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ABSTRACT
The study of influential members of human networks is an
important research question in social network analysis. How-
ever, the current state-of-the-art is based on static or ag-
gregated representation of the network topology. We argue
that dynamically evolving network topologies are inherent
in many systems, including real online social and techno-
logical networks: fortunately the nature of these systems is
such that they allow the gathering of large quantities of fine-
grained temporal data on interactions amongst the network
members.

In this paper we propose novel temporal centrality metrics
which take into account such dynamic interactions over time.
Using a real corporate email dataset we evaluate the impor-
tant individuals selected by means of static and temporal
analysis taking two perspectives: firstly, from a semantic
level, we investigate their corporate role in the organisation;
and secondly, from a dynamic process point of view, we mea-
sure information dissemination and the role of information
mediators. We find that temporal analysis provides a better
understanding of dynamic processes and a more accurate
identification of important people compared to traditional
static methods.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network Topol-
ogy; C.2.0 [General]: Data communications
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Measurement, Algorithms, Theory
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1. INTRODUCTION
Identifying key nodes has become an essential part of

analysing and understanding networked systems with ap-
plication to a wide range of fields including finding the best
person to target in a viral marketing campaign [15, 22], lo-
cating key neurons in cortical networks [5], protecting im-
portant species in ecological systems [14] and finding bottle-
necks in traffic networks [13]. The position of a node with
respect to other nodes can be classified and exploited: one
could argue that people with the most friends are popular
and hence important; a node with high geodesic locality to
other nodes could spread information quickly to high num-
bers of nodes; and a person who lies between the most paths
of communication could act as a mediator among groups of
people. These concepts are more commonly known as de-
gree, closeness and betweenness centrality [22, 4].

Existing centrality metrics for the study of real online so-
cial networks (OSN) are based on a static network model
where edges that appear (and disappear over time) are ag-
gregated into a single static graph [1, 9, 10]. In particu-
lar, if we consider a graph of interactions over time where
each edge corresponds to an interaction (such as posting of
a message) between two users represented by the nodes, we
observe a continuous change of the graphs corresponding to
the dynamic user activity. Examples are instant messenger
systems and email where also the interactions often happen
in bursts [17].

With this in mind, the key contribution of this paper is the
introduction of temporal centrality metrics for the identifica-
tion of key nodes in OSNs based on temporal shortest paths.
Tang et al. [20] proposed a temporal network model to study
real dynamic dataset. The idea is that the behaviour of dy-
namic networks can be more accurately captured by a se-
quence of snapshots of the network topology as it changes
over time (Figure 1). Using this model, a temporal version of
shortest path was also defined. Since static closeness and be-
tweenness centrality metrics are derived from static shortest
paths, we extended these metrics to temporal graphs by in-
troducing the definitions of temporal closeness and temporal
betweenness. Naturally, both these temporal extensions are
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Figure 1: Temporal Graph showing a typical week of activity during Nov 2001 using 24-hour windows (left)
and aggregated static graph (right). Nodes represent employees; a link between two employees exists if an
email was sent by one of them to the other in that 24-hour window.

associated to the identification of central nodes in the net-
work with application to dynamic processes over an OSN. In
particular, temporal closeness quantifies how fast a user can
disseminate a piece of information. Therefore, applications
of this metric include viral marketing and the study of ru-
mour spreading. On the other hand, temporal betweenness
distinguishes individuals who act as key mediators between
the most communication paths over time.

Hence, to evaluate our proposed temporal centrality met-
rics, we apply them to separate dynamic processes. First,
an information dissemination process captures the notion of
speed and reachability of a piece of information spreading
through a network starting from a subset of nodes. Thus,
we can compare the important nodes selected by static and
temporal closeness centrality. Second, since we observe that
if certain individuals lie between the most communication
paths, their removal from the network will impact the over-
all communication efficiency.

We provide a preliminary evaluation using the publicly
available Enron email dataset [19], describing corporate com-
munication over time between 151 known employees during
the height of the company’s accounting scandal.

The main contributions of this paper are as follows:

• Based on temporal path lengths proposed by Tang et
al. [20] we define novel temporal centrality metrics for
the study of key nodes in OSNs (Section 2).

