution, we deployed RespEar on an iPhone 12 Pro with 8GB

of memory, and a 2477 mAH battery capacity (2815 mAH

battery with 88% battery health) to measure system overhead.

RespEar’s latency is 3.11s per window while sedentary and

12.27s per window while active. Since processing occurs in 60s

windows, with a 30s overlap, a new RR estimate can be made

every 30s under both conditions, implying that our system

can run in real time. We have not considered possible data

transfer costs via radio frequency (e.g., BLE) which would

add additional small delays depending on scenarios. When

run continuously for an hour, RespEar consumed 4% and

14% battery for the RSA-based and LRC-based pipelines,

respectively. The LRC-based pipeline consumes more power

due to the longer latency on account of the more complex

algorithm. To contextualise this, if playing music for an hour,

the same phone battery decreased by 8%, showing that our

application lies within standard levels for battery consumption.

However, standard processing optimizations could be applied

to reduce the power consumption in the future. Additionally,

RespEar consumes a maximum of 49MB per window equating

to 0.3% of the available memory on the device. Overall, we see

that RespEar can feasibly be run on a smartphone longitudinally

to potentially provide real-time RR monitoring.



V. RELATED WORK

A. Non-earable based RR monitoring

Smartwatch. IMUs: [3], [42] use IMUs on smartwatches

for RR monitoring. [3] aims to estimate RR only under

stationary conditions. [42] demonstrates the possibility of RR

estimation under both stationary and walking conditions using

learning-based techniques. However, it detects and rejects

sensor data that are unsuitable for RR extraction, resulting

in poor data retention. Some commercial smartwatches [43],

[44] have integrated the RR estimation function, which works

effectively only at rest. PPG: [45], [46] perform RR estimation

on smartwatches using PPG. [45] employs learning-based

solutions, working under both sedentary and moving conditions,

but it struggles to provide reliable estimations during moving

activities (MAE = 3.94 BPM). [46] works only for scenarios

where the user is engaged in discontinuous activities while

sitting. Smartwatch-based solutions have shown promise with
learning techniques, yet their reliability is compromised by
motion artifacts, leading to low data retention rates or high
estimation errors, particularly under moving conditions.

Smartphone. [47], [48], [12], [6] employ sensors on smart-

phones for RR monitoring. These works require the user holds

the smartphone against the chest [47], [48] or abdomen [47],

utilizing IMUs to capture breathing movements. [12] records

breathing sounds by placing the built-in microphones and

headset microphones of the smartphone near the suprasternal

notch and nose, respectively. [6] utilizes active acoustic sensing

to monitor breathing-induced chest movements, requiring the

smartphone to be held or placed in a specific posture. These
solutions can only operate under stationary conditions and
preclude continuous and real life monitoring due to the
requirement of active user involvement.

B. Earable-based RR monitoring

PPG: [49] employ in-ear PPG for RR monitoring, but

are only functional under stationary conditions. Additionally,

[49] requires controlled breathing at specific rates for optimal

operation. [50] investigates the use of in-ear PPG for RR

estimation in various user activities, i.e., stationary, talking,

walking, and running. However, the accuracy is significantly

affected by physical activity, with error rates up to approx-

imately 31% under motions, due to the lack of a specific

design for motion-resilient estimation. Moreover, PPG is not

commonly found in commercial earables, unlike microphones

which are commonly integrated. IMUs: [4], [5], [20] use IMUs

on earphones to estimate RR, but they are effective only under

stationary conditions by discarding data from periods with

motions. Microphones: [13] utilizes in-ear microphones on

earphones to determine RR but only works for high-intensity

breathing when the user is stationary, as natural breathing

is sometimes imperceptible. [51] estimates RR using out-ear

microphones on AirPods, employing deep learning techniques.

It solely relies on audible breathing sounds, retained through

perceptual annotation for model training and testing, which

means it only works effectively for heavy breathing. Moreover,

out-ear microphones are inherently vulnerable to environmental

noises as breathing sounds are weak and attenuate significantly

in air. Multiple sensors: [52] employs out-ear microphones and

IMUs on earphones for estimating RR, tailored for stationary

conditions involving head motion. [14], [15] utilize out-ear

microphones on earphones and IMUs on smartphones to

estimate a RR-related factor - LRC, when the user is running,

which can be used for RR estimation. However, these works

assume that the LRC remains constant during one estimation

window, which makes the system less robust in daily settings.

[53] proposes a learning-based solution for breathing phase

detection, which can be used to estimate RR specifically during

outdoor running using both in-ear and out-ear microphones.

None of these solutions can reliably and consistently monitor
RR across a wide range of daily life conditions, including
both sedentary and active scenarios, while maintaining high
performance and without discarding any data.

VI. DISCUSSION

Music Playback. We conducted preliminary experiments to

examine the impact of music listening on system performance

during sedentary activities. Our findings indicate that listening

to music produces error levels similar to other sedentary

activities (Figure 11(a)), likely due to the limited overlap

between heart sound frequencies and music frequencies. In

the future, we plan to explore this in greater depth, including

evaluating the effects of different music genres and listening

volumes on performance. Additionally, we aim to assess system

performance during active states while listening to music.

Environment Noise. We conducted experiments outdoors

in a noisy environment (next to an active construction site) to

evaluate the impact of ambient noise on system performance.

Figure 13(b) demonstrates that RespEar achieves consistent

performance across sedentary and active activities. In the future,

we plan to perform a comprehensive evaluation of system

performance under varying levels of ambient noise.

Clinical Study. In future work, we plan to conduct clinical

studies to evaluate system performance in individuals with

respiratory conditions and breathing abnormalities to ensure

its reliability in diverse populations. These studies will involve

collaborations with medical professionals to recruit patients

with diverse respiratory profiles, such as asthma, chronic

obstructive pulmonary disease (COPD), and sleep apnea.

VII. CONCLUSIONS

This paper presented RespEar, the first earable system for

continuous, non-obtrusive, and reliable RR monitoring across

both sedentary and active conditions. RespEar employs in-

ear microphones and leverages unique relationships of our

cardiovascular, gait and respiratory systems to present a holistic

and optimized solution for RR estimation, while uniquely

identifying and addressing three key practical issues. We

implemented RespEar prototype and conducted extensive ex-

periments to evaluate its performance. The results demonstrate

that RespEar outperforms the state-of-art, and is robust in a

variety of contexts.
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[1] A. Nicolò et al., “The Importance of Respiratory Rate Monitoring: From
Healthcare to Sport and Exercise,” Sensors (Basel, Switzerland), vol. 20,
no. 21, p. 6396, Nov. 2020.

[2] Adão et al., “Fatigue Monitoring Through Wearables: A State-of-the-Art
Review,” Frontiers in Physiology, vol. 12, p. 790292, Dec. 2021.

[3] J. Hernandez et al., “BioWatch: Estimation of Heart and Breathing Rates
from Wrist Motions,” in In Proc. of PervasiveHealth 2015. Istanbul,
Turkey: ICST, 2015.
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