
LifeLearner: Hardware-Aware Meta Continual Learning System
for Embedded Computing Platforms

Young D. Kwon
University of Cambridge

United Kingdom
ydk21@cam.ac.uk

Jagmohan Chauhan
University of Southampton

United Kingdom
J.Chauhan@soton.ac.uk

Hong Jia
University of Cambridge

United Kingdom
hj359@cam.ac.uk

Stylianos I. Venieris
Samsung AI Center, Cambridge

United Kingdom
s.venieris@samsung.com

Cecilia Mascolo
University of Cambridge

United Kingdom
cm542@cam.ac.uk

ABSTRACT
Continual Learning (CL) allows applications such as user personal-
ization and household robots to learn on the fly and adapt to con-
text. This is an important feature when context, actions, and users
change. However, enabling CL on resource-constrained embedded
systems is challenging due to the limited labeled data, memory, and
computing capacity.

In this paper, we propose LifeLearner, a hardware-aware meta
continual learning system that drastically optimizes system re-
sources (lower memory, latency, energy consumption) while ensur-
ing high accuracy. Specifically, we (1) exploit meta-learning and
rehearsal strategies to explicitly cope with data scarcity issues and
ensure high accuracy, (2) effectively combine lossless and lossy
compression to significantly reduce the resource requirements of
CL and rehearsal samples, and (3) developed hardware-aware sys-
tem on embedded and IoT platforms considering the hardware
characteristics.

As a result, LifeLearner achieves near-optimal CL performance,
falling short by only 2.8% on accuracy compared to an Oracle base-
line. With respect to the state-of-the-art (SOTA) Meta CL method,
LifeLearner drastically reduces the memory footprint (by 178.7×),
end-to-end latency by 80.8-94.2%, and energy consumption by 80.9-
94.2%. In addition, we successfully deployed LifeLearner on two
edge devices and a microcontroller unit, thereby enabling effi-
cient CL on resource-constrained platforms where it would be
impractical to run SOTA methods and the far-reaching deploy-
ment of adaptable CL in a ubiquitous manner. Code is available at
https://github.com/theyoungkwon/LifeLearner.

CCS CONCEPTS
•Computer systems organization→ Embedded and cyber-physical
systems; •Human-centered computing→ Ubiquitous and mobile
computing.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SenSys ’23, November 12–17, 2023, Istanbul, Turkiye
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0414-7/23/11.
https://doi.org/10.1145/3625687.3625804

KEYWORDS
Continual Learning, Meta Learning, On-device Training, Latent
Replay, Product Quantization, Edge Computing, Microcontrollers.

ACM Reference Format:
Young D. Kwon, Jagmohan Chauhan, Hong Jia, Stylianos I. Venieris, and Ce-
cilia Mascolo. 2023. LifeLearner: Hardware-Aware Meta Continual Learn-
ing System for Embedded Computing Platforms. In The 21st ACM Con-
ference on Embedded Networked Sensor Systems (SenSys ’23), November
12–17, 2023, Istanbul, Turkiye. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3625687.3625804

1 Introduction
With the rise of embedded and Internet of Things (IoT) devices,
the adoption of deep neural networks (DNN) has revolutionized
various applications ranging from computer vision [27], audio [77]
and sensing applications [54]. However, in real-world setups, where
a deployed model may need to dynamically learn new tasks (i.e.,
new classes or inputs) from users [8] and adapt to changing input
distributions [69], existing learning approaches often fail, due to
the constrained nature of available resources on edge devices and
catastrophic forgetting (CF) [66]. CF describes the situation when a
deployed model is able to perform new tasks but forgets previously
learned knowledge. Efficient Continual Learning (CL) systems that
can learn new tasks from growing data streams [8, 71, 76] are now
being recognized as an important step forward as they also enable
many practical applications. For example, household robotic devices
need to continually learn to recognize new objects, while smart
appliances need to learn different voice commands.

Many CL approaches have been proposed in the literature, includ-
ing regularization-based [44, 103], dynamic architecture-based [34,
82, 101], and rehearsal-based methods [8, 74, 81]. Among these,
rehearsal-based methods largely alleviate the forgetting issue of
a learned model. Nonetheless, they are excessively data-hungry
as they require a large number of labeled samples to learn new
information and to be stored as rehearsal samples [71], incurring
high computational and memory overheads.

Another stream of work has recently attempted to utilize meta-
learning [29] in CL to address the problem of the scarce labeled data.
A number of Meta CL methods [4, 37, 55] relying on a few samples
of new classes to adapt and learn have been proposed. However,
Meta CL’s performance degrades when many classes are added
during deployment, leading to low scalability (refer to Figure 1a).

https://github.com/theyoungkwon/LifeLearner
https://doi.org/10.1145/3625687.3625804
https://doi.org/10.1145/3625687.3625804
https://doi.org/10.1145/3625687.3625804

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Kwon et al.

Additionally, state-of-the-art (SOTA) Meta CL methods, OML+AIM
and ANML+AIM [55], exhibit large memory footprint, easily ex-
ceeding the RAM size on many embedded devices (e.g., 1 GB) (refer
to Figure 1b). Further, we observed that the end-to-end latency of
SOTA Meta CL methods to continually learn multiple classes is
computationally expensive. These aspects render prior Meta CL
methods not deployable on resource-constrained devices. As such,
there is an emerging need for novel system design approaches that
facilitate the broader deployment of CL systems on various IoT
devices by bringing down resource requirements of CL methods
without jeopardizing their accuracy.

To address the aforementioned limitations, we develop Life-
Learner, the first hardware-aware system that fully enables data-
and memory-efficient CL on the constrained edge and IoT devices.
First, contrary to the existing Meta CL methods that primarily
rely on regularization and suffer from accuracy loss, we introduce
rehearsal-based Meta CL; we co-design meta-learning with an effi-
cient rehearsal strategy, enabling LifeLearner to rapidly learn new
classes using only a few samples while alleviating catastrophic for-
getting of the already learned classes upon deployment (Section 3.1).
Second, we propose a CL-tailored algorithm/software co-design ap-
proach that minimizes the on-device resource overheads of CL. At
the algorithmic level, we design a latent replay scheme, where re-
hearsal samples are extracted from an intermediate layer of the
target DNN instead of holding copies of raw inputs. By strategically
selecting the rehearsal layer for high compressibility, we facilitate
the subsequent compression of rehearsal samples, enabling their
efficient storage on-device. Besides, based on an observation that
latent replays are sparse, we further design a novel Compression
Module via an intelligent combination of lossless compression to
utilize sparsity and lossy compression to yield a high compres-
sion rate, fast encoding and decoding, and minimal resource usage
(Section 3.2). Finally, we develop our hardware-aware system by
employing hardware-friendly optimization techniques and consid-
ering the unique characteristics of hardware (e.g., write operation
on Flash of IoT devices is costly during runtime) to optimize the
runtime efficiency of CL operations on-device (Section 4).

We make the following key contributions:

(1) A novelMeta CLmethod comprises a rehearsal strategy that alle-
viates catastrophic forgetting and a deployment-time inner-and
outer-loop training structure that achieves both fast adaptation
to new classes and refreshing of already learned classes. Life-
Learner achieves previously unattainable levels of on-device
accuracy, outperforming all existing Meta CL methods by 4.1-
16.1% on image and audio datasets, while being within 2.8% of
an oracle.

(2) A new algorithm/software co-design method that co-optimizes
the rehearsal strategy and the compression pipeline to signifi-
cantly reduce the resource requirements of CL and rehearsal
samples. As a result, LifeLearner requires only 3.40–15.45 MB
of memory and obtains a compression rate of 11.4–178.7× com-
pared to the SOTA Meta CL method, ANML+AIM. This allows
LifeLearner to run on edge devices, something impossible for
current SOTA methods due to their large memory requirements
(>1.05 GB).

5 10 15 20 25 30
Number of Classes Learned

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

ANML+AIM
OML+AIM
ANML

(a) Performance

ANML OML+AIM ANML+AIM
CL Method

0

250

500

750

1000

1250

1500

1750

M
em

or
y

Fo
ot

pr
in

ts
 (M

B
)

474

1051

1562

ANML OML+AIM ANML+AIM

(b) Memory Overhead

Figure 1: Preliminary analysis of the prior Meta CL methods
(i.e., ANML, OML+AIM, ANML+AIM). (a) shows the CL accu-
racy degradation of the Meta CL methods after learning 𝑐

number of classes on CIFAR-100 [47]. (b) shows the memory
footprint needed to run the Meta CL methods on MiniIma-
geNet [95] with a batch size of 8.

(3) Our hardware-aware system implementation successfully de-
ployed LifeLearner on two embedded devices (Jetson Nano and
Raspberry Pi 3B+) and amicrocontroller (STM32H747). Through
extensive experiments, we demonstrate that LifeLearner outper-
forms existing CL andMeta CL baselines in terms of latency and
energy consumption. Specifically, compared to ANML+AIM,
LifeLearner obtains 80.8-94.2% lower end-to-end latency and
80.9-94.2% lower energy consumption on Jetson Nano. Also, we
developed LifeLearner on an extremely resource-constrained
IoT device, STM32H747 with 512 KB of SRAM (2,000× smaller
memory than Pi 3B+ with 1 GB RAM). To our knowledge, this
is the first implementation of a CL framework onto this con-
strained and challenging platform, opening the door for the
ubiquitous deployment of learning systems adaptive to users
and environments over time continually.

2 Background and Motivation
2.1 Continual Learning
CL allows DNN models to learn over time from non-stationary data
streams by acquiring new knowledge while avoiding the forgetting
problem of the learned experiences [39, 48, 71]. In the literature, var-
ious approaches attempt to solve the forgetting problem [13, 65, 66].
The first group of approaches includes regularization-based meth-
ods [2, 44, 84, 85, 103]: these add a regularization term to the loss
function to minimize changes to important weights of a model for
previously learned classes to prevent forgetting. This approach can
be very efficient regarding computation and memory costs. How-
ever, it is shown to be less effective than other methods that utilize
additional resources such as expanding architectures and storing
additional samples [13], as introduced in the following. The second
group of approaches includes the dynamic architecture-based meth-
ods [34, 82, 101] that dynamically expand and freeze DNN architec-
tures to incorporate new classes and prevent forgetting. Despite the
promising performance, dynamic architectures pose the costly re-
quirement of modifying the model architecture. This leads to higher
computational costs as the model expands and prohibits the utiliza-
tion of compile-time optimizations on a fixed computation graph

LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

of the model. The last group of approaches among conventional
CL includes rehearsal-based methods [7, 8, 26, 49, 63, 67, 74, 81, 98].
These prevent forgetting by replaying the saved rehearsal samples
from earlier classes, typically leading to superior CL performance
over the other methods at the cost of increased memory footprint.

In this work, we opt to use a rehearsal-based method due to its
primarily superior performance in CL settings and the avoidance of
dynamic expansion of the model architecture during deployment,
allowing us to apply system optimizations on the static computation
graph of the model (see last paragraph of Section 4 for details).