• We evaluate these temporal metrics using two dynamic
processes, applied on the Enron email dataset. The
temporal analysis consistently finds that employees who
worked as energy traders fulfil both these roles. This
gives us an interesting insight not only into the En-
ron scandal but also into the differences between static
and temporal analysis (Section 3.3). We also find that
compared to existing static analysis, temporal metrics
not only uncover important nodes that are better for
information spreading but also individuals who play a
vital role in mediating between the most communica-
tion channels (Section 3.4).

• We provide initial insights into temporal dynamics which
make temporal metrics more suitable for studying time-
varying OSNs compared to static analysis (Section 3.5).

2. TEMPORAL CENTRALITY METRICS
As discussed, the representation of a time-varying network

by means of the associated static graph can convey mislead-
ing information about the network itself. For instance, a
static aggregated network usually has far more links than
the network has at each time instant (or if the aggregation
is performed over short time windows). Since the time or-
dering of edges is not considered, the number of paths be-
tween pairs of nodes is overestimated. This also leads to an
underestimation of the length of shortest paths [20].

Following from this, since traditional static closeness and
betweenness centrality are based upon static shortest paths,
the estimation provided by these metrics is largely inaccu-
rate. In order to overcome these problems, in this section,
we introduce the definitions of temporal closeness and tem-
poral betweenness centrality by employing temporal shortest
paths, which do take into account time information. First
we will present the basic definitions of the temporal graph
model and temporal paths.

2.1 Preliminaries
A temporal graph can be thought of as an ordered sequence

of graphs. A state of the network topology is calculated by
aggregating all the edges that appear inside a certain time
window. An example is given in Figure 1: the temporal
graph shown in the left panel is a sequence of seven graphs,
each of them representing the contacts among nodes in a
time window of 24-hours. The corresponding aggregated
static graph (which reports all the links among nodes, with-
out any information about time) is shown in the right panel.

More formally, given a real network trace starting at tmin

and ending at tmax, the temporal graph Gw
t (tmin, tmax) is

defined as the ordered sequence of graphs Gtmin , Gtmin+w,
. . ., Gtmax , where w is the size of each time window, ex-
pressed in some time units (e.g., seconds or hours). The
number of graphs in the sequence is denoted as W = ((tmax−
tmin)/w) = |Gw

t (tmin, tmax)|. The contact function Rs
ij be-

tween nodes i, j at time s is equal to 1 if and only if there
exists a link between i and j in Gt, t ≤ s ≤ t + w, otherwise
Rs

ij is equal to zero. All the graphs in the temporal graph
have the same set of nodes V , while each of them has, in
general, a different set of edges Et, where an edge between



i, j ∈ V belongs to Et if and only if Rs
ij = 1. From this

model a temporal path between two nodes i and j can be
defined over Gw

t (tmin, tmax) as a sequence of k hops via a
distinct node n

tk
k at time tk:

ph
ij = (nt1

1 , . . . , n
tk
k ) (1)

starting from node i = n1 and finishing at node j = nk,
where tk−1 ≤ tk, node nk is passed a message at time win-
dow tmin ≤ tk ≤ tmax and h is the maximum number of
exchanges between nodes within the same window t. We
call Qh

ij the set of all temporal paths between nodes i and

j. If a temporal path from i to j does not exist i.e. Qh
ij = ∅,

we say that (i, j) is a temporally disconnected node pair, and
we set the distance dij =∞.

Using the function D(pij) = tk − tmin which returns the
delivery time for the given path relative to t0, the shortest
temporal path length is defined as:

dh
ij = ∀qij ∈ Qh

ij , min(D(qij)) (2)

From this we define the set Sij of shortest temporal paths
between i, j as:

Sh
ij = {ph

ij ∈ Qh
ij | D(ph

ij) = dh
ij} (3)

Notice also that, in general, dh
ij is different from the length

of the physical path from i to j, expressed as the number of
links to be traversed to reach j starting from i, since in a
temporal path the message can be passed to up to h sub-
sequent nodes within the same time window. The horizon
of the temporal graph models the speed of message passing
between nodes compared to the length of the time window.

