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Abstract—The popularity of location-based social networks
available on mobile devices means that large, rich datasets that
contain a mixture of behavioral (users visiting venues), social
(links between users), and spatial (distances between venues)
information are available for mobile location recommendation
systems. However, these datasets greatly differ from those used
in other online recommender systems, where users explicitly
rate items: it remains unclear as to how they capture user
preferences as well as how they can be leveraged for accurate
recommendation.

This paper seeks to bridge this gap with a three-fold con-
tribution. First, we examine how venue discovery behavior
characterizes the large check-in datasets from two different
location-based social services, Foursquare and Gowalla: by using
large-scale datasets containing both user check-ins and social
ties, our analysis reveals that, across 11 cities, between 60%
and 80% of users’ visits are in venues that were not visited in
the previous 30 days. We then show that, by making constrain-
ing assumptions about user mobility, state-of-the-art filtering
algorithms, including latent space models, do not produce high
quality recommendations. Finally, we propose a new model
based on personalized random walks over a user-place graph
that, by seamlessly combining social network and venue visit
frequency data, obtains between 5 and 18% improvement over
other models. Our results pave the way to a new approach for
place recommendation in location-based social systems.

I. INTRODUCTION

The increasing adoption of location-enabled smartphones
has given rise to a number of social services (such as Four-
square and Google Places) that people can use to trace, anno-
tate, and share their experiences about the locations they visit
as they navigate through their daily lives. Users notify their
friends of the place where they are with a check-in, leaving a
digital trace of their movements. These services therefore now
hold and collect huge datasets that can link users’ mobility to
both their social connections and the spatial layout of their
cities; providers are also beginning to apply a host of machine
learning approaches to their data in order to turn check-in
services into fully fledged location recommendation systems.

The most prominent problem that challenges building a
recommender system in this setting is that the relationship
between check-in, social, and spatial data—in terms of under-
standing how these properties relate to people discovering new
places to visit—remains unclear. This has two implications:
first, while recommender systems have proven to excel in

web settings [1], they have historically operated with ordinal
rating data where spatial properties tend to not matter and
users have the ability to provide negative feedback. Instead,
check-in data only counts users’ visits to venues, which
are also inherently spread over a geographic space. Second,
recommender systems have traditionally operated under the
sole assumption of like-mindedness (i.e., historically similar
users will continue to have shared preferences). Instead, there
are a wide range of reasons why mobile users may want to
visit a place (e.g., visiting friends, attending an event, touring
culturally significant locations); applying the state-of-the-art
in web recommendation to this new context will inexorably
exclude a host of features that this data contains.

In this paper, we tackle the problem of building a recom-
mender system for previously unvisited venues from behav-
ioral, social, and spatial data. To do so, we seek to answer the
following questions:

1) How often do people tend to visit new places? In
Section III, we analyze two check-in services’ datasets.
We discover that between 60-80% of users’ check-ins
are to venues that have not been visited in the previous
month; these datasets contain granular representations of
irregular behavior beyond daily routines.

2) What assumptions do web-filtering algorithms make
about human mobility? Section IV describes a host
of algorithms—ranging from content-based, social, and
collaborative filtering (with neighborhood and latent
space models) that have been used to build web recom-
mender systems. We demonstrate that each meth-od has
a unique underlying assumption about how people move,
which necessarily excludes alternatives when computing
recommendations. Furthermore, we show that none of
these methods outperform a simple popularity baseline.

3) How can recommendation quality be improved by
combining the different sources of data? In Sec-
tion V we propose a generalizable method based on a
personalized random walk with restart on a user-place
network. It seamlessly and simultaneously combines all
the available signals into a high-dimensional graph: such
structure takes into account the variety of means through
which users are exposed to new venues.



Finally, through an extensive evaluation, we discuss how our
approach based on random walks obtains between 5 and 18%
improvement over those machine learning algorithms used in
web contexts (Section VI). To our knowledge, this is the first
study to directly compare and propose how to combine the
variety of user preference signals that location-based services
collect about their users for new venue recommendation.

II. RELATED WORK

There are two main research threads related to our work:
(1) recommender systems and (2) mobility prediction using
spatial-social networks and geolocation data.