Given a single trajectory of samples from a stream of classes
T , minimizing the CL loss of a DNN that is trained end-to-end
is more challenging than conventional DNN training [37]. This is
because various complex challenges need to be solved together:
(1) the forgetting problem incurred when learning a stream of dif-
ferent classes, (2) the issue with the lack of labeled samples, and
(3) training DNNs is extremely sample-inefficient: the minimiza-
tion problem requires multiple training epochs to converge to a
reasonable solution. Specifically, many CL methods [48, 71] are
proposed to alleviate the forgetting problem. However, they require
a large amount of labeled data (a few thousand) and many train-
ing epochs. Another learning approach, called meta-learning, is
proposed tomake DNNmore sample-efficient [15, 29, 53, 99], requir-
ing only a few samples to adapt/learn new data distributions from
a correlated data stream [1, 68]. However, existing meta-learning
methods often neglect the forgetting problem of the already learned
classes as it primarily aims at fast adaptation towards new tasks
only [9, 19, 22, 24, 30, 79, 86, 93].

2.2 Meta Continual Learning
To overcome the challenges mentioned thus far, researchers pro-
posed a novel approach, Meta CL, that utilizes meta-learning in CL
to enable data-efficient and fast adaptation to new classes and also
attempts to alleviate forgetting of already learned classes through
novel ways of regularization and/or modification of the model ar-
chitecture [4, 37, 55]. First, to enable fast adaptation with only a
few samples, Meta CL methods are based on the training procedure
of meta-learning. The meta-learning uses an outer loop and an
inner loop where the outer loop takes steps to improve the learning
ability of the inner loop that optimizes the DNN model with a few
samples. This phase is called meta-training, which is typically per-
formed on an offline server. The meta-training phase aims to find
a better weight initialization of DNNs for fast adaptation with a
few samples. After the meta-training is finished, the learned DNNs
are tested given a few examples of new classes, referred to as the
meta-testing phase, that could run on embedded systems. Secondly,
to prevent the forgetting problem, Meta CL methods separate the
network architecture into the feature extractor and the classifier.
During the meta-training phase, Meta CL adopts the concept of fast
and slow learning on an architecture level. The feature extractor
is updated in the outer loop (slow weights) using random samples
from learned classes to prevent forgetting. The classifier is updated
in the inner loop (fast weights) to learn new classes swiftly. This
approach has proven useful in alleviating CF [4, 37, 55].

Although prior works in Meta CL enable CL with limited data
samples, they have certain limitations. For example, Online-aware

Meta-Learning (OML) [37] and A Neuromodulated Meta-Learning
(ANML) [4] can retain high CL performance on the Omniglot
dataset [52] over many classes. Also, Attentive Independent Mech-
anisms (AIM) module [55] captures independent concepts to learn
new knowledge. In fact, AIM and its combinations, ANML+AIM and
OML+AIM, have achieved SOTA results. However, as prior Meta CL
only relies on inner-loop optimization in the meta-testing phase, it
does not utilize the concept of learning fast and slowweights during
deployment. Further, these methods fail to generalize (see Figure 1a;
low accuracy on CIFAR-100 [47]) and have extremely high memory
requirements (see Figure 1b), which limits their applicability to
low-end devices. Hence, we aim to design an efficient Meta CL
system that obtains high accuracy and less forgetting while making
the practical deployment on embedded devices a reality.

2.3 Efficient Deep Learning Systems
Scarce memory and compute resources are major bottlenecks in de-
ployingDNNs on constrained embedded and IoT devices. In this con-
text, researchers have largely focused on optimizing the inference
stage (i.e., forward pass) by proposing lightweight DNN architec-
tures [20, 56, 57, 64, 83], pruning [25, 61], quantization [35, 46, 80],
leveraging heterogeneous processors [38, 59, 60], and offloading
computation [100].

In addition, many works focus on reducing the overall system
resources required for DNN training [6, 11, 18, 21, 31–33, 36, 43,
51, 70, 73, 78, 87, 92, 96, 102]. For example, researchers control the
layerwise growth of the model structure to enable efficient DNN
training on mobile phones [104]. Other methods optimize sparse
activations and redundant weights to avoid unnecessary storage of
activations and weight updates during DNN training [5, 28, 58]. In
particular, for memory-efficient training, researchers proposed effi-
cient meta-learning approaches by tackling memory issues during
meta-training [92] and meta-testing [78]. However, dynamically
changing the updated parameters as in [78] is not suitable to be used
for MCUs because Flash memory space where the model weights
are stored is read-only during runtime, and SRAM is even more
limited than Flash in terms of memory capacity. Thus, it is difficult
to incorporate the dynamic parameter update on MCUs. Also, prior
work [45] examines various lossless compression techniques (e.g.,
Huffman coding), which show at most a 3.3× compression ratio on
activations. Lossy compression [10, 62] based on scalar quantization
shows up to 12× memory savings without accuracy degradation.
A promising method that can achieve even higher compression
ratios (e.g., 128×) is Vector/Product Quantization (PQ) [41, 88, 89].
However, as it requires storing a separate codebook containing rep-
resentative vectors, a brute-force utilization of PQ may not achieve
actual memory savings. In this work, we demonstrate that PQ can
be a key component towards efficient continuous learning and show
how the on-device CL pipeline should be designed to accommodate
it (see Section 3.2.2 and Figure 3 for details).

In contrast to previous works, LifeLearner realizes efficient con-
tinual learning that was previously considered impractical for many
embedded devices. By developing rehearsal-based Meta CL, effec-
tive algorithm/software co-design, and hardware-aware system
implementation considering the unique characteristics of a wide
range of embedded and IoT platforms (e.g., Jetson Nano, Pi 3B+,

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Kwon et al.

Feature Extractor
(Frozen & Quantized)

Compression Module
(Sparse Bitmap & PQ)

Classifier
(Continually

Learned)

Input (x) Output (y)

Figure 2: The system overview. LifeLearner consists of the frozen/quantized feature extractor, the continually learned classifier,
and the compression module based on sparse bitmap and PQ. The compression module takes the feature extractor’s outputs
(activations) as inputs and compresses them to be saved as latent replay samples.

and STM32H747), LifeLearner yields both high accuracy and low
resource overheads.

3 LifeLearner
LifeLearner leverages the idea ofMeta CL and rehearsal-based learn-
ing and minimizes the system overheads on embedded devices. Life-
Learner consists of two phases. The first phase, i.e., meta-training, is
performed on a server to obtain a good weight initialization by uti-
lizing meta-learning in the CL setup with a few samples. The second
phase is meta-testing: a meta-trained model is deployed on embed-
ded devices and learns new classes continually without forgetting
previously learned classes. Additionally, as shown in Figure 2, Life-
Learner has two components to ensure superior performance and
efficiency when it is deployed on resource-constrained devices:
(1) co-utilization of Meta CL and rehearsal strategy together with a
deployment-time inner- and outer-loop optimization to resolve the
accuracy degradation issue, (2) a design scheme that co-optimizes
LifeLearner’s rehearsal strategy and compression pipeline (Com-
pression Module in Figure 2) to minimize the memory footprint,
compute cost, and energy consumption when running CL.

3.1 Co-utilization of Meta-Learning and
Rehearsal Strategy

Current Meta CL methods rely on regularization in order to mini-
mize radical changes to the already trained weights when learning
new classes. As such, given a small set of training data from a
stream of classes, all samples are discarded once they have been
used. However, recent results from the CL literature [13] indicate
that the alternative approach of rehearsal-based methods often out-
performs regularization-based CL. Driven by this observation, we
design our Meta CL method, called rehearsal-based Meta CL, which
introduces a rehearsal strategy into the Meta CL to improve CL
performance. Concretely, we introduce a Replay Buffer that stores
informative samples from already learned classes; these serve as
additional training samples when learning new classes, form a
mechanism for refreshing the weights of the model, and avoid
catastrophic forgetting.

In addition, existing Meta CL systems are limited by their sole
use of inner-loop optimization during meta-testing. Instead, we
construct a variant of the learning fast and slow weights approach:

we utilize the samples of new classes during inner-loop updates
to enable rapid adaptation to new classes, followed by outer-loop
iterations with the rehearsal samples of the previously learned
classes to alleviate catastrophic forgetting.

SystemOverhead.Despite the learning benefits of our rehearsal-
based Meta CL method (see Section 5.2 for details), it comes at a
system cost. With respect to memory, the Replay Buffer has to
store a number of representative samples for each of the already en-
countered classes, so that they can be fetched during meta-testing.
With respect to computation, the samples have to be processed by
the DNN with both forward and backward passes to perform CL.
Unless alleviated, these overheads can lead to a sharp increase in
storage and computational requirements, hindering its deployment
on mobile and embedded devices, where continual learning is most
needed. In the next section, we present LifeLearner’s co-design
approach for alleviating these system costs.

3.2 CL-tailored Algorithm/Software Co-Design
To alleviate the system costs of rehearsal-based Meta CL and en-
able its deployment on resource-constrained devices, we present
an algorithm-software co-design method, optimized for Continual
Learning. At the algorithmic level, we design a rehearsal strategy
that minimizes the computational overhead while maximizing the
compressibility of the rehearsal samples. At the software level,
we design a two-stage Compression Module that enables the effi-
cient compression, storage and decompression of rehearsal samples,
while inducing minimal on-device resource usage.

3.2.1 Rehearsal Strategy. Key design decision in rehearsal-based
methods constitutes the form of the rehearsal samples. A standard
approach followed by many CL methods [8, 63, 81] is native re-
hearsal (i.e., raw data replay), which stores and replays the input
data in their raw format, e.g., images are stored for computer vision
tasks and MFCC features for audio tasks. Under this scheme, a
random subset of the given classes is stored as rehearsal samples,
which are later replayed to mitigate the forgetting issue. The draw-
backs of this approach are the significant computational overhead,
as the samples have to be processed from the full model, and the
compression variability as compressibility varies substantially in a
per-sample manner.

LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

Compression Module (Sparse Bitmap & PQ)

Sparse
Bitmap

Non-Zero
Activations

PQ
 E

nc
od

er

PQ
Indices

From
Feature Extractor

To ClassifierPQ
 D

ec
od

er

Decompressed
Non-Zero

Activations

Sparse
Bitmap

Latent
Activations (z) Decompressed Latent

Activations (z')

Figure 3: The overview of our compression module. It consists of (1) a sparse bitmap to filter out zero from activations or to
reconstruct decompressed activations from non-zero activations, (2) a PQ encoder that further compresses non-zero activations
into PQ indices, and (3) a PQ decoder that decompresses PQ indices back into decompressed non-zero activations.

To counteract these drawbacks, we introduce latent replay into
our rehearsal strategy. Under this scheme, instead of holding copies
of raw inputs, we store their latent representations, i.e., intermedi-
ate activations at the output of a selected layer of the target DNN.
In LifeLearner, we employ two techniques in order to enable the
utilization of latent replay: i) select the last layer of the model’s
feature extractor as the rehearsal point; and ii) we freeze the feature
extractor upon deployment and perform CL only on the classifier.
With the feature extractor frozen, we render latent replay function-
ally equivalent to raw data replay. On the computational front, the
forward pass of the feature extractor can be omitted when replaying
latent representations and the backward propagation is performed
until the last layer, inducing significant computational gains.