2.2 Temporal Betweenness Centrality
Static betweenness centrality of a node i is defined as the

fraction of shortest paths between all pairs of nodes which
pass through i [22]. In principle, the temporal betweenness
centrality of node i could be defined as the fraction of tem-
poral shortest paths that pass through i. However, for the
study of OSNs, identifying nodes which mediate communi-
cation between the most groups of nodes is of paramount
importance. Such nodes represent members of society who
both receive and are the source of gossip; individuals who
negotiate between the different groups of parties; and people
in organisations who fall into middle management and bal-
ance reporting to senior management and also command a
large workforce. If such nodes provide an important media-
tory role in a network then it stands that the complementary
view would also hold; how does the removal of such nodes
disrupt the overall communication efficiency of the network?
It is therefore important to take into account not only the
number of shortest paths which pass through a node, but
also the length of time for which a node along the short-
est path retains a message before forwarding it to the next
node.

For example, let us consider the simple case of nodes
i and j being connected by just one shortest path pij =
(it0 , kt1 , jt2), so that a message from i to j has to pass first
through k at time t1 before being delivered to j at time t2.
Since the path through k is the only way for i to send a
message to j, then we would say that k plays an important
mediatory role and is “central” for communication between
i and j. Nevertheless, the vulnerability of node k heavily
depends on the intervals [t0, t1] and [t1, t2]: the longer the

time that a message forwarded from i has to wait on k be-
fore being passed to j, the higher the chance of disruption
removing the message which was destined to j.

From this the temporal betweenness centrality of node i at
time t is defined as:

CB
i (t) =

1

(N − 1)(N − 2)

X
j∈V
j 6=i

X
k∈V
k 6=i
k 6=j

U(i, t, j, k)

|Sh
jk|

(4)

defined when Sh
jk 6= ∅, where the function U returns the

number of shortest temporal paths from j to k in which
node i has either received a message at time t or is holding
a message from a past time window until the next node is
met at some time t′ > t. In the case when Sh

jk = ∅, i.e.,
node i is totally isolated, we set its betweenness to zero.
Finally, the temporal betweenness for node i over the entire
temporal graph G(tmin, tmax) is:

CB
i =

1

W

WX
t=1

CB
i ((t× w) + tmin) (5)

2.3 Temporal Closeness Centrality
Two nodes of a static graph are said to be close to each

other if their geodesic distance is small. In a static graph an
estimation of the global closeness of a node i is obtained as
the average static shortest path length to all other nodes in
the graph. Similarly, we can extend the definition of close-
ness to temporal graphs using the temporal shortest path
length between nodes, which is a measure of how early a
source node can deliver a message to all other nodes.

Given the shortest temporal distance dij(tmin, tmax), the
temporal closeness centrality can be expressed as:

Ch
i =

1

W (N − 1)

X
j 6=i∈V

dh
i,j (6)

so that nodes that have, on average, shorter temporal dis-
tances to the other nodes are considered more central.

3. EVALUATION

3.1 Enron Email Dataset
The Enron Energy Corporation started as a traditional

gas and electrical utility supplier; however, in the late 1990s
their main money making business came from trading en-
ergy on the global stock markets [11]. In December 2001,
the Enron Energy Corporation filed for bankruptcy after it
was uncovered that fraudulent accounting tricks were used to
hide billions of dollars in debt [12]. This led to the eventual
conviction of several current and former Enron executives
[21, 7]. The investigation also brought to light the reliance
of the company on traders to bring in profits using aggres-
sive tactics culminating in intentional blackouts in California
in Summer 2001. With both control over electricity plants
and the ability to sell electricity over the energy markets,
Enron traders artificially raised the price of electricity by
shutting down power plants serving the State of California
and profiting by selling electricity back at a premium [6].

During the investigation into the Enron accounting scan-
dal, telephone calls, documents and emails were subpoenaed
by the U.S. government and as such the email records of 151
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Figure 2: Ranked distribution of top 50 statically
(S) and temporally (T) central nodes. From top
row: Closeness (C), Betweenness (B), and Degree
(D). Top 5 node ID’s listed under each plot.

user mailboxes were part of the public record consisting of
approximately 250,000 emails sent and received during the
period between May 1999 to June 2002 (1137 days), lead-
ing up to the bankruptcy filing. None of the emails were
anonymised and so they provide unique semantic informa-
tion of the owner of each mailbox.

