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ABSTRACT
Estimating revenue and business demand of a newly opened venue
is paramount as these early stages often involve critical decisions
such as �rst rounds of sta�ng and resource allocation. Traditionally,
this estimation has been performed through coarse measures such
as observing numbers in local venues. The advent of crowdsourced
data from devices and services has opened the door to better pre-
dictions of temporal visitation patterns for locations and venues.
In this paper, using mobility data from the location-based service
Foursquare, we treat venue categories as proxies for urban activ-
ities and analyze how they become popular over time. The main
contribution of this work is a prediction framework able to use
characteristic temporal signatures of places together with k-nearest
neighbor metrics capturing similarities among urban regions to
forecast weekly popularity dynamics of a new venue establishment.
Our evaluation shows that temporally similar areas of a city can be
valuable predictors, decreasing error by 41%. Our �ndings have the
potential to impact the design of location-based technologies and
decisions made by new business owners.

CCS CONCEPTS
• Database applications → Data mining; • Social and Behav-
ioral Science → Miscellaneous;
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1 INTRODUCTION
Cities are complex systems that constantly change over time. The
way in which neighborhoods become popular over time has been
a fundamental area of study in traditional urban studies literature
as it is critical to city governance [2]. The rise of mobile technolo-
gies and collective sensing in the last decade has contributed to
the generation of large datasets that describe activity dynamics
in cities and has created new opportunities for research in the
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area [3, 4, 9, 12]. Nevertheless, little work has focused on predicting
important properties of a new business. In this paper, we provide
an analytical framework that captures the popularity dynamics of
urban neighborhoods. We begin with a temporal characterization
of urban activities across regions, showing how the popularity dy-
namics of venue categories give rise to the temporal patterns of the
urban areas that contain them. We highlight how urban activities
and population levels in a neighborhood are inherently intercon-
nected temporal processes and then exploit these temporal patterns
across areas to predict the popularity dynamics of newly estab-
lished venues. Our work enables a �ne-grained dynamic estimation
of activity for new venues and provides analytics which can help
plan the provision of services to customers.

2 RELATEDWORK
The rise of geo-tagging applications, such as Foursquare, Twitter,
and Flickr, combined with the accessibility to their corresponding
APIs has led to more granular representations of urban activities
across time and space and time [7]. These �ndings have also helped
inform location-based technologies. For example, Foursquare ex-
ploited weekly temporal visitation patterns of venues to power its
local search engine [13] and Google Maps incorporated features to
inform users of popular times [8]. Additionally, data from cellular
networks have helped to understand the collective dynamics of
urban activities. Ratti et al. in [12] presented one of the �rst works
that demonstrated how urban landscapes transform in real time
as populations move around the city. Beyond dynamic visualiza-
tions, Calabrese et al. in [4] provided interpretations of observed
mobility patterns in terms of the underlying urban activities which
drive population volumes, such as transport and residential land
uses. In [3] Becker et al. used cellular data to characterize mobility
trends across di�erent metropolitan areas, while Jiang et al. in [9]
proposed using cellular data as an alternative to travel surveys for
more accurate spatio-temporal representations of mobility �ows.

3 NOTATION AND DEFINITIONS
3.1 Dataset
We use a longitudinal dataset describing urban mobility and activ-
ity patterns in Greater London from Foursquare. For each venue,
our data set contains the geographic coordinates, speci�c and gen-
eral category, creation date, total number of check-ins, and unique
number of visitors. The speci�c and general categories fall within
Foursquare’s API of hierarchical categories which can be found by



querying the Foursquare API 1. The dataset also contains “tran-
sitions” which are de�ned as a pair of check-ins to two di�erent
venues within the span of three hours. A transition is identi�ed by
a start time, end time, source venue, and destination venue. Our
dataset includes 18,018 venues and 4,000,040 transitions for Greater
London from December 2010 to December 2013.