On the memory front, we make the following observation. In
DNN training, the activations for each layer are saved during the
forward propagation so that those activations are utilized for com-
puting the gradients during the backward propagation. As in [87],
storing activations requires a large memory footprint depending
on the batch size used for training. However, commonly used ReLU
non-linearity in many DNN models results in sparse activations
in the successive layers. Also, we observe that more than 90% of
the activation values of the latent layer are zero due to the us-
age of ReLU from our analysis of the network architecture on
all three datasets. By strategically selecting the rehearsal layer in
the DNN and treating ReLU activations as the rehearsal samples,
LifeLearner’s rehearsal strategy facilitates their compression and
subsequent efficient storage on-device.

3.2.2 Compression Module for Latent Replays We now introduce
the Compression Module that is responsible for i) compressing re-
hearsal samples (i.e., latent activations in our work) when new
classes are encountered and storing them in the Replay Buffer, and
ii) fetching and decompressing them to perform CL at runtime. This
component comprises two stages: sparse bitmap compression and
product quantization (PQ).

Sparse Bitmap Compression. To leverage the sparsity of our
latent replays for efficient storage, we employ sparse bitmap com-
pression [28]. This scheme enables the Compression Module in
LifeLearner to filter out the majority of zero values (typically 90%
or more) in latent activations and save the remaining non-zero val-
ues to increase the compression rate for saving latent activations.

Figure 3 depicts the compression and decompression processes.
For compression, when latent activations are given to our system,
a bitmap with the same dimensions as the latent activations sets a
bit to 1 for non-zero values’ indices and 0 for the remainders. Then,
non-zero values and the sparse bitmap are stored in 32-bit floats and
the bitmap format, respectively. For decompression, we traverse all
elements of the bitmap and a vector containing the stored non-zero
values, reconstructing in this process the latent activations by using
either the saved non-zero value or zero if a bitmap element is 1 or
0, respectively. The compression and decompression processes are
linear in runtime: 𝑂 (𝑛), where 𝑛 is the total number of elements of
latent activations. With respect to memory, the footprint is reduced
from (4𝑛) when a dense format is used for storing latent activations
to (4 × number of non-zero values + 1

8𝑛) with the bitmap.
Product Quantization. To further minimize the resource over-

head of rehearsal samples, we introduce a second stage to our
compressor (Figure 3) utilizing PQ [41]. The output of the sparse
bitmap compressor contains a vector of non-zero values. With PQ
being a vector compression method that can compress a given vec-
tor v ∈ R𝑑 into 𝑠 number of PQ indices using a PQ codebook with
𝑠 columns, it is suitable to further reduce the size of the encoded
rehearsal samples. Each column of the PQ codebook contains a set
of representative vectors that well approximate 𝑠 sub-vectors of v
when v is partitioned into 𝑠 sub-vectors.

For compression, the PQ encoder applies PQ to the non-zero
activations v ∈ R𝑑 that are already filtered out by the first-stage
sparse bitmap compression. We use 1 byte to store each PQ index
and set 𝑑/𝑠 = {128, 32, 8} (length of each sub-vector). Then, each
sub-vector of length 𝑑/𝑠 containing 32-bit floats is encoded to a
1-byte PQ index via our PQ encoder for more analysis regarding
hyper-parameters). LifeLearner learns the PQ codebook offline us-
ing the latent activations during the meta-training phase, which is
then stored on-device. For decompression, the PQ decoder recon-
structs the non-zero activations v′ using the stored PQ indices and
the PQ codebook.

Finally, as in Algorithm 2 (see Lines 7, 9, and 10), our compression
module is seamlessly incorporated in the inner- and outer-loop
optimization of LifeLearner, enabling on-the-fly compression of the
latent activations during deployment.

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Kwon et al.

Algorithm 1:Meta-Training Procedure of LifeLearner
Require: 𝑁 sequential classes T ; learning rates (LR) 𝛼 , 𝛽 ;

inner-loop iterations 𝑘 ; modules 𝑓𝜃 , 𝜙𝜃 ; given
samples 𝑆

// Outer-loop starts here

1 for 𝑡 = 1, ..., 𝑁 do
2 𝑆𝑡𝑟𝑎 𝑗 ∼ T𝑡 , 𝑆𝑟𝑎𝑛𝑑 ∼ T

// Inner-loop starts here

3 for 𝑖 = 1, ..., 𝑘 do
4 Update fast weights using 𝑆𝑡𝑟𝑎 𝑗 ▷ LR: 𝛼

/* OML(+AIM):𝜙
𝜃𝑃𝐿𝑁

(𝑓
𝜃𝑊

),
ANML(+AIM):𝑓

𝜃𝑃
, 𝜙

𝜃𝐶𝐿𝐹 (𝑓
𝜃𝑊

), LifeLearner:𝜙
𝜃𝐶𝐿𝐹 */

5 Update slow weights using {𝑆𝑡𝑟𝑎 𝑗 , 𝑆𝑟𝑎𝑛𝑑 } ▷ LR: 𝛽
/* OML(+AIM):𝑓

𝜃𝑅𝐿𝑁
, ANML(+AIM):𝑓

𝜃𝑁𝑀 , 𝑓
𝜃𝑃

, 𝜙
𝜃𝐶𝐿𝐹 ,

LifeLearner:𝑓
𝜃𝑁𝑀 , 𝑓

𝜃𝑃
, 𝜙

𝜃𝐶𝐿𝐹 */

Algorithm 2:Meta-Testing Procedure of LifeLearner
Require: 𝑁 sequential unseen classes T ; learning rates

(LR) 𝛼 , 𝛽 ; inner-loop iterations 𝑘 ; modules 𝑓𝜃 , 𝜙𝜃 ,
𝐵𝑖𝑡𝑃𝑄𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠,𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 ; samples 𝑆

1 𝑆𝑡𝑟𝑎𝑖𝑛 = {}, 𝑆𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙 = {}
// Outer-loop starts here

2 for 𝑡 = 1, ..., 𝑁 do
3 𝑆𝑡𝑟𝑎 𝑗 ∼ T𝑡
4 𝑆𝑡𝑟𝑎𝑖𝑛 = {𝑆𝑡𝑟𝑎𝑖𝑛, 𝑆𝑡𝑟𝑎 𝑗 }

// Inner-loop starts here

5 for 𝑖 = 1, ..., 𝑘 do
6 Update fast weights using 𝑆𝑡𝑟𝑎 𝑗 ▷ LR: 𝛼

/* OML(+AIM):𝜙
𝜃𝑃𝐿𝑁

(𝑓
𝜃𝑊

),
ANML(+AIM):𝑓

𝜃𝑃
, 𝜙

𝜃𝐶𝐿𝐹 (𝑓
𝜃𝑊

), LifeLearner:𝜙
𝜃𝐶𝐿𝐹 */

// Get latent activations from compressed rehearsal samples

7 𝑆𝑙𝑎𝑡𝑒𝑛𝑡 = 𝐵𝑖𝑡𝑃𝑄𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑆𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙)
8 Update slow weights using {𝑆𝑡𝑟𝑎 𝑗 , 𝑆𝑙𝑎𝑡𝑒𝑛𝑡 } ▷ LR: 𝛽

/* OML(+AIM):𝑓
𝜃𝑅𝐿𝑁

, ANML(+AIM):𝑓
𝜃𝑁𝑀 , 𝑓

𝜃𝑃
, 𝜙

𝜃𝐶𝐿𝐹 ,

LifeLearner:𝜙
𝜃𝐶𝐿𝐹 */

// Get latent activations

9 𝑆𝑙𝑎𝑡𝑒𝑛𝑡 = 𝑓𝜃𝑁𝑀 (𝑆𝑡𝑟𝑎 𝑗) ⊙ 𝑓𝜃𝑃 (𝑆𝑡𝑟𝑎 𝑗)
// Store compressed activations for rehearsal

10 𝑆𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙 = {𝑆𝑟𝑒ℎ𝑒𝑎𝑟𝑠𝑎𝑙 , 𝐵𝑖𝑡𝑃𝑄𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑆𝑙𝑎𝑡𝑒𝑛𝑡)}
11 𝑆𝑡𝑒𝑠𝑡 = T − 𝑆𝑡𝑟𝑎𝑖𝑛 // Held-out test set

12 Evaluate on 𝑆𝑡𝑟𝑎𝑖𝑛, 𝑆𝑡𝑒𝑠𝑡 // Eval on training/test set

3.3 Putting It All Together
Having described the main components of LifeLearner we now
present the complete meta-training and meta-testing procedures
that take place offline and online, respectively.

Meta-Training Procedure. Algorithm 1 shows the procedure
of meta-training of Rehearsal-based Meta CL, LifeLearner. Firstly,
the meta-training process of rehearsal-based Meta CL is the same as
that of Meta CL [4]. In detail, it is comprised of an inner loop inside
an outer loop of optimization. In the inner loop, the classifier part
is updated (fast weights, e.g., 𝜃𝑃𝐿𝑁 for OML and 𝜃𝑃,𝐶𝐿𝐹 for ANML,

𝜃𝑃𝐿𝑁,𝑊 for OML+AIM, and 𝜃𝑃,𝐶𝐿𝐹,𝑊 for ANML+AIM) (Lines 4-
5). The number of weight update iterations is determined by the
number of samples 𝑘 (e.g., 10-30) of a given sample set, 𝑆𝑡𝑟𝑎 𝑗 , of
a new class, T𝑡 . After the 𝑘 sequential updates, the meta-loss in
the outer loop (Line 6) is computed using all the given samples on
the new class (𝑆𝑡𝑟𝑎 𝑗) and randomly sampled samples from all the
meta-training classes (𝑆𝑟𝑎𝑛𝑑). All the weights of DNN are updated
through outer-loop gradient updates using an Adam optimizer [42].
The learning rates, 𝛼 for the inner loop and 𝛽 for the outer loop,
are used as hyper-parameters.

Meta-Testing Procedure. After executing the meta-training
phase on a server, our system is deployed on resource-constrained
devices and evaluated on its ability to learn unseen classes in the
meta-testing phase. Algorithm 2 shows the meta-testing phase of
the rehearsal-based Meta CL. In prior Meta CL, the meta-testing
procedure contains only inner-loop optimization without outer-
loop optimization, i.e., only fast weights except for slow weights
are fine-tuned. In contrast, LifeLearner leverages the full potential
of meta-learning by using both inner-and outer-loop optimization
in the meta-testing phase. Specifically, our proposed meta-testing
procedure starts with the inner-loop weight updates to learn new
classes swiftly using a few samples (Lines 5-6), followed by the
outer-loop weight updates to retain the knowledge on the pre-
viously learned classes using the replayed samples plus the new
samples (Line 8). Note that although the outer-loop iteration could
run multiple epochs, the performance converges after one or two
epochs (refer to Section 5.4 for more analysis). Also, LifeLearner
integrates the compression module that compresses (Lines 9-10)
and decompresses (Line 7) the latent activations during outer-loop
optimization, as described in Section 3.2.