There is a wide range of research on the data mining
algorithms that form the basis of recommender systems [1].
From a data mining perspective, these systems take as input a
set of users’ preferences, such as ratings, and aim to predict
the preference values for items that have yet to be rated, and
fall under the umbrella term collaborative filtering. In recent
years, work has centered around datasets from the web, namely
movies (e.g., Netflix [11]) and music (Yahoo Music1); these
datasets have characteristic features (such as high sparsity) that
pose challenges to the design of accurate preference estima-
tors. Matrix factorization has become a popular approach for
collaborative recommender systems [3], due to its robustness
in the face of sparse data; moreover, hybrid composites of
predictors have recently been awarded for their ability to
improve rating prediction [11].

While, historically, users’ ratings were considered the sole
necessary input data for building recommender systems, there
is increasing attention to a variety of other signals that may aid
learning algorithms’ accuracy. These include temporal features
of the data [11] and social network links between users [9].
This broad approach, which relies on augmenting recommen-
dation systems with a more granular picture of the (social,
temporal, spatial) setting of the users, has been named context-
aware recommendation [1]. In the domain that we investigate
here, recent work has used both sensors and user-activity
data to improve recommendations. For the former, GPS data
has been used for location and travel recommendation [25],
and mobile phone call records have been used for social
event recommendation [18]. The latter group, instead, includes
using geo-tagged photos for itinerary recommendation, mining
interesting locations, and inferring users’ trips [16]. The data
that we examine in this paper, which is based on explicit check-
ins to locations, falls into this latter category (although GPS
sensor data may be used to validate the check-in).

The interest in mobility data spans beyond the domain
of location recommendation. For example, recent work has
used mobile phone and check-in data to infer the structure of
friendship networks [7] and the relation between online social
networks and physical location [6], a prediction framework
which can then be used to recommend social connections to
users based on their physical mobility [17], [22]. The interplay
between user mobility and their online social connections

1http://kddcup.yahoo.com

has also been analyzed extensively using data extracted from
location-based social networks [4], [19]. Prediction algorithms
have also been designed to exploit any regularity in users’
movements and forecast their future position. A large category
of those are based on Markov models [13], while other
methodologies include sequence pattern matching [12] and
time series analysis [21]. We highlight however, that the
nature of the problem we are addressing here is different
to the mobility prediction task that has been tackled by the
above works. Our aim is to recommend new, unvisited venues;
models that capture the periodicity of user mobility patterns
are not considered in the scope of this paper.

The recent literature, overall, reflects the success of online
recommender systems; it is clear that smartphones, as they
gain greater traction and popularity, will be the bridge that
enables recommender systems to be used in the wild as much
as they are used online. However, whether algorithms that have
been successful online can be applied to these new domains
remains an open question: in the following, by investigating
one facet of location recommendation, we show that state-of-
the-art collaborative filtering can be outperformed by a hybrid
model that aggregates and learns from a range of data about
users.

III. DATA ANALYSIS

In this section, we first describe the publicly available
check-in data that we collected for 11 cities across the world
(Section III-A). We then analyze the properties of our data
sets and we investigate to what extent users visit new places
when they use these location-based services. Our main finding
is that a large fraction of the visited places are new places,
which highlights the importance of offering high quality
recommendations of new venues in those systems. (Section
III-C).

A. Data Collection

The check-in data we collected spans two different popular
location-based services: Foursquare and Gowalla. We restrict
our analysis to the 11 most popular cities across both services:
this allows us to (a) focus on where these services are most
used and (b) restrict our prediction space to areas with the
highest venue availability, which maximizes the number of
candidate venues that can be recommended.

Foursquare was created in 2009 and it has quickly become
the most popular location-based service, with more than 15
million users as of January 2012. Per-user Foursquare check-
in data is not directly accessible: however, users can opt to
share their check-ins publicly on Twitter. We thus were able to
crawl for publicly-available check-ins via Twitter’s streaming
API2. Note that we can only access those check-ins that users
explicitly chose to share on Twitter, although users have the
possibility to set this option as default. The Foursquare dataset
contains 35 million check-ins made by 925,000 users across
5 million venues globally and in a period of 5 months (May
27th to November 2nd 2010).