3.2 Temporal Graph Construction
In our analysis, we use the dataset prepared by Shetty &

Adibi [19]. Since we do not have a complete picture of the
interactions of users outside of the subpoenaed mailboxes we
concentrate on email exchanges between the core 151 users
only. Taking this email dataset, we process the complete
temporal graph from 1999 to 2002 with undirected links,
using windows of size w=24 hours and horizon h=1. If an
email was exchanged between two individuals in a temporal
window, a link between the two nodes representing those
individuals will be added to the graph representing the tem-
poral snapshot for that time.

3.3 Semantic Value of Temporal Centrality
Figure 2 plots the static and temporal centrality rankings

of employees calculated using closeness and betweenness.
Examining the static centralities (left column) we note that
there is little difference between the top five employees us-
ing static closeness or betweenness. Also plotting the static

ID Name Role Notes
9 Stephanie Panus (Unknown)
13 Marie Heard Legal Senior Legal Specialist
17 Mike Grigsby Manager
48 Tana Jones Executive
53 John Lavorato Trader
54 Greg Whalley President Former Head of Trading
67 Sara Shackleton Vice President Enron Wholesale Services
73 Jeff Dasovich Trader
75 Gerald Nemec Director of Trading
107 Louise Kitchen Trader Head of Online Trading
122 Sally Beck Managing Director
127 Kenneth Lay Chairman & CEO
139 Mary Hain Director
147 Carol Clair Trader
150 Liz Taylor Secretary Assistant to Greg Whalley

Table 1: Roles of top centrality nodes.

SB SC SD TB TC TD
SB 1.00 0.57 0.69 0.41 0.24 0.43
SC - 1.00 0.70 0.36 0.22 0.31
SD - - 1.00 0.39 0.28 0.48
TB - - - 1.00 0.43 0.34
TC - - - - 1.00 0.40
TD - - - - - 1.00

Table 2: Kendall-tau correlation coefficients be-
tween centralities.

degree centrality of each node1, we notice similar rankings
suggesting that static analysis only favours employees who
interacted with the most number of other people. Temporal
closeness and temporal betweenness yield different rankings
amongst the top five and the calculated Kendall-tau corre-
lation coefficient[16] (Table 2) confirm that static-to-static
metrics are strongly correlated (' 0.7). Also note that there
is low correlation (< 0.4) between temporal metrics and
static degree demonstrating that temporal analysis is not
dependent on the number of people an individual interacts
with.

Cross referencing the top two employee identifiers with
their position within the organisation (Table 1) we identify
a secretary (150) and managing director (122) as central
nodes for both static closeness and betweenness; however,
both temporal closeness and betweenness consistently se-
lected employees in trading roles (053, 075, 107, 147). A
secretary and a managing director are certainly important
for information dissemination and central to many commu-
nication channels, as detected by static measures. However,
instead the top trading executives are exclusively favoured
by temporal analysis. Moreover, cross-referencing with me-
dia reports [8], we find a correlation between the top two
bonuses received and the two employees identified by tem-
poral betweenness. To show that temporal analysis does not
simply uncover nodes with the most interactions with other
people, we also plot the temporal degree (TD) calculated as
the total number of emails sent and received by each node i.
Since there is a low correlation (< 0.4) with temporal close-
ness and betweenness this shows that temporal analysis is
not dependent on the number of emails sent and received by
each individual.

1The static degree centrality is defined as the number of
edges connected to a node i, normalised by the total possible
neighbour nodes (n− 1) [22]
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Figure 3: Dissemination Process: Dissemination ra-
tio starting from top 2 (left) and top 10 (right) close-
ness source nodes. Area under curve reported in
legend for temporal (t) and static (s) centrality.

3.4 Effectiveness of Central Nodes on Dynamic
Processes

3.4.1 Trace-driven Simulation Setup
To evaluate the role and the centrality of the employees

identified by temporal and static analysis, we consider two
dynamic processes. First, we simulate a simple information
dissemination process over the temporal graph constructed
from the Enron traces. The process is simulated as follows.
We select the top N nodes from the ranking based on tem-
poral closeness centrality. We place an identical message m
into their (infinite) buffers. We refer to any node that has
received a copy of this message as reached. We then replay
the contact trace through time and as reached nodes make
contact with an unreached node u, the message is replicated
into the buffer of node u. We assume that messages are
transferred instantaneously and only the first neighbour in
a time window can be reached. We then repeat this for static
closeness centrality and plot the dissemination ratio across
time for both.