Our Contribution. Our method conceptually leverages existing
concepts. We solve the challenge of incorporating these concepts
in a coordinated, efficient end-to-end system (as discussed in Sec-
tion 2.3). We achieve higher accuracy than baselines while reducing
the memory footprint drastically. Our key contributions are (1)
co-designing the algorithmic innovation (rehearsal strategy) with
an intelligent combination of lossless (bitmap) and lossy (PQ) com-
pression to significantly reduce the resource requirements of CL
and latent replay samples (Section 3), (2) successfully deploying
LifeLearner end-to-end on two embedded devices and MCU on
which many prior works fail to run (Section 4).

4 Hardware-Aware System Implementation
We develop the first phase, meta-training, of Meta CL methods on
a Linux server to initialize the neural weights that can enable fast
adaptation during deployment scenarios. After that, for the second
phase, meta-testing, (i.e., actual deployment scenarios), we imple-
mented our hardware-aware system by considering the hardware
capacity and unique runtime characteristics of our target devices:
(1) embedded and mobile systems such as Jetson Nano and Rasp-
berry Pi 3B+, and (2) a microcontroller unit such as STM32H747. To
further optimize the system efficiency, we adopt hardware-friendly
optimization techniques in our implementation1

1https://github.com/theyoungkwon/LifeLearner

https://github.com/theyoungkwon/LifeLearner

LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

Embedded Device. Jetson Nano has a quad-core ARM Cortex-
A57 processor, and 4 GB of RAM, while Pi 3B+ contains a quad-
core ARM Cortex-A53 processor with 1 GB of RAM. Note that the
free memory space of Jetson Nano and Pi 3B+ during idle time is
roughly 1.7 GB and 600 MB, respectively, due to the memory foot-
prints pre-occupied by background, concurrent applications, and
an operating system. As software platforms, we employ Faiss (PQ
Framework) [40] and PyTorch 1.8 (Deep Learning Framework) [72]
to develop and evaluate the meta-training and meta-testing phases
on embedded systems.

Microcontroller Unit (MCU). To demonstrate the feasibility
of the broader deployment of CL systems at the extreme edge,
we further optimized and developed LifeLearner on MCUs. We
implemented the online component of LifeLearner using C++ on an
STM32H747 device equipped with ARM Cortex M4 and M7 cores
with 1MB SRAM and 2 MB eFlash in total. However, we only utilize
one core (ARM Cortex M7), as most MCUs have one CPU core. Also,
we restrict the usage space of SRAM and eFlash to 512 KB and 1
MB, respectively, to enforce stricter resource constraints (an order
of magnitude smaller memory space than other embedded devices
with larger than 1 GB RAM).

To deploy LifeLearner on MCUs effectively and efficiently, we
addressed many technical challenges and considered hardware
characteristics. First of all, the memory requirements of the MetaCL
methods developed on embedded devices, including LifeLearner,
far exceed the hardware capacity of a "high-end" MCU such as
STM32H747 (refer to Section 5.2). Hence, we first searched for a
smaller yet accurate architecture for MCUs by experimenting with
various width modifiers [56, 57, 83] (see Section 5.5 for details).

We then implemented our Compression Module (sparse bitmap
compression and PQ) to reduce memory usage of latent replay sam-
ples on SRAM. In particular, we consider hardware characteristics
and constraints: (1) the write operation on the storage (Flash) of
MCUs is costly [90], and (2) Flash is read-only during runtime [3, 50].
Hence, in our MCU implementation of LifeLearner, to minimize
the memory footprint and energy consumption required for latent
replay, we first compress latent replay samples using our Compres-
sion Module and then store them on SRAM, which has more limited
memory but is faster and cheaper to perform read/write operations
on than Flash. Note that our learned PQ codebook, used to encode
and decode the latent replay samples after sparse bitmap compres-
sion, is stored on Flash to leave more space for scarce resources of
SRAM. Also, PQ codebooks are static once deployed; they can be
stored on the read-only memory of Flash.

In addition, we rely on the TFLM framework [12] to perform in-
ference of the feature extractor on MCUs. However, TFLM does not
support training (i.e., backpropagation). We developed our Back-
propagation Engine based on C/C++ using Eigen [23] as a data
structure and matrix multiplication library. Based on our Backprop-
agation Engine, we construct the classifier part on the fly whose
weights are allocated on SRAM and can be continually learned
during deployment whenever more data for new classes become
available. Our lightweight Backpropagation Engine enables the
implementation of the first CL system on MCUs.

Lastly, the binary size of our Compression Module and Back-
propagation Engine, excluding C++ Standard Library (STL) on an
MCU, is only 80 KB, introducing minimal overhead on storage.

Hardware-friendly Optimization.We further optimize Life-
Learner’s CL operations on-device. By freezing the model’s feature
extractor during deployment, LifeLearner significantly reduces the
computational cost for the already learned classes during replay by
omitting the forward and backward passes. In addition, we utilize
the hardware-friendly 8-bit integer arithmetic [91] by reducing
the precision of weights/activations of the feature extractor from
32-bit floats to 8-bit integers, increasing the computation through-
put and minimizing latency and energy. The scalar quantization
scheme [35, 46] is used to minimize the information loss in quanti-
zation. Then, we utilize the QNNPACK [17] backend engine and
TFLM to execute the quantized model on two embedded devices
and MCUs, respectively.

5 Evaluation
5.1 Experimental Setup
We briefly describe our experimental setup in this subsection.

5.1.1 Metrics As in [4], we use testing accuracy on unseen samples
of all the new classes learned continually as a key performance
metric, representing the generalization ability of CL systems. In
addition, we measure the memory footprint (model parameters,
optimizers, activations, and rehearsal samples), end-to-end training
latency and energy consumption to continually learn all the given
classes for a deployed DNN on embedded devices.

5.1.2 Datasets We employ three datasets of two different data
modalities in our evaluation.

CIFAR-100 [47]: Following [55], we employ CIFAR-100 in our
evaluation as it is widely used dataset. CIFAR-100 consists of 60,000
images of 100 classes. Each class has 500 train images and 100 test
images. 70 classes are used for meta-training and the remaining 30
for meta-testing. During both meta-training and meta-testing, up
to only 30 training images are sampled for training in each class,
which holds for both MiniImageNet and GSCv2 datasets. Then,
during meta-testing, a total of 900 samples are given to perform CL.

MiniImageNet [95]: Following [55], we employ MiniImageNet
containing 64 classes for meta-training and 20 classes for meta-
testing. Each class has 540 images for training and 60 images for
testing. During meta-testing, a total of 600 samples are given.

GSCv2 [97]: To generalize our results to another data modality,
we include Google Speech Command V2 (GSCv2) as it is a widely
used audio dataset. GSCv2 consists of a total of 35 classes of different
keywords. We use 25 classes for meta-training and 10 classes for
meta-testing. Each class has 2,424 and 314 input data for training
and testing, respectively. During meta-testing, 300 samples in total
are given for CL.

5.1.3 Baselines We compare our system, LifeLearner, with five
baseline systems as follows.

Oracle: The CL performance of Oracle represents the upper
bound performance of the experiments. It is because Oracle has
access to all the classes at once in an i.i.d. fashion and performs
DNN training for many epochs until the performance converges.

Pretrained: This baseline initializes the model weights based on
conventional DNN training without the meta-learning procedure.

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Kwon et al.

5 10 15 20 25 30
Number of Classes Learned

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Oracle
Pretrained
OML+AIM

ANML
ANML+AIM
LifeLearner

(a) CIFAR-100

5 10 15 20
Number of Classes Learned

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Oracle
Pretrained
OML+AIM

ANML
ANML+AIM
LifeLearner

(b) MiniImageNet

2 4 6 8 10
Number of Classes Learned

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Oracle
Pretrained
OML+AIM

ANML
ANML+AIM
LifeLearner

(c) GSCv2

Figure 4: The accuracy of the CL systems on the three datasets of two different modalities. Reported results are averaged over
three trials, and standard-deviation intervals are depicted.

Then, it finetunes the weights using given samples in the meta-test
phase, similar to prior Meta CL methods.

OML+AIM [55]: This is a Meta CL method based on OML with
an Attentive Independent Mechanisms (AIM) module, capturing
independent concepts to learn new knowledge.

ANML [4]: It is the representative Meta CL method. As this
method is often reported to outperform OML [37], we only employ
ANML in our evaluation. Also, note that the proposed components
of LifeLearner build on top of ANML.

ANML+AIM [55]: ANML+AIM is a Meta CL method based on
ANML with an AIM module. This baseline serves as the SOTA
Meta CL method as it often outperforms other Meta CL methods
including OML+AIM.

5.1.4 Model Architecture LifeLearner employs the network archi-
tecture used in the prior CL works for a fair comparison [4, 55].
As in Figure 2, it consists of the feature extractor and the final
classifier. For ANML-based model architectures, the feature extrac-
tor consists of a neuromodulatory network, 𝑓𝜃𝑁𝑀 , and a prediction
network, 𝑓𝜃𝑃 , followed by the classifier part, 𝑓𝜃𝐶𝐿𝐹 . The neuromodu-
latory and prediction networks are 3-layer convolutional networks
with 112 and 256 channels, respectively. The classifier has a single
fully-connected layer. In this case, LifeLearner utilizes the last layer
of the feature extractor as the latent replay layer, following the
natural structure of the ANML architecture.2 The SOTA method,
ANML+AIM, adds AIM layers 𝑓𝜃𝑊 between the feature extractor
and the classifier, which alleviates forgetting and helps learn new
classes. In addition, for OML and OML+AIM, the feature extractor
has a 6-layer convolutional network with 112 channels, followed
by the classifier of two fully-connected layers with an AIM module
between the feature extractor and the classifier. Note that the model
architectures deployed on embedded devices (i.e., Jetson Nano and
Pi 3B+) and an MCU (i.e., STM32H747) are different due to the
strict resource constraint on the MCU. Thus, a smaller version of

2When targeting a different model architecture, the latent replay layer selection is a
configurable design decision. We leave this investigation as future work.

the model architecture described above is adopted for the MCU
deployment (see Section 5.5 for details).

5.1.5 Training Details We followed the meta-training procedure
used in prior Meta CL works [4, 37, 55]. For instance, we used a
batch size of 1 and 64 for the inner- and outer-loop updates over
20,000 steps, respectively. We experimented with different learning
rates for the inner loop and outer loop to obtain the meta-trained
DNN that provides the best accuracy on a validation set. As a result,
for CIFAR-100 and GSCv2 datasets, the inner-loop learning rate (𝛼)
is set to 0.001, and the outer-loop learning rate (𝛽) is also set to 0.001.
For theMiniImageNet dataset, the optimal settings are 𝛼 = 0.001 and
𝛽 = 0.0005. During the meta-testing phase, ten different learning
rates are tried for all the methods, and the best-performing results
are reported. Besides, to obtain the accuracy results of systems that
perform replays, we experimented with batch sizes of 8 and 16 and
observed little difference in CL performance. Thus, we employ a
batch size of 8, as a smaller batch size reduces the memory footprint.