2https://dev.twitter.com/docs/streaming-api



City N M C 〈cu〉 〈cl〉
Austin 2144 3758 15665 7.3 4.2
Boston 3830 2763 14730 3.8 5.3
Dallas 2418 3338 13779 5.7 4.1
Denver 2097 2342 10402 5.0 4.4
London 7242 6609 24778 3.4 3.7

Los Angeles 8178 6918 32025 3.9 4.6
New York 16131 16554 93309 5.8 5.6

Paris 3091 4345 13086 4.2 3.0
San Francisco 6493 6478 31070 4.8 4.8

Seattle 3493 4398 20128 5.8 4.6
Seoul 9491 4284 35540 3.7 8.3

TABLE I
AVERAGE PROPERTIES OBSERVED ON FOURSQUARE OVER A PERIOD OF

ONE MONTH: TOTAL NUMBER OF USERS (N ), PLACES (M ) AND
CHECK-INS C , AVERAGE NUMBER OF CHECK-INS PER USER (〈cu〉) AND

PER PLACE (〈cl〉).

As we did not have access to the actual social network of
Foursquare users, we assume that a social link exists between
a pair of users if they follow each other on Twitter (thus, they
have each explicitly added one another). While this assumption
does not guarantee that the social network we create is fully
representative of the one in Foursquare, we expect two users
which are connected in Twitter are likely to share similar place
preferences. In essence, the Foursquare data that we operate
with below is a sparse, public sample of the check-ins and
social links that Foursquare holds about its users. We estimate,
based on Foursquare’s public information regarding their user
base, that this sample contains between 20% to 25% of the
entire Foursquare user base at collection time3.

Gowalla is a location-based social service created in 2009,
which has been discontinued since its acquisition by Facebook
at the end of 2011. The Gowalla data is a complete snapshot
of the service obtained in August 2010, collected via the
public API. The entire dataset contains 12,846,151 check-
ins made by 216,734 active users, that is, users with at least
one check-in made since they joined the service: these check-
ins took place across 1,421,262 million venues over about 18
months. It also contains all social links between users, which
amounts to 736,778 friendships. Each check-in contains the
following fields: the unique user id, the time, its geographic
location encoded as latitude and longitude coordinates and the
venue’s category. In order to assign places from the two venue
databases to a specific city we have followed the following
methodology. Foursquare venues specify locality information
(city, province, street), available through the service’s API,
thus the assignment was straightforward. In the case of
Gowalla, we have assigned a place to a city if it lies within
30 km of its geographic center.4 This procedure allows us to
compare spatially similar sets of places across the two services.

3http://mashable.com/2010/08/29/foursquare-3-million-users/
4The geographic center has been set according to the median latitude and

longitude values across the city’s places in the Foursquare dataset.

City N M C 〈cu〉 〈cl〉
Austin 4008 13110 76151 19.0 5.8
Boston 1050 5214 15026 14.3 2.9
Dallas 3494 14586 52403 15.0 3.6
Denver 1139 3188 10219 9.0 3.2
London 2139 13510 39696 18.6 2.9

Los Angeles 2868 12172 34659 12.1 2.8
New York 2659 10903 32467 12.2 3.0

Paris 480 1875 4165 8.7 2.2
San Francisco 3199 13389 47128 14.7 3.5

Seattle 1595 8090 26538 16.6 3.3
Seoul 336 2222 3973 11.8 1.8

TABLE II
AVERAGE PROPERTIES OBSERVED ON GOWALLA OVER A PERIOD OF ONE

MONTH: TOTAL NUMBER OF USERS (N ), PLACES (M ) AND CHECK-INS C ,
AVERAGE NUMBER OF CHECK-INS PER USER (〈cu〉) AND PER PLACE (〈cl〉).
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Fig. 1. Complementary Cumulative Distribution Function of the number of
check-ins per user and per-place 1-month of Foursquare (a, c) and Gowalla
(b, d) data. Each distribution is normalized with respect to the average value.
We consider 1 month of data, but the probability distributions do not change
significantly across different snapshots.