3.2 Formalization
In this section, we introduce a formalization of our model. Electoral
wards are the main building blocks of administrative geography
in the United Kingdom. Greater London consists of 649 electoral
ward and these spatial units uniquely identify London boroughs [6].
We use wards w 2 W as a means of subdividing Greater London.
We also consider venues � 2 V. A venue has a precise geographic
location in a ward. A venue � is represented with a tuple � =<
loc,�� , s� > where loc is the geographic location of the venue, ��
is its general category and s� is its speci�c category.

We de�ne a time interval t as the interval [t�, (t+1)�] of duration
�. For example, the time interval t = 0 indicates the interval [0,�],
the time interval t = 1 indicates the interval [�, 2�] and so on.

De�nition 1: Temporal Pro�le of a Ward. Similarly, we de-
�ne the temporal pro�le of a ward w in an interval [0,T ] as the
following sequence (i.e., time series):

Cw [0,T ] = {cwt } with t = 0, 1, ..T � 1 (1)
where cwt is the total number of check-ins in the wardw during the
time interval t .

De�nition 2: Temporal Pro�le of a Venue. We de�ne the
temporal pro�le of a venue � in an interval [0,T ] as the following
sequence (i.e., time series):

C� [0,T ] = {c�t } with t = 0, 1, ..T � 1 (2)
where c�t is the total number of check-ins to venue � during the
time interval t .

De�nition 3: Aggregate Temporal Pro�le of Venues of a
Generic (Speci�c) Category in a Ward.We then de�ne V�,w as
the set of the venues of generic category � in a wardw . Similarly,
we de�ne Vs,w as the set of the venues of speci�c category � in
a ward w . Therefore, the aggregate temporal pro�le of venues of
generic category � in a wardw in a time interval [0,T ] is de�ned
as the following sequence (i.e., time series):

CV�,w [0,T ] = {c�t } with t = 0, 1, ..T � 1 and � 2 V�,w (3)

where c�t is the total number of check-ins in the ward � during the
time interval t , but as it can be seen in the formula, we also set
the condition that � is a venue of general category � in the wardw
under consideration. The temporal pro�le of venues of a speci�c
category in a ward can be de�ned in a similar way.

4 TEMPORAL PATTERNS OF USER ACTIVITY
4.1 Regional temporal activity patterns
Figure 1 presents the characteristic temporal pro�le of two cate-
gories: Nightlife Spots and Gyms or Fitness Center. Each pro�le is a

1 https://developer.foursquare.com/categorytree

Figure 1: Normalized temporal pro�le of di�erent categories
of venues.

direct function of a users’s propensity to visit at a given hour of the
day and day of the week. The pro�les of di�erent venue categories
in a ward establish the overall pro�le of that venue.

To illustrate this, let us consider twowards of interest: St. Pancras
& Somers Town, which contains a major transportation hub and
o�ces, and Camden Town with Primrose Hill, which contains a
variety of venues and tourist attractions. Figure 2 shows the average
number of check-ins in each ward for each hour of the day over
the course of one week, aggregating across a number of weeks.
This signal creates a characteristic temporal pro�le which acts as
a temporal signature for the ward. The overall signal, shown in
black, is di�erent for these two wards. The number of check-ins
at Camden Town steadily increases over the course of the day
while the number check-ins at St. Pancras has two large peaks,
one in the morning and another in the evening. Examining the
three main categories (Food, Travel & Transport, Nightlife Spots)
that characterize these two wards can help to better understand
this observation. Camden Town has signi�cant contributions from
Nightlife venues which gradually increases over the course of a
day. Conversely, St. Pancras is dominated by Travel & Transport,
causing the overall temporal pro�le of the ward to peak at rush
hour. These trends suggest that Camden Town is likely a more
youth dominated area while St. Pancras is a hub for commuters or
travelers, as they actually are [1].

4.2 Utilizing similarities in visitation patterns
Similar observations can be generalized to the rest of the wards in
London. Di�erent regions feature di�erent degrees of similarity, an
insight which we exploit in Section 5 to predict the characteristic
temporal curves of new venues. We quantify the similarity be-
tween two temporal pro�les using the Jensen-Shannon divergence
(JSD) [10]2. The JSD between two wardswi andw j is calculated as

2We use the JSD instead of Kullback-Leibler divergence since the former is a symmetric
similarity measure between two functions, whereas the latter is not.