5.2 Experimental Results
Accuracy. We start by evaluating the CL performance (testing ac-
curacy) of LifeLearner compared to the baselines on the employed
datasets. Figure 4 presents the accuracy results of the meta-testing
phase. Pretrained serves as the lower bound. The low accuracy
(24.4% on average for three datasets) of Pretrained demonstrates
that the conventional transfer learning approach cannot address
the challenging scenarios of learning new classes with only a few
samples. ANML improves upon Pretrained, however, the improve-
ment is marginal (i.e., average 9.9% accuracy gain compared to
Pretrained but 18.9% accuracy drop on average compared to Ora-
cle which shows the upper bound accuracy). Note that it is very
challenging to achieve high testing accuracy even for Oracle as the
number of available samples is very limited during meta-testing: all
evaluated systems are given only 30 samples per class, accounting
for only 2.57%, 1.74%, and 0.5% of all training samples during meta-
training of CIFAR-100, MiniImageNet, and GSCv2, respectively.

LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

Table 1: The requiredmemory footprint and the compression
ratio for the baselines and our system to perform CL during
the meta-testing phase on the three datasets.

Dataset Metrics Pretrained ANML OML+AIM ANML+AIM Oracle LifeLearner

CIFAR-100 Memory 39.69MB 39.69MB 834.1MB 1,093MB 39.93MB 15.45MB
Ratio 27.5× 27.5× 1.3× 1.0× 27.4× 70.8×

Mini- Memory 474.5MB 474.5MB 1,051MB 1,562MB 475.0MB 136.7MB
ImageNet Ratio 3.3× 3.3× 1.5× 1.0× 3.3× 11.4×

GSCv2 Memory 10.16MB 10.16MB 135.2MB 608.2MB 10.20MB 3.40MB
Ratio 59.9× 59.9× 4.5× 1.0× 59.6× 178.7×

LifeLearner achieves near-optimal CL performance, falling short
by only 2.8% accuracy compared to Oracle. Also, LifeLearner outper-
forms all the Meta CL methods with substantial accuracy gains of
4.1-16.1% on average for the three datasets. Specifically, LifeLearner
shows almost no loss of accuracy, i.e., 0.2% for CIFAR-100 and 2.7%
for MiniImageNet compared to Oracle. In contrast, ANML+AIM
(i.e., the previous SOTA Meta CL method) shows notable accuracy
drops (9.9% for CIFAR-100 and 10.7% for MiniImageNet). In the
case of GSCv2, LifeLearner reveals a slight accuracy decline of 5.6%
compared to Oracle, while ANML+AIM shows a minor 0.2% drop
in accuracy relative to Oracle.

Although LifeLearner shows a slightly lower accuracy for GSCv2
than ANML+AIM, it still outperforms ANML+AIM by 4.1% on aver-
age over all datasets. In addition, LifeLearner is essentially designed
for edge devices to require drastically lower system resources (mem-
ory, latency, and energy) than the previous SOTA. As explained
in the following, the excessive resource overhead of ANML+AIM
makes it unsuitable to operate on resource-constrained devices.

Peak Memory Footprint. We investigate the peak memory
footprint required to performCL. Precisely, wemeasure thememory
space required to perform backpropagation and to store rehearsal
samples. The memory requirement to perform backpropagation
consists of three components: (1) model memory that stores model
parameters, (2) optimizer memory that stores gradients and mo-
mentum vectors, and (3) activation memory that is comprised of the
intermediate activations (stored for reuse during backpropagation).
Then, the memory requirement for rehearsal samples is included.

Table 1 shows the peak memory footprint for various baselines
and our system. First, the AIM variants (OML+AIM andANML+AIM)
require an enormous memory footprint of 135.2-1,051 MB and 608.2-
1,562 MB, respectively, as their AIM module has many parameters.
This required memory easily exceeds the RAM size of embedded
devices such as Pi 3B+ (i.e., 1 GB) and barely fits on Jetson Nano.
Conversely, baseline systems such as Pretrained, ANML, and Oracle
show modest memory requirements, which are around 10.16-10.20
MB for GSCv2, 39.7-39.9 MB for CIFAR-100, and 474.5-475.0 MB for
MiniImageNet. However, as shown earlier, Pretrained and ANML
methods are not highly accurate, and Oracle does not support CL.
In contrast, LifeLearner shows the impressive results that it only
requires 15.45 MB for CIFAR-100, 136.7 MB for MiniImageNet, and
3.40 MB for GSCv2, demonstrating a very high compression rate
of 70.8×, 11.4×, and 178.7× compared to ANML+AIM, respectively.
Compared to Oracle, LifeLearner shows a tight range of the com-
pression (2.5-3.5×), indicating that we can estimate the compression
gain within this range agnostic to the dataset.

Oracle Pretrained OML+AIM ANML ANML+AIM LifeLearner
(Nano)

LifeLearner
(Pi 3B+)

0

1000

2000

3000

4000

5000

6000

7000

L
at

en
cy

 (s
ec

on
ds

)

2,073

339

1,645

343

7,100

415 460

(a) Latency (CIFAR-100)

Oracle Pretrained OML+AIM ANML ANML+AIM LifeLearner
(Nano)

LifeLearner
(Pi 3B+)

0

5

10

15

20

25

30

35

E
ne

rg
y

C
on

su
m

pt
io

n
(k

J)

9.5

1.6

7.6

1.6

32.7

1.9 1.3

(b) Energy (CIFAR-100)

Oracle Pretrained OML+AIM ANML ANML+AIM LifeLearner
(Nano)

LifeLearner
(Pi 3B+)

0

1000

2000

3000

4000

L
at

en
cy

 (s
ec

on
ds

)

3,793

1,331
1,593

1,280

Out of
Memory

1,373 1,231

(c) Latency (MiniImageNet)

Oracle Pretrained OML+AIM ANML ANML+AIM LifeLearner
(Nano)

LifeLearner
(Pi 3B+)

0

5

10

15

20

E
ne

rg
y

C
on

su
m

pt
io

n
(k

J) 17.4

6.1
7.3

5.9

Out of
Memory

6.3

3.3

(d) Energy (MiniImageNet)

Oracle Pretrained OML+AIM ANML ANML+AIM LifeLearner
(Nano)

LifeLearner
(Pi 3B+)

0

100

200

300

400

500

600

700

L
at

en
cy

 (s
ec

on
ds

)

633

79

175

79

438

84 56

(e) Latency (GSCv2)

Oracle Pretrained OML+AIM ANML ANML+AIM LifeLearner
(Nano)

LifeLearner
(Pi 3B+)

0

1

2

3

4

5

E
ne

rg
y

C
on

su
m

pt
io

n
(k

J)

2.9

0.36
0.8

0.36

2.0

0.39
0.16

(f) Energy (GSCv2)

Oracle Pretrained OML+AIM ANML ANML+AIM LifeLearner
(Nano)

LifeLearner
(Pi 3B+)

0

1

2

3

4

5

E
ne

rg
y

C
on

su
m

pt
io

n
(k

J)

2.9

0.36

0.8

0.36

2.0

0.39 0.53

Oracle
Pretrained

OML+AIM
ANML

ANML+AIM
LifeLearner (Nano)

LifeLearner (Pi 3B+)

Figure 5: The end-to-end latency and energy consumption
of the baselines and LifeLearner to perform CL over all the
given classes. All results are averaged over three runs with
standard deviations.

End-to-end Latency & Energy Consumption. We now ex-
amine the run-time system efficiency, i.e., end-to-end latency and
energy consumption for the entire CL process, of our system and
the baselines when deployed on the two embedded devices - Jetson
Nano and Pi 3B+ as shown in Figure 5. To obtain the end-to-end
latency, we include: (1) the time to load a pretrained model, (2) the
time to train the model continually over all the given classes one
by one, and (3) the time to compress and decompress the latent
representations using our compression method (i.e., sparse bitmap
compression and PQ).

We first measure the end-to-end latency of our system and the
baselines on Jetson Nano CPU to perform CL over all the given
classes with 30 samples per class. As shown in Figures 5a, 5c,
and 5e, LifeLearner enables a fast end-to-end latency (415 seconds
for CIFAR-100, 1,373 seconds for MiniImageNet, and 84 seconds
for GSCv2), which is 80.8-94.2% reduction of latency compared to
ANML+AIM (e.g., 7,100 seconds for CIFAR-100 and 438 seconds for
GSCv2). Note that ANML+AIM often crashes from running out of
memory on Jetson Nano due to its excessive memory requirements
(as shown in Figures 5c and 5d). Furthermore, compared to ANML
which shares the same network architecture, LifeLearner introduces

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Kwon et al.

negligible overheads in terms of the overall latency (343s vs. 415s
for CIFAR-100, 1,280s vs. 1,373s for MiniImageNet, and 79s vs. 84s
for GSCv2). It is because although there exist some overheads on
LifeLearner to perform the compression techniques like the sparse
bitmap compression and PQ, the speed gains derived from using
quantized neural weights and activations offset the overheads of
compression techniques (refer to Section 5.3 for details). After hav-
ing demonstrated the efficiency of LifeLearner on the Jetson Nano,
we deployed our system on an even more resource-constrained
device, Pi 3B+ (600-700 MB available memory). The end-to-end
latency on Pi 3B+ largely stays similar to that on Jetson Nano as
shown in Figure 5.

To measure the energy consumption, we first use Tegrastats on
Jetson Nano to measure the power consumption. Then, we calculate
the energy consumption by multiplying power consumption and
the elapsed time for each end-to-end CL trial. Similar to the latency
results, Figures 5b, 5d, and 5f show that LifeLearner remarkably
reduces the energy consumption by 80.9-94.2% (1.9kJ vs. 32.7kJ for
CIFAR-100 and 0.4kJ vs. 2.0kJ for GSCv2) compared to ANML+AIM.
Moreover, compared to ANML, LifeLearner shows small overheads
of the additional energy consumption (1.6kJ vs. 1.9kJ for CIFAR-100,
5.9kJ vs. 6.3kJ for MiniImageNet, and 0.36kJ vs. 0.39kJ for GSCv2).
In the case of Pi 3B+, it consistently consumes less energy than
Jetson Nano. It is because while the end-to-end latency of the two
embedded devices is similar, the power consumption profile on
Pi 3B+ is lower than that on Jetson Nano, making Pi 3B+ a more
energy-efficient option. A YOTINO USB power meter is used to
obtain the power consumption on Pi 3B+.

Summary. Our result demonstrates that LifeLearner can effec-
tively learn new classes in a continual manner based on only a few
samples without experiencing catastrophic forgetting, i.e., it general-
izes well to new samples of many classes unseen during the offline
learning phase. Moreover, LifeLearner enables fast and energy-efficient
CL on edge devices with significantly reduced memory footprint.

5.3 Ablation Study
We perform an ablation study to investigate the role of each compo-
nent of our system by incrementally adding our proposed compo-
nents on top of the baseline system (ANML): (1) rehearsal strategy
with inner-and outer-loop optimization (Latent), (2) sparse bitmap
compression (Latent+Bit), (3) PQ (Latent+PQ), and (4) quantization
(LifeLearner).