B. Notation

We now introduce the notation that we will use throughout
the paper. We consider a sample of check-in data over a pre-
determined temporal period. Each such temporal snapshot t
contains a set U of N of users and a set L of M places,
with each place belonging to a category crowdsourced by the
services’ users. We represent with cij the number of check-
ins that user i has done at place j. The entirety of a user’s
check-ins in the sample are represented by the vector ~ci =
(ci1, ci2, . . . , ciM ). We use Φj to indicate the set of users who
have checked-in at place j and Θi for the set of all places
where user i has checked-in.

Social ties between users are represented as an undirected
graph G = (V,E), with the set of nodes V = U and the set
of edges E composed of pairs of users that are present in each
other’s friend lists in snapshot t. We denote with Γi the set
of users connected to user i in graph G, with |Γi| being the
number of friends of i in the snapshot.
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Fig. 2. Fraction of visited places that were not visited in the last 30 days
and fraction of check-ins to such new places, for cities in Foursquare (a) and
Gowalla (b).

C. The Importance of New Places

We now examine a number of properties that the datasets
share and study how check-ins to places are distributed. We
discover that users tend to visit places they have not visited:
between 60% and 80% of check-ins occur at places which
were not visited before by an individual user.

Tables I and II present the basic properties of the
Foursquare and Gowalla datasets respectively during the same
month (August, 2010). The 11 cities differ widely in terms
of monthly users: Foursquare has about 22,000 active users
each month in New York but only 3,200 in Denver; Gowalla’s
most popular city, instead, is Austin (where the company was
launched) with about 4,000 active users. In general, Gowalla
has a smaller number of users and places in each city compared
to Foursquare, which reflects the latter’s overall popularity.
However, the average number of check-ins per user is higher
in Gowalla: this could be due to the fact that our Foursquare
dataset only contains a sample of user check-ins, namely those
which were pushed to Twitter. The average number of check-
ins per place, though, remains comparable across the two
services.

When considering the entire temporal duration of the two
datasets, 18 months in Gowalla and 5 months in Foursquare,
there are about 10% of users and 25% of venues with only a
single check-in in Gowalla; similarly, 20% of users and 35%
of venues have a single check-in in Foursquare. This skew in
the popularity of places and in user activity is reflected also
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Fig. 3. Average probability of visiting a new place as a function of the
number of places visited by users. A decreasing trend can be observed: this
suggests that more active users are less likely to visit a new venue. The noise
at the tail appears due to the low number of users with more than 50 check-ins.

in single cities. In fact, although each city exhibits different
levels of user activity, the normalized distributions of check-
ins across users and places are strikingly similar, as reported
in Figure 1(a) and Figure 1(b). When each distribution is
normalized by dividing each sample by the average value,
all distributions collapse to a similar heavy-tailed pattern. In
particular, about 80% of users have fewer check-ins than the
average across all the cities, both in Gowalla and Foursquare.
Similar patterns appear when considering the normalized dis-
tribution of check-ins at each place, presented in Figure 1(c)
and Figure 1(d). Overall, the tail of each distribution reaches
values of up to thousands of check-ins: a bulk of users with
low activity coexists with a few extremely active users.

In Figure 2 we consider two monthly samples of the data,
taken over two consecutive months t and t+1; we then define
as Ψt

i = Θt+1
i \Θt

i the set of new places visited by user i in
sample t+1. Then, we compute for each city across Foursquare
and Gowalla two quantities: the probability Pv that a visited
venue was not previously visited

Pv =

∑
i

‖Ψt
i‖∑

i

‖Θt+1
i ‖

(1)

and the probability Pc that a check-in takes place in one of
these new places defined as:

Pc =

∑
i

∑
j∈Ψt

i

cij∑
i

∑
j∈Θt+1

i

cij
(2)

Between 80% and 90% of visited places are new places,
while between 60% and 80% of check-ins happen in these new
venues. This demonstrates how recommending new, unvisited
places to users has an important value, as they often seek
to discover new locations. More in detail, we explore how
this probability changes for users with a different number of
visited places in Figure 3. Users that have a history of 10
visited places or less, have 80% probability of visiting a new
place. However, as we consider more active users, which have
checked in to several places over the last 30 days, this fractions



drops significantly. We proceed next by formalizing the task of
recommending new venues to users as a prediction problem.