Figure 2: Daily temporal pro�les and category breakdown
of St. Pancras & Somers Town and Camden Townwith Prim-
rose Hill, two contrasting wards in London.

follows:

�SD (Cwi ,Cw j ) = H

 
Cwi +Cw j

2

!
� H (Cwi ) + H (Cw j )

2
(4)

where H is the Shannon entropy. JSD provides a metric that quanti-
�es how two pro�les, which can be seen as distributions over time,
are similar. A low value of the JSD between the temporal pro�le of
two wards represents a high similarity.

4.3 Temporal visitation patterns of new venues
We now focus on the temporal characteristics of new venues. These
venues represent an interesting case study as upon their launch,
unlike existing venues or geographic areas, there is no historic
information on their expected popularity patterns over time.

Identi�cation of newvenues.The Foursquare dataset includes
a list of all public venues in the city of London and for each includes
the creation time which referes to the date the venue was crowd-
sourced by Foursquare users. Prior research on Foursquare data
has shown that venues added after June 2011 were highly likely
(probability above 0.8) to actually be new venues opening in an area
rather than existing venues being added to the system for the �rst
time [5]. We look at all new venues that were added to Foursquare
after June 2011 with a minimum of 100 check-ins. This results in a
list of 305 venues that is used for the following analysis.

De�ning a venue’s stable temporal pro�le. For each of the
new venues in our set, we �rst examine the total number of check-
ins at each time step for each week after the venue opened (ie. the
weekly temporal pro�le). To avoid sparsity issues working at this
level of granularity, we create a cumulative temporal pro�le per
week, summing the total number of checkins at each time step

with each consecutive week. The trend over the course of the week
represents the characteristic curve of the venue and indicates the
weekly demand trend. We normalize this curve each week by di-
viding by the sum of all checkins for the venue, up to the time of
observation. With each consecutive week, we expect this curve to
stabilize. We measure the stability of this temporal pro�le over time
by calculating the variance of the temporal curve at time t relative
to time t � 1. Our data suggests that the temporal pro�le of a new
venue becomes stationary when the value of the variance relative
to the prior week is � 2 < 2.6e � 05. On average, this occurs 5 weeks
after a venue has opened. Note that we build the pro�le of a venue
considering a week’s temporal span. This captures the most essen-
tial temporal patterns of activity at a venue, which includes diurnal
variations, but also di�erences between weekends and weekdays.

5 PREDICTING A TEMPORAL SIGNATURE
5.1 Discovering similarities in dynamics
For our model, we begin with the basis that two venues of the same
category in two di�erent wards are likely to have similar temporal
patterns if the overall temporal patterns of their wards are similar.
For a given new venue �i , our methodology to predict its temporal
pro�le is as follows. For clarity, we will describe an example in
which we assume �i is an Italian restaurant called "The Meaning
of Life" in ward 23.

(1) Determine the general category, speci�c category, and
ward of that venue. For our example, the general category
is "Food", the speci�c category is "Italian restaurant", and
the ward is 23.

(2) Determine the temporal pro�le of the ward for the general
category of interest. In this example, we would determine
the overall temporal pro�le of "Food" venues in ward 23.
Formally, we determine CV�,w [0,T ] where T = 168.

(3) Determine the N most similar wards. For all other wards in
the city, compare their general category’s temporal pro�le
to that of our ward of interest and determine the N most
similar wards where similarity is de�ned as �SD (C� ,Cw )
where � , w . This is referred to as the set of temporally
similar wards. For our example, this would entail �nding
the N wards whose Food temporal pro�le is most similar
to that of ward 23.

(4) Calculate the speci�c temporal pro�le for each ward in
the set of temporally similar wards. For our example, we
would calculate the temporal pro�le of Italian restaurants
for each of the N similar wards.

(5) Create a representative curve. These N temporal curves
serve as the basis of our prediction of the pro�le of our new
venue �i . To create a representative curve from those N
pro�les, we use each of the pro�les as inputs to a Gaussian
Process (GP) because of its ability to recognize latent peri-
odic trends. The output of the GP becomes our prediction.