Effect of Rehearsal with Double-Loop Optimization. As
shown in Table 2, we find that our proposed rehearsal strategy with
double-loop optimization drastically improves the accuracy (com-
pare ANML vs Latent). For example, Latent increases the accuracy
of ANML by 10.6-28.4% across all the datasets. Yet, Latent causes
resource overheads on memory footprint, latency, and energy con-
sumption compared to ANML, as Latent is a baseline CL system
without our Compression Module.

Effect of Compression and Hardware-aware Implemen-
tation. The results of various CL systems such as Latent+Bit, La-
tent+PQ, and Latent+Bit+PQ show that the proposed compression
techniques for latent representations do not sacrifice the accuracy
of the CL systems but reduce the overall memory footprint com-
pared to Latent. Moreover, our Compression Module incurs small

Table 2: The comparison of LifeLearner and variants of
rehearsal-based Meta CL methods for ablation study.

Dataset System Accuracy Memory Latency Energy

CIFAR-100

ANML 0.272 39.7 MB 343.2s 1.58kJ
Latent 0.452 53.9 MB 432.5s 1.99kJ
Latent+Bit 0.452 41.2 MB 466.9s 2.15kJ
Latent+PQ 0.448 41.8 MB 437.1s 2.01kJ
Latent+Bit+PQ 0.446 40.4 MB 471.4s 2.17kJ
LifeLearner 0.443 15.5 MB 414.7s 1.91kJ

ANML 0.327 474.5 MB 1,280s 5.89kJ
Latent 0.433 512.5 MB 1,492s 6.86kJ

Mini- Latent+Bit 0.433 477.7 MB 1,551s 7.14kJ
ImageNet Latent+PQ 0.430 483.0 MB 1,501s 6.90kJ

Latent+Bit+PQ 0.423 476.4 MB 1,560s 7.18kJ
LifeLearner 0.411 136.7 MB 1,373s 6.32kJ

GSCv2

ANML 0.429 10.2 MB 78.6s 0.36kJ
Latent 0.713 12.0 MB 90.6s 0.42kJ
Latent+Bit 0.713 10.4 MB 90.8s 0.42kJ
Latent+PQ 0.708 11.0 MB 95.0s 0.44kJ
Latent+Bit+PQ 0.707 10.3 MB 95.2s 0.44kJ
LifeLearner 0.656 3.40 MB 83.8s 0.39kJ

resource overheads in end-to-end latency and energy. Then, Life-
Learner, which combines quantization of weights and activations
accelerating the CL execution on hardware by exploiting efficient
integer-based operations, shows excellent performance in all as-
pects: (1) outperforms ANML by a large margin (8.4-22.7%) with a
minor accuracy drop compared to Latent (0.9-5.7%), (2) drastically
reduces the memory footprint by 61.0-71.2% compared to ANML
and by 71.2-73.3% compared to Latent, and (3) incurs minimal over-
heads of latency and energy over ANML (costs additional 56.6s and
0.3kJ on average, respectively) but still shows lower latency and
energy than Latent (saves 47.9s and 0.2kJ on average, respectively).

Overall, the ablation study reveals that the co-utilization of the re-
hearsal strategy with double-loop optimization, Compression Module,
and hardware-friendly implementation effectively makes LifeLearner
more accurate and efficient.

5.4 Parameter Analysis
Next, we study the impact of the various hyper-parameters that
could affect the performance of our system (see Figure 6).

The Number of Given Samples.We first examine the accuracy
of LifeLearner according to the number of given samples per class
(ranging from 10 to 30) as it would directly affect labeling effort of
users (see Figure 6a). Apparently, the more samples are given for
training, the higher the accuracy, which holds for both LifeLearner
and Oracle. Even when only 10 samples per class are given to con-
duct training, the accuracy degradation of LifeLearner is relatively
low (7-14%), indicating that LifeLearner can still perform reasonably
well under extreme data scarcity. Also, the accuracy differences
between LifeLearner and Oracle are small (e.g., 1-2% for CIFAR-
100, 1-3% for MiniImageNet, and 5-9% for GSCv2), demonstrating
that LifeLearner achieves the similar accuracy of Oracle. With 30
given samples, the accuracy difference is minimal: 2.8% on average
(ranging from 1 to 5%).

The Number of Replay Epochs. We study to what extent the
number of replay epochs affects the CL performance as more epochs

LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

(a) The Number of Samples per Class (S) (b) The Number of Replay Epochs (E) (c) The Sub-Vector Length (L)

Figure 6: The parameter analysis of LifeLearner for all the datasets according to the three parameters.

incur larger latency and energy consumption. Figure 6b shows that
the accuracy of LifeLearner converges after the first or the second
replay epoch. However, Oracle requires at least two to five epochs
to reach the convergence accuracy, which consumes much more
training time and energy than our system (see Figure 5). This result
benefits us since replaying the rehearsal samples over one or two
epochs is enough for LifeLearner to reach the converging accuracy,
which helps decrease the system overheads.

PQ Codebook’s Sub-vector Length. We investigate the ac-
curacy of LifeLearner according to the sub-vector length of the
PQ codebook (the number of values per index) ranging from 8 to
128 as it affects the compression ratio of rehearsal samples. For
CIFAR-100 and MiniImageNet, there is little difference according
to the sub-vector length. In contrast, for GSCv2, we observe that
the shorter the length of the sub-vector (i.e., lower compression
rate), the higher the accuracy. These results inform us to select the
largest sub-vector length that does not degrade accuracy.

These results show that with only 10-30 samples per class, Life-
Learner achieve similar CL performance to Oracle, exhibit rapid con-
vergence with small replay epochs (at most two), and accomplish a
high compression rate for rehearsal samples.

5.5 MCU Deployment
TinyANML Architecture. For the extremely resource constrained
IoT devices like MCUs where on-chip memory of SRAM and Flash
are typically a few hundred KB or 1 MB at most (an order of mag-
nitude smaller than Jetson Nano and Pi 3B+ in terms of memory),
the memory requirements of the MetaCL methods, including Life-
Learner, are prohibitively large. Thus, we propose a small and accu-
rate TinyANML architecture designed for MCUs with tiny memory
by experimenting with various width modifiers [56, 57, 83]. We
identified widths of 0.2, 0.05, and 0.4 for the ANML architecture of
CIFAR-100, MiniImageNet, and GSCv2, respectively.

MCU Implementation and Results. Backbone represents an
inference-only feature extractor based on TFLM. On top of that, our
hardware-aware systems are added incrementally: (1) Backprop-
agation Engine (Tiny ANML) and (2) Compression Module (Tiny
LifeLearner). Table 3 shows the MCU deployment results based on

Table 3: MCU deployment of the Backbone, tiny ANML, and
tiny LifeLearner on STM32H747.

Dataset System Accuracy SRAM Flash Latency Energy

CIFAR-100
Backbone - 75kB 428kB 561ms 128mJ
Tiny ANML 0.176 185kB 691kB 579ms 134mJ
Tiny LifeLearner 0.393 236kB 825kB 832ms 195mJ

Mini-
ImageNet

Backbone - 119kB 329kB 926ms 221mJ
Tiny ANML 0.112 224kB 591kB 944ms 218mJ
Tiny LifeLearner 0.301 281kB 725kB 1204ms 282mJ

GSCv2
Backbone - 81kB 475kB 956ms 218mJ
Tiny ANML 0.209 181kB 738kB 968ms 223mJ
Tiny LifeLearner 0.534 212kB 806kB 1160ms 271mJ

STM32H747 in terms of accuracy, SRAM, Flash, latency, and energy
consumption to learn a class with ten samples when continually
learning ten classes.

Backpropagation Engine. As shown with Tiny ANML com-
pared to inference-only Backbone, our Backpropagation Engine
enables on-device CL with extremely small latency/energy over-
heads (e.g., 579ms vs. 561ms and 134mJ vs. 128mJ for CIFAR-100)
while requiring only an additional 100KB SRAM and 260KB Flash.

Co-design of Our Algorithm and Hardware-aware System
Implementation. Tiny LifeLearner not only largely prevents accu-
racy degradation compared to its original LifeLearner (see Table 2)
but also maintains higher accuracy than ANML despite Tiny Life-
Learner’s model size being 24.1-1839× smaller than ANML. Tiny
LifeLearner achieves significantly higher accuracy than Tiny ANML
while havingminimal resource requirements (e.g., 181-281kB SRAM,
725-825kB Flash, 832-1,204ms latency, and 195-282mJ energy con-
sumption), demonstrating the effectiveness of our proposed algo-
rithm and hardware-aware system implementation on such an
extremely resource-constrained device.

Note that it is infeasible to perform the ablation study to quantify
the benefits of our design as in Section 5.3. This is because other base-
lines with rehearsal strategy and prior works exhibit out-of-memory
problems and only tiny LifeLearner could run on MCUs with severely
limited memory.

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Kwon et al.

6 Discussion
Impact on Continual Learning. We envision that LifeLearner
could make CL a practical reality on embedded and IoT devices by
leveraging meta-learning and rehearsal strategy with only a few
samples. Such CL systems will allow DNNs to add new classes (e.g.,
adding new objects to an image recognition system, adding new
keywords to a voice assistant) or new modalities (e.g., adding image
recognition on top of a voice recognition authentication system)
on the fly without relying on the cloud (i.e., no communication
costs). As one future direction, further optimizing LifeLearner to
use stricter quantization such as 1, 2, or 4 bits will be interesting.

Generalizability of LifeLearner. LifeLearner successfullyworks
on three different datasets operating on two different modalities:
image and audio, showing the generalizability of our framework.
With the proliferation of smart spaces, such as smart homes and
offices, LifeLearner can be used to learn the personal habits and
preferences of users in order to control environmental conditions,
such as temperature, humidity and lighting, with readings coming
from thermometers, motion sensors and cameras on IoT devices.
LifeLearner would enable this personalization and space adaptivity
to happen in a data-efficient manner and to stay local to ensure
privacy. Moreover, LifeLearner could be used on robot vacuum
cleaners to enhance their adaptability, e.g., to continually learn to
visually recognize new objects and thus avoid collisions.

The evaluation of other datasets and potentially other modali-
ties, including various other sensor signals [14, 75] as mentioned
above to further test the applicability of LifeLearner for learning
continually for other real-world applications, is left as future work.

Scalibility over Many Classes. The sample-wise compression
ratio of LifeLearner is about 30×, significantly reducing the memory
overhead of adding many classes. It incurs only 1.68 MB, 6.16 MB,
and 0.66 MB of memory when adding 100 classes with 30 samples
per class for CIFAR-100, MiniImageNet, and GSCv2, respectively.
Also, our scalar quantization and selective layer updates resolve
scalability issues of latency as it incurs minimal latency overhead
over ANML with fixed latency to learn new classes (see Tables 2, 3).

Feasibility of Labeling Samples. One of the key challenges
of enabling realistic applications for CL is annotation difficulty by
users. As conventional CL typically demands a few thousand labeled
samples, it becomes almost infeasible for users to perform labeling
(as discussed in Section 2.1). Instead, LifeLearner ameliorates this
labeling burden by enabling data-efficient CL with 10-30 samples
per class which are not impractical to label.