IV. NEW VENUE RECOMMENDATION

We begin by introducing the problem of new venue rec-
ommendation (Section IV-A). We then describe a number of
algorithms that are suitable for the task, with a particular
focus on the assumptions that they make about human mobility
(Section IV-B): popularity baselines capture herding behavior;
content-based filters assume that people will only be interested
in a small set of venue categories; nearest-neighbor and matrix
factorization-based collaborative filtering compute recommen-
dations under the like-mindedness assumption; social filters
model users exclusively based on their friends; lastly, spatial-
filtering, by pruning candidates on physical distance, is tailored
towards those who will not venture outside of a pre-defined
geographic space.

A. Problem Formulation

We formally define the new venue recommendation problem
as follows: given a sample of check-in data taken over a time
period t, a set of users U and their check-ins across a set
of venues L, we aim to predict the values of the set Ψt

i =
Θt+1

i \Θt
i, that is, the set of new places visited by each user

i in next time period (t+ 1). Thus, we couple a training data
set to a test data set which belongs to the following and non-
overlapping temporal period. Note that we only predict check-
in values for locations and users that have already previously
appeared in our data at least once.

B. Recommendation Algorithms:
Assumptions about Mobility

In this section, we describe the set of algorithms that we
examined for this prediction problem; the following section
will outline our random walk-based method.

1) Visiting Popular Venues: The first (non-personalized)
baseline ranks each user’s unvisited venues based on their
historical popularity: the popularity score r̂k of place k
is computed as:

r̂k =
∑
i∈U

cik (3)

In doing so, this method assumes that the likelihood of
checking in is proportional to how many people have checked
in before; users will check in at the most popular places.
Recall, in fact, that Figure 1 showed the highly skewed
distributions of user check-ins at venues; there are few venues
that receive the majority of the check-ins, while many places
remain relatively unvisited.

2) Attending Venues by Category: The next method is a
content-based filtering approach [15]. The Foursquare data
contains 313 place categories5, whereas the Gowalla data
contains 293. Given a user, we rank all the categories based on
the number of check-ins made by the user in venues of each
kind. Then, we populate a list of recommendations by ranking

5https://developer.foursquare.com/docs/venues/categories

unvisited venues according to their category; within-category
venues are further ordered by their popularity. The underlying
assumption is that user preferences can be captured in a
succinct group of categories. This method further differs
from global popularity by taking a first step into learning
from user preferences: for example, users who frequently visits
coffee shops will be recommended the most popular coffee
shop, rather than the most popular venue in the city.

3) Following Friends: The availability of users’ social ties
allows for the possibility of recommending those venues
visited by friends. The social filtering approach we consider
ranks venues by summing the number of check-ins performed
by a user’s friends at each place. Formally, the socialnet
score for a user venue pair is:

r̂ik =
∑
j∈Γi

cjk (4)

which operates solely based on user i’s set of friends Γi check-
ins to place k. This approach is based on the assumption that
users will exclusively visit the places visited by their friends
and builds on research exploring the interplay between human
mobility and social factors[5], [22], [24]; the discovery of new
events will thus propagate socially.

4) Staying Close to Home: Previous work has suggested
that the home location of a user may constitute a good
predictor of mobility and social event attendance [18]. Since
we do not know the exact location where users live, we set
their “home” location to the venue where they check in most
frequently; we then rank potential new venues at increasing
distance from the identified home. Although we may not
infer their actual home location, this method assumes that
capturing the locality that users tend to frequently visit
will increase the likelihood of finding new venues. In other
words, people will go to places near those that they already
visit.

5) Like-Mindedness and Similarity: Collaborative Filtering
(CF) has, to date, been the focal point of recommender system
algorithm research [1]. Recommendations are computed based
on the assumption that historically like-minded users will
continue to have shared preferences in the future. Users are
represented as a vector of check-ins that they have historically
made to places, and items are viewed as a set of check-
ins by users. In other words, these techniques assume that
all the important information (both relating to preference as
well as spatial dependencies) will be captured in the check-in
frequency data. There are three approaches that we consider
here: a user-based k-Nearest Neighbor, a item-based approach
(which we denote placenet), and matrix factorization based
on the Singular Value Decomposition of the user-venue check-
in data.