Second, to model the role of individuals as part of an infor-
mation mediation process, we borrow concepts from the more
commonly known epidemic immunisation process where the
dissemination ratio of a contagion spreading throughout a
static network is measured before and after certain nodes
are immunised against the contagion [2]. This is analogous
to measuring the spread of information (the contagion) be-
fore and after important individuals are removed from the
network (such as going on holiday or being discharged) since
our conjecture is that removing mediators will impact the
network communication efficiency greatly.

In the trace-driven simulation, instead of a single mes-
sage spreading within the organisation, we seed all employ-
ees with a different message that needs to be delivered to all
other employees. This models multiple channels of commu-
nication. In order to derive a baseline performance, we start
by calculating the dissemination ratio when no nodes are re-
moved. We then remove the top N individuals identified by
temporal betweenness and rerun the information spreading
process. Nodes which are removed cannot receive or pass on
messages. We then repeat the same process for comparison
using static betweenness centrality for the ranking.

3.4.2 Evaluating Information Dissemination & Me-
diation

We present plots using N = {2, 10} for information dis-
semination (Figure 3) and information mediation (Figure 4).
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Figure 4: Mediation Process: Dissemination ratio
after removing top 2 (left) and top 10 (right) be-
tweenness nodes. Area under curve reported in
legend for temporal (t), static (s) and baseline (b)
where no nodes are removed.

As we can see the different pairs of traders identified by tem-
poral analysis are better than the arbitrary nodes selected by
static analysis for both disseminating information through
the organisation and acting as mediators between commu-
nication channels. In the information dissemination case,
although the final dissemination is the same across the long
period of time, the two traders selected by temporal analysis
disseminate information quicker. Only after increasing to 10
nodes the static analysis presents similar results. In the in-
formation mediation case, the final dissemination ratios for
both temporal and static centrality nodes slightly decreases
by removing the nodes but are comparable. However, re-
moving the two traders gives an overall more prolonged drop
in message dissemination. In the case of the removal of 10
nodes, the individuals identified by means of the temporal
metrics slow the dissemination process further compared to
static ones.

3.5 Insights into Temporal Dynamics
To gain some insight into the temporal dynamics of the in-

dividuals selected by temporal and static analysis, Figure 5
plots the number of emails sent and received over time, again
by the top two centrality nodes. Also we recall from Section
3.4 that there is a strong correlation between static close-
ness and betweenness with degree. Such strong correlation
between static closeness and betweenness with degree has
been well documented in [18, 3].

By comparing the contact distribution between static anal-
ysis (top row) and temporal analysis (bottom row), we ob-
serve that the traders identified as important individuals
by temporal analysis clearly interact earlier in time com-
pared with the nodes identified by static analysis. This fits
the intuition that earlier interactions are key to faster dis-
semination and hence temporal metrics are more accurate
at identifying key individuals. This also confirms our ar-
guments that static analysis ignores time information such
as duration, frequency, time ordering and, at the simplest
level, earlier interactions. Instead for both betweenness and
closeness centrality, static analysis has prioritised individu-
als who interact with the highest number of different people.

4. CONCLUSIONS
In this paper we have presented novel temporal central-

ity metrics, namely temporal closeness and temporal be-
tweenness to infer individuals playing a central role in time-
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Figure 5: Distribution of total emails sent & re-
ceived over time by top 2 centrality nodes. Bin
size=50 days. From top-left: Static Closeness (SC),
Temporal Closeness (TC), Static Betweenness (SB),
Temporal Betweenness (TB).

varying networks from a communication perspective. More
specifically, we have shown that by means of these metrics,
we are able to identify nodes that are central in information
dissemination processes with greater accuracy with respect
to the corresponding static ones. We have evaluated and
compared the static and temporal metrics by means of a
large corporate email dataset. We have shown that these
metrics are more effective for the identification of nodes that
are able to speed up or block information diffusion processes
in this class of networks.

These metrics are applicable to a number of system traces
with timestamp information and, in general, to dynamic net-
works that change over time. We are in the process of further
evaluating the potential of these modelling techniques and
metrics in other contexts.
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