Other Considerations. In this work, our evaluation demon-
strated that LifeLearner achieves near-optimal CL performance,
falling short by only 2.8% accuracy compared to the upper bound
system (Oracle). However, a higher accuracy (over 80-90%) given
fewer samples (less than 10-30 samples) would be desirable. Thus,
it is worth investigating larger and more advanced model architec-
tures specializing in the target problem and task, such as Trans-
formers [16, 94], to push the envelope of the upper bound testing
accuracy of the challenging CL problem.

7 Conclusions
We proposed LifeLearner, a hardware-aware meta CL system with
adaptive fast-slow weights and resource-optimized compression

for embedded and IoT platforms. LifeLearner outperforms all exist-
ing Meta CL methods by a large margin (approximating the upper
bound method that performs training in i.i.d. setting) and demon-
strates its potential applicability in real-world deployments. Our
efficient CL system opens the door to adaptive applications to run
on embedded and IoT devices by allowing them to learn new tasks
and adapt to the dynamics of the user and context.

ACKNOWLEDGMENTS
This work is supported by a Google Faculty Award, ERC through
Project 833296 (EAR), and Nokia Bell Labs through a donation

REFERENCES
[1] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch,

and Pieter Abbeel. 2018. Continuous Adaptation via Meta-Learning in Nonsta-
tionary and Competitive Environments. In International Conference on Learning
Representations (ICLR).

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and
Tinne Tuytelaars. 2018. Memory Aware Synapses: Learning what (not) to forget.
In European Conference on Computer Vision (ECCV).

[3] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker,
Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul Whatmough.
2021. MicroNets: Neural Network Architectures for Deploying TinyML Appli-
cations on Commodity Microcontrollers. Proceedings of Machine Learning and
Systems (MLSys) (2021).

[4] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O. Stanley,
Jeff Clune, and Nick Cheney. 2020. Learning to Continually Learn. In ECAI 2020.
IOS Press, 992–1001.

[5] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. TinyTL: Reduce
Memory, Not Parameters for Efficient On-Device Learning. In Advances in
Neural Information Processing Systems (NeurIPS).

[6] Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng
Zhu, and Song Han. 2022. Enable Deep Learning on Mobile Devices: Methods,
Systems, and Applications. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 27, 3 (2022), 20:1–20:50.

[7] Francisco M. Castro, Manuel J. Marin-Jimenez, Nicolas Guil, Cordelia Schmid,
and Karteek Alahari. 2018. End-to-End Incremental Learning. In Proceedings of
the European Conference on Computer Vision (ECCV).

[8] Jagmohan Chauhan, Young D. Kwon, Pan Hui, and Cecilia Mascolo. 2020. Con-
tAuth: Continual Learning Framework for Behavioral-based User Authentica-
tion. Proc. IMWUT 4, 4 (Dec. 2020), 122:1–122:23.

[9] Jagmohan Chauhan, Young D. Kwon, and Cecilia Mascolo. 2022. Exploring
On-Device Learning Using Few Shots for Audio Classification. In 2022 30th
European Signal Processing Conference (EUSIPCO). 424–428. https://doi.org/10.
23919/EUSIPCO55093.2022.9909551

[10] Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael W
Mahoney, and Joseph E Gonzalez. 2021. ActNN: Reducing Training Memory
Footprint via 2-Bit Activation Compressed Training. In International Conference
on Machine Learning (ICML).

[11] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep
Nets with Sublinear Memory Cost. https://doi.org/10.48550/ARXIV.1604.06174

[12] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, Pete Warden, and
Rocky Rhodes. 2021. TensorFlow Lite Micro: Embedded Machine Learning for
TinyML Systems. In Proceedings of Machine Learning and Systems (MLSys).

[13] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Alex;
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. 2022. A Continual Learning
Survey: Defying Forgetting in Classification Tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 7 (2022), 3366–3385. https://doi.org/10.
1109/TPAMI.2021.3057446

[14] Shohreh Deldari, Hao Xue, Aaqib Saeed, Daniel V. Smith, and Flora D. Salim.
2022. COCOA: Cross Modality Contrastive Learning for Sensor Data. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 6, 3, Article 108 (sep 2022), 28 pages.
https://doi.org/10.1145/3550316

[15] Shuya Ding, Zhe Chen, Tianyue Zheng, and Jun Luo. 2020. RF-Net: A Unified
Meta-Learning Framework for RF-Enabled One-Shot Human Activity Recog-
nition. In Proceedings of the 18th Conference on Embedded Networked Sensor
Systems (SenSys ’20).

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In

https://doi.org/10.23919/EUSIPCO55093.2022.9909551
https://doi.org/10.23919/EUSIPCO55093.2022.9909551
https://doi.org/10.48550/ARXIV.1604.06174
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1145/3550316

LifeLearner: Hardware-Aware Meta Continual Learning System for Embedded Computing Platforms SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

International Conference on Learning Representations. https://openreview.net/
forum?id=YicbFdNTTy

[17] Marat Dukhan, Yiming Wu, Hao Lu, and Bert Maher. 2018. QN-
NPACK: Open source library for optimized mobile deep learning.
https://engineering.fb.com/2018/10/29/ml-applications/qnnpack/.

[18] R David Evans and Tor Aamodt. 2021. AC-GC: Lossy Activation Compression
with Guaranteed Convergence. In Advances in Neural Information Processing
Systems (NeurIPS).

[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70 (ICML).

[20] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter Jin,
Sicheng Zhao, and Kurt Keutzer. 2018. SqueezeNext: Hardware-Aware Neural
Network Design. 1638–1647.

[21] In Gim and JeongGil Ko. 2022. Memory-Efficient DNN Training on Mobile
Devices. In Annual International Conference on Mobile Systems, Applications and
Services (MobiSys).

[22] Taesik Gong, Yeonsu Kim, Jinwoo Shin, and Sung-Ju Lee. 2019. MetaSense: Few-
Shot Adaptation to Untrained Conditions in DeepMobile Sensing. In Proceedings
of the 17th Conference on Embedded Networked Sensor Systems (SenSys ’19).

[23] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
[24] Yunhui Guo, Noel C. Codella, Leonid Karlinsky, James V. Codella, John R. Smith,

Kate Saenko, Tajana Rosing, and Rogerio Feris. 2020. A Broader Study of
Cross-Domain Few-Shot Learning. In European Conference on Computer Vision
(ECCV).

[25] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. In International Conference on Learning Representations (ICLR).

[26] Tyler L. Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher
Kanan. 2020. REMIND Your Neural Network to Prevent Catastrophic Forgetting.
In European Conference on Computer Vision (ECCV).

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[28] Abdelrahman Hosny, Marina Neseem, and Sherief Reda. 2021. Sparse Bitmap
Compression for Memory-Efficient Training on the Edge. In 2021 IEEE/ACM
Symposium on Edge Computing (SEC).

[29] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. 2022.
Meta-Learning in Neural Networks: A Survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 9 (Sept. 2022), 5149–5169. https://doi.org/
10.1109/TPAMI.2021.3079209 Conference Name: IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[30] Shell Xu Hu, Da Li, Jan Stühmer, Minyoung Kim, and Timothy M. Hospedales.
2022. Pushing the Limits of Simple Pipelines for Few-Shot Learning: External
Data and Fine-Tuning Make a Difference. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[31] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. SwapAdvisor: Pushing Deep
Learning Beyond the GPU Memory Limit via Smart Swapping. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[32] Kai Huang, Boyuan Yang, and Wei Gao. 2023. ElasticTrainer: Speeding Up
On-Device Training with Runtime Elastic Tensor Selection. In Proceedings of
the 21st Annual International Conference on Mobile Systems, Applications and
Services (MobiSys ’23).

[33] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen,
Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and
Zhifeng Chen. 2019. GPipe: Efficient Training of Giant Neural Networks Using
Pipeline Parallelism. In International Conference on Neural Information Processing
Systems (NeurIPS).

[34] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming
Chan, and Chu-Song Chen. 2019. Compacting, Picking and Growing for Unfor-
getting Continual Learning. Advances in Neural Information Processing Systems
(NeurIPS) (2019).

[35] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization
and Training of Neural Networks for Efficient Integer-Arithmetic-Only Infer-
ence. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[36] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph
Gonzalez, Kurt Keutzer, and Ion Stoica. 2020. Checkmate: Breaking the Memory
Wall with Optimal Tensor Rematerialization. In Conference on Machine Learning
and Systems (MLSys).

[37] Khurram Javed and Martha White. 2019. Meta-Learning Representations for
Continual Learning. In Advances in Neural Information Processing Systems
(NeurIPS).

[38] Joo Seong Jeong, Jingyu Lee, Donghyun Kim, Changmin Jeon, Changjin Jeong,
Youngki Lee, and Byung-Gon Chun. 2022. Band: Coordinated Multi-DNN
Inference on HeterogeneousMobile Processors. In Proceedings of the 20th Annual

International Conference on Mobile Systems, Applications and Services (MobiSys
’22).

[39] Saurav Jha, Martin Schiemer, Franco Zambonelli, and Juan Ye. 2021. Continual
learning in sensor-based human activity recognition: An empirical benchmark
analysis. Information Sciences 575 (Oct. 2021), 1–21. https://doi.org/10.1016/j.
ins.2021.04.062

[40] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data (2019), 1–1.

[41] H. Jégou, M. Douze, and C. Schmid. 2011. Product Quantization for Nearest
Neighbor Search. IEEE Transactions on Pattern Analysis and Machine Intelligence
33, 1 (Jan. 2011), 117–128.

[42] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In International Conference on Learning Representations (ICLR).

[43] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He,
Jared Roesch, Tianqi Chen, and Zachary Tatlock. 2021. Dynamic Tensor Rema-
terialization. In International Conference on Learning Representations (ICLR).

[44] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, KieranMilan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. 2017. Overcoming catastrophic forgetting in neural networks.
Proc. National Academy of Sciences 114, 13 (March 2017), 3521–3526.

[45] Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins. 2021. Lane Com-
pression: A Lightweight Lossless Compression Method for Machine Learning
on Embedded Systems. ACM Trans. Embed. Comput. Syst. 20, 2, Article 16 (mar
2021), 26 pages. https://doi.org/10.1145/3431815

[46] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv:1806.08342 [cs, stat] (June 2018).

[47] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of
features from tiny images. (2009).

[48] Young D Kwon, Jagmohan Chauhan, Abhishek Kumar, Pan Hui, and Cecilia
Mascolo. 2021. Exploring System Performance of Continual Learning for Mo-
bile and Embedded Sensing Applications. In ACM/IEEE Symposium on Edge
Computing. Association for Computing Machinery (ACM).

[49] Young D. Kwon, Jagmohan Chauhan, and Cecilia Mascolo. 2021. FastICARL:
Fast Incremental Classifier and Representation Learning with Efficient Budget
Allocation in Audio Sensing Applications. In Proc. Interspeech 2021. 356–360.