User-based kNN directly compares user profiles to quantify
the extent to which pairs of users check-in at the same venues.
We measure the similarity sij between a pair of users i and j
based on the cosine-similarity of each users’ check-in vectors.
With this similarity matrix at hand, we can compute kNN
recommendations for each user. Given a user i we compute



a prediction score r̂ij for place j as the sum of a baseline
estimate and weighted mean of normalized check-ins to that
venue by similar users:

r̂ij =
c̄j
|Φj |

+

∑
n∈U

((cnj − c̄n)× sin)∑
n∈U

sin
(5)

The baseline estimate is the average check-ins to venue j (c̄j)
divided by the number of unique users to have visited place j
(|Θj |); i.e., the average number of check-ins per user to that
venue. Neighbor check-ins are first normalized by subtracting
each user’s mean check-ins, (cnj − c̄n), and then weighted by
the shared similarity with user i.

An alternative neighbor-based approach is to compute sim-
ilarity across pairs of venues (rather than users) [20]: this
variation captures the complementary assumption that places
are similar if visited by the same users. To capture this
idea in the context of new venue recommendations, our aim
is to connect two places when they are visited by the same
users and assign a weight to this connection by considering
the number of distinct users that visit both. We thus form a
graph, that we denote the placenet, whose nodes are places
and the edge weight pjk between places j and k is defined as:

pjk = |Φj ∩ Φk| (6)

This graph allows us to rank a place j according to the sum
of the weights that connect it with the set of places visited by
a user i:

r̂ij =
∑
k∈Θi

pkj (7)

Finally, we also examine the effectiveness of using a CF
algorithm based on a latent factor model MF. We represent the
relationship between users and places as a matrix R, whose
dimensionality is N ×M : that is, each row represents a user
and each column represents a place, with rij = cij . This
method maps both users and places to a joint latent factor
space of dimensionality F � N,M , such that check-ins are
modeled as inner products between vectors in that space. User
i is associated to a row vector pi ∈ RF and place j is
associated with a column vector qj ∈ RF . The estimate for
the number of check-ins made by user i at place j is thus
r̂ij = piqj . We learn the mapping from users and places to
latent vectors by minimizing the regularized squared error E
over all the existing check-ins:

E =
∑
i∈U

∑
j∈Θi

(cij − piqj)
2 + λ(‖pi‖2 + ‖qj‖2) (8)

where the constant λ regularizes the learned parameters, whose
magnitudes are penalized. We adopt a stochastic gradient
descent optimization algorithm to minimize the error [8]. In
our implementation we set F = 20, since we have found
this value to be a reasonable trade-off between scalability
and accuracy: higher values of F provide only diminishing
returns.

V. A RANDOM WALK APPROACH

Each method that we have presented above leverages one
unique aspect of the data: for example, CF approaches capture
like-mindedness and venue similarity, social filtering computes
on friends’ data, and spatial filtering solely considers physical
distance. In this section we aim to achieve a better recom-
mendation quality with an approach that can automatically
combine each of these features: we define a network which
connect places and users and we perform personalized random
walks with restart to compute recommendations for individual
users.

A. Random Walk Models

A random walk over a linked structure is based on the idea
that the connections between items encode information able to
rank them in a useful way; as the random walker jumps across
the graph’s nodes according to transition probabilities, it will
spend a different amount of time on each node: under certain
assumptions, the random walk will approach a steady-state,
resulting in a vector of steady-state probabilities for each node.
These probabilities represent the desired output of a random
walk model and are a function of both the structure of the
network and of the transition probabilities assigned to links.
A notable example in this domain is the use of PageRank [14]
to rank Web pages. Personalized versions of PageRank have
been designed in order to alter the ranking according to other
factors, such as the topic of a page [10] or users’ preferences.
More generally, a random walk with restart can be adopted to
personalize rankings: at any step there is a constant probability
of jumping back to a target node, thus nodes that are closer to
the target tend to be ranked more highly than distant nodes,
providing a personalized view of the network [23].

In a random walk over a network, the transition probabilities
can be arranged in a matrix Q = αW + (1−α)R, formed by
two factors, a structural one and a random one: W encodes
the transition probabilities according to the network structure,
whereas R models a random probability of jumping to any
other node. The parameter α is used to tune the behavior6.
The steady-state probability of node i is pi, and the steady-
state probability vector p can be defined as the solution of the
matrix equation p = pQ. A popular approach to compute p is
to repeatedly iterate this equation until the vector converges,
exploiting the sparsity of Q to reduce memory requirements.