5.2 Gaussian Processes model
Our algorithm �nds temporal pro�les that are likely to be similar
to the venue of interest. We harness Gaussian Processes (GPs) to
build a regression model to capture the periodic trends in those
pro�les. GP regression is a Bayesian non-parametric whichmodels a



distribution over an in�nite set of random variables and is described
by its prior mean and covariance functions. For this work the prior
mean was set to zero [11]; the product of two Radial Basis function
kernels were used as the base kernel functions. These describe the
two types of periodicity in our data, over the course of a week
as well as over the course of a day. Given the periodicity over
the course of a day and a week, we posit that Gaussian Processes
are able to recognize latent periodic trends in the data and more
accurately create a prediction for a temporal pro�le. The inputs to
our Gaussian Process are the temporal pro�les of the similar wards.
We then have the GP predict a temporal pattern for an interval of
[0,T ]whereT = 168 for the week’s hourly pro�le. We then compare
this prediction to stable temporal pro�le of the venue of interest.

Algorithm NRMSE
Temporally similar wards, general category 1.614

Temporally similar wards, speci�c category 1.575
Random wards 2.692

Same ward, all categories 2.1941
Same ward, speci�c category 1.760
Same ward, general category 1.884

All wards, all categories 1.937
All wards, speci�c category 2.028
All wards, general category 2.190

Table 1: Error analysis of di�erent similarity algorithms.

5.3 Evaluation
In this section, we introduced the idea of temporally similar wards
suggesting that areas in a city that share temporal trends can be
used to provide insight into the temporal pro�le of a new venue.
Baselines.We compare our results with a number of baseline ap-
proaches. For each, the temporal pro�les produced are used as fea-
tures for a GP whose outputs are the prediction of the characteristic
temporal pro�le of the new venue. Table 1 lists the algorithms. We
analyze wards with the most temporally similar pro�le of venues
with the same general category as well as those with the same spe-
ci�c category. Additionally, we examine the overall temporal pro�le
of random wards. Looking within the same ward as the new venue,
we look at the temporal pro�le of all venues from all categories,
as well as those with the same general category, and those with
the same speci�c category. We also look at all wards in the city,
examining venues from all categories, the same general category,
and the same speci�c category as the new venue of interest.
Metrics. To analyze the accuracy of our prediction, we calculate
the normalized root mean squared error (NRMSE) between the
predicted temporal pro�le and the stable pro�le for each venue.
We �rst look at the value of NRMSE as we vary the number of
neighbors, N . Our results showed N = 10 to be the best indicator
of temporal similarity of neighbors. This value was chosen for the
subsequent analysis presented in this paper.
Results.We calculate the NRMSE for the output of each algorithm
compared to the actual stable curve of each new venue. Table 1
presents a summary of these results. Temporally similar wards using
the speci�c category of the venue proves to be the best predictor
of the temporal pro�le of a new venue. This result suggests that
the use of temporally similar wards as a predictor of the dynamics

of a new venue could be a more robust predictor than the history
of that same venue itself, insight that is especially valuable when
working with sparse datasets.

6 DISCUSSION & CONCLUSION
We have investigated the prediction of the temporal dynamics of
newly established venues using the check-in data of millions of
Foursquare users. We have also introduced the concept of tempo-
rally similar areas in a city: areas that share patterns in the move-
ment of people to venues within those areas. On the neighborhood
level, we have seen that areas that are far from each other can be
synchronized with regards to their temporal activities. Moreover,
the temporal frequencies of such activities tend to be stationary
over a certain period of time due to regularities in human mobility
patterns. We exploited this information to predict the temporal
popularity pro�les of newly established venues, essentially trans-
ferring information from the level of an urban region to that of a
speci�c venue. This form of analytics can provide new insights to
new business owners who can plan supplies and sta�ng in their
facilities during the cold start period of a new opening. Beyond re-
tail venues, the idea can be expanded to other types of places, such
as parks or outdoor spaces. Predicting how urban spaces are used
over time can improve planning, including the design of schedules
for their maintenance or police them.
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