[50] Young D. Kwon, Jagmohan Chauhan, and Cecilia Mascolo. 2022. YONO: Model-
ing Multiple Heterogeneous Neural Networks on Microcontrollers. In 2022 21st
ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN). 285–297. https://doi.org/10.1109/IPSN54338.2022.00030

[51] Young D. Kwon, Rui Li, Stylianos I. Venieris, Jagmohan Chauhan, Nicholas D.
Lane, and Cecilia Mascolo. 2023. TinyTrain: Deep Neural Network Training at
the Extreme Edge. arXiv:2307.09988 [cs.LG]

[52] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. 2015.
Human-level concept learning through probabilistic program induction. Sci-
ence 350, 6266 (2015), 1332–1338. https://doi.org/10.1126/science.aab3050
arXiv:https://www.science.org/doi/pdf/10.1126/science.aab3050

[53] Guohao Lan, Bailey Heit, Tim Scargill, and Maria Gorlatova. 2020. GazeGraph:
Graph-Based Few-Shot Cognitive Context Sensing fromHuman Visual Behavior.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems
(SenSys ’20).

[54] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choud-
hury, and Andrew T. Campbell. 2010. A survey of mobile phone sensing. IEEE
Communications Magazine 48, 9 (Sept. 2010), 140–150.

[55] Eugene Lee, Cheng-Han Huang, and Chen-Yi Lee. 2021. Few-Shot and Continual
Learning with Attentive Independent Mechanisms. arXiv:2107.14053 [cs] (July
2021). http://arxiv.org/abs/2107.14053

[56] Edgar Liberis, Łukasz Dudziak, and Nicholas D. Lane. 2021. uNAS: Constrained
Neural Architecture Search for Microcontrollers. In Proceedings of the 1st Work-
shop on Machine Learning and Systems (EuroMLSys ’21).

[57] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. 2020.
MCUNet: Tiny Deep Learning on IoT Devices. In Advances in Neural Information
Processing Systems (NeurIPS).

[58] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song
Han. 2022. On-Device Training Under 256KB Memory. In Advances on Neural
Information Processing Systems (NeurIPS).

[59] Neiwen Ling, Xuan Huang, Zhihe Zhao, Nan Guan, Zhenyu Yan, and Guoliang
Xing. 2022. BlastNet: Exploiting Duo-Blocks for Cross-Processor Real-TimeDNN
Inference. In Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems (SenSys).

[60] Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing, and Daqi Xie. 2021. RT-
MDL: Supporting Real-Time Mixed Deep Learning Tasks on Edge Platforms. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’21).

[61] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping
Ye. 2020. AutoCompress: An Automatic DNN Structured Pruning Framework
for Ultra-High Compression Rates. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1016/j.ins.2021.04.062
https://doi.org/10.1016/j.ins.2021.04.062
https://doi.org/10.1145/3431815
https://doi.org/10.1109/IPSN54338.2022.00030
https://arxiv.org/abs/2307.09988
https://doi.org/10.1126/science.aab3050
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aab3050
http://arxiv.org/abs/2107.14053

SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Kwon et al.

[62] Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han,
Jianfei Chen, Zhiyuan Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, and Alvin
Cheung. 2022. GACT: Activation Compressed Training for Generic Network
Architectures. In International Conference on Machine Learning (ICML).

[63] David Lopez-Paz and Marc\textquotesingle Aurelio Ranzato. 2017. Gradient
Episodic Memory for Continual Learning. In NeurIPS.

[64] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. ShuffleNet
V2: Practical Guidelines for Efficient CNN Architecture Design. In European
Conference on Computer Vision (ECCV).

[65] James L. McClelland, Bruce L. McNaughton, and Randall C. O’Reilly. 1995. Why
there are complementary learning systems in the hippocampus and neocortex:
Insights from the successes and failures of connectionist models of learning and
memory. Psychological Review 102, 3 (1995), 419–457.

[66] Michael McCloskey and Neal J. Cohen. 1989. Catastrophic Interference in
Connectionist Networks: The Sequential Learning Problem. In Psychology of
Learning and Motivation. Vol. 24. 109–165.

[67] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. 2021. Essentials for Class
Incremental Learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW).

[68] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. 2019. Deep Online Learn-
ing Via Meta-Learning: Continual Adaptation for Model-Based RL. In Interna-
tional Conference on Learning Representations (ICLR).

[69] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (Oct. 2010), 1345–1359.

[70] Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai, and Bohan Zhuang.
2021. Mesa: A Memory-saving Training Framework for Transformers. arXiv
preprint arXiv:2111.11124 (2021).

[71] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural Networks 113 (May 2019), 54–71.

[72] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems
(NeurIPS).

[73] Shishir G Patil, Paras Jain, Prabal Dutta, Ion Stoica, and Joseph Gonzalez. 2022.
POET: Training Neural Networks on Tiny Devices with Integrated Rematerial-
ization and Paging. In International Conference on Machine Learning (ICML).

[74] Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco, and Davide Maltoni.
2020. Latent Replay for Real-Time Continual Learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[75] Nhat Pham, Hong Jia, Minh Tran, Tuan Dinh, Nam Bui, Young Kwon, Dong
Ma, Phuc Nguyen, Cecilia Mascolo, and Tam Vu. 2022. PROS: An Efficient
Pattern-Driven Compressive Sensing Framework for Low-Power Biopotential-
Based Wearables with on-Chip Intelligence. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking (MobiCom ’22).
661–675.

[76] Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K. Dokania, Philip H.S.
Torr, Ser-Nam Lim, Bernard Ghanem, and Adel Bibi. 2023. Computationally Bud-
geted Continual Learning: What Does Matter?. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 3698–3707.

[77] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang, and
Tara Sainath. 2019. Deep Learning for Audio Signal Processing. IEEE Journal of
Selected Topics in Signal Processing 13, 2 (May 2019), 206–219.

[78] Zhongnan Qu, Zimu Zhou, Yongxin Tong, and Lothar Thiele. 2022. P-Meta:
Towards On-Device Deep Model Adaptation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Washington DC,
USA) (KDD ’22). Association for Computing Machinery, New York, NY, USA,
1441–1451. https://doi.org/10.1145/3534678.3539293

[79] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. 2019. Rapid
Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML.
In International Conference on Learning Representations (ICLR).

[80] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Net-
works. In Computer Vision – ECCV 2016 (Lecture Notes in Computer Science),
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Cham, 525–542.

[81] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. 2017. iCaRL: Incremental classifier and representation learning. In
Proc. CVPR. 2001–2010.

[82] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. arXiv preprint arXiv:1606.04671 (2016).

[83] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[84] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. 2018. Progress
& Compress: A Scalable Framework for Continual Learning. In International
Conference on Machine Learning (ICML).

[85] Sandra Servia-Rodriguez, Cecilia Mascolo, and Young D. Kwon. 2021. Knowing
when we do not know: Bayesian continual learning for sensing-based analysis
tasks. arXiv:2106.05872 [cs] (June 2021).

[86] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical Networks
for Few-shot Learning. In Advances in Neural Information Processing Systems
(NeurIPS).

[87] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian
Zhang, and Christopher Ré. 2019. Low-Memory Neural Network Training: A
Technical Report. arXiv:1904.10631 [cs, stat] (April 2019).

[88] Pierre Stock, Angela Fan, Benjamin Graham, Edouard Grave, Rémi Gribonval,
Herve Jegou, and Armand Joulin. 2020. Training with Quantization Noise for
Extreme Model Compression. In International Conference on Learning Represen-
tations (ICLR).

[89] Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé
Jégou. 2019. And the Bit Goes Down: Revisiting the Quantization of Neural
Networks. In International Conference on Learning Representations (ICLR).

[90] Filip Svoboda, Javier Fernandez-Marques, Edgar Liberis, and Nicholas D. Lane.
2022. Deep Learning on Microcontrollers: A Study on Deployment Costs and
Challenges. In Proceedings of the 2nd European Workshop on Machine Learning
and Systems (EuroMLSys ’22).

[91] V. Sze, Y. Chen, T. Yang, and J. S. Emer. 2017. Efficient Processing of Deep Neural
Networks: A Tutorial and Survey. Proc. IEEE 105, 12 (Dec. 2017), 2295–2329.
https://doi.org/10.1109/JPROC.2017.2761740 Conference Name: Proceedings of
the IEEE.

[92] Jihoon Tack, Subin Kim, Sihyun Yu, Jaeho Lee, Jinwoo Shin, and
Jonathan Richard Schwarz. 2023. Learning Large-scale Neural Fields via Context
Pruned Meta-Learning. arXiv:2302.00617 [cs.LG]

[93] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci,
Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Man-
zagol, and Hugo Larochelle. 2020. Meta-Dataset: A Dataset of Datasets for
Learning to Learn from Few Examples. In International Conference on Learning
Representations (ICLR).

[94] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[95] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and
Daan Wierstra. 2016. Matching Networks for One Shot Learning. In Advances
in Neural Information Processing Systems (NeurIPS).

[96] QipengWang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin Jin, Gang
Huang, Yunxin Liu, and Xuanzhe Liu. 2022. Melon: Breaking the Memory Wall
for Resource-Efficient On-Device Machine Learning. In Annual International
Conference on Mobile Systems, Applications and Services (MobiSys).

[97] Pete Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition. arXiv:1804.03209 [cs] (April 2018).

[98] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong
Guo, and Yun Fu. 2019. Large Scale Incremental Learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[99] Rui Xiao, Jianwei Liu, Jinsong Han, and Kui Ren. 2021. OneFi: One-Shot Recog-
nition for Unseen Gesture via COTS WiFi. In Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems (SenSys ’21). 206–219.

[100] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie
Shao, and Tarek Abdelzaher. 2020. Deep Compressive Offloading: Speeding up
Neural Network Inference by Trading Edge Computation for Network Latency.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems
(SenSys ’20). 476–488.

[101] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. 2018. Lifelong
Learning with Dynamically Expandable Networks. In International Conference
on Learning Representations (ICLR).

[102] Sheng Yue, Ju Ren, Jiang Xin, Deyu Zhang, Yaoxue Zhang, and Weihua Zhuang.
2021. Efficient Federated Meta-Learning over Multi-Access Wireless Networks.
arXiv:2108.06453 [cs.LG]

[103] Friedemann Zenke, Ben Poole, and Surya Ganguli. 2017. Continual Learning
Through Synaptic Intelligence. In Proc. ICML. 3987–3995.

[104] Yu Zhang, Tao Gu, and Xi Zhang. 2020. MDLdroidLite: A Release-and-Inhibit
Control Approach to Resource-Efficient Deep Neural Networks on Mobile De-
vices. In Proceedings of the 18th Conference on Embedded Networked Sensor
Systems (SenSys ’20). New York, NY, USA, 463–475.

https://doi.org/10.1145/3534678.3539293
https://doi.org/10.1109/JPROC.2017.2761740
https://arxiv.org/abs/2302.00617
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2108.06453

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Continual Learning
	2.2 Meta Continual Learning
	2.3 Efficient Deep Learning Systems

	3 LifeLearner
	3.1 Co-utilization of Meta-Learning and Rehearsal Strategy
	3.2 CL-tailored Algorithm/Software Co-Design
	3.3 Putting It All Together

	4 Hardware-Aware System Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Ablation Study
	5.4 Parameter Analysis
	5.5 MCU Deployment

	6 Discussion
	7 Conclusions
	Acknowledgments
	References