B. Recommending with Random Walks

We represent the data that we have as an undirected graph
whose nodes are users and venues. A user i is linked to
venue j if cij is non-zero; furthermore, a user is linked to
another user if the pair are friends. This graph is used to
define the structural transition matrix W which contains a
uniform transition probability for each edge. For every user
i we define a random walk with restart: at every step there
is a constant probability of jumping back to the node of the
user. In each case, the matrix R encodes the probability of

6It is usually set to α = 0.85 [14].



randomly jumping back from every node to the node of the
user. In order to compute predictions for user i we compute
the steady-state probabilities of the related random walk:
then we rank each place in decreasing order of steady-state
probabilities. This favors places that are more connected, by
any means, to the user: through friends, through visited places
or through any combination of factors. The restart probability
maintains the random walk in the user’s neighborhood, thus
biasing recommendation results towards venues that are more
connected, in any sense, to the user. This simultaneously
promotes places with several connections (i.e., popular) that
are also reachable through friends and through already visited
places. This feature is noted as rwr.

C. Weighted Version

We also introduce a weighted and directed version of the
random walk approach, denoted as wrwr, where each link is
annotated with a weight that biases the transition probabilities,
rather than having uniform probabilities on all the links going
out from a node. Further, weights between two nodes can be
different in opposite directions. A link from user i to user j
is weighted as 1

|Γi| ; each friend of user i is given an equal
weight, that is inversely proportional to the total number of
friends. A link from user i to place k is weighted as cik

‖Θi‖ , or
proportionally to the user’s check-ins to that venue over the
total number of check-ins for that user. Finally, a link from
place k to user i is weighted as cik

‖Φk‖ , or the user’s check-in
frequency at that place over the total number of check-ins for
that place. All weights are normalized so that they represent
transition probabilities: this is achieved by computing the sum
of all the weights on the links going out from a node and then
dividing every weight by this value.

VI. EVALUATION

We now evaluate the recommendation algorithms and com-
pare results across predictors, datasets and cities. In Section
VI-A, we describe our experimental methodology and the three
metrics that we use to evaluate recommendation quality. The
results in Section VI-B then show that the sole method to
outperform a popularity-based baseline is the Random Walk
approach; finally, we discuss the implications of our results in
Section VI-C.

A. Methodology and Metrics

We partition the check-in data temporally into multiple
training/test splits (each consisting of 30 consecutive days)
in order to obtain cross-validated results. We then filter any
check-in cij from each test set if the training set has a non-
zero entry for cij , i.e., if the user has already visited the venue.
We note that users with no check-ins in the test set are not
included in the performance evaluation. The output of each
prediction algorithm is a per-user personalized ranked list of
venues.

We use three metrics to quantify the quality of these
recommendations. The first two, precision@N and recall@N,
convert the outcome of each predictor into binary values: either

Method APR Precision@10 Recall@10
Random 0.500 0.000 0.003
Popular 0.228 0.026 0.089
Activity 0.228 0.025 0.087
Home 0.383 0.008 0.026
Social 0.392 0.015 0.049
kNN 0.443 0.003 0.011
PlaceNet 0.337 0.026 0.077
MF 0.281 0.004 0.014
RW 0.217 0.028 0.094
Weighted-RW 0.229 0.025 0.088

TABLE III
FOURSQUARE RESULTS: AVERAGE APR, PRECISION@10 AND

RECALL@10 RESULTS.

Method APR Precision@10 Recall@10
Random 0.499 0.002 0.001
Popular 0.278 0.043 0.090
Activity 0.280 0.032 0.073
Home 0.341 0.023 0.042
Social 0.418 0.029 0.054
kNN 0.425 0.005 0.012
PlaceNet 0.338 0.043 0.077
MF 0.343 0.009 0.025
RW 0.232 0.048 0.095
Weighted-RW 0.244 0.045 0.095

TABLE IV
GOWALLA RESULTS: AVERAGE APR, PRECISION@10 AND RECALL@10

RESULTS

the user will visit the top-N venues and will not visit venues
ranked below N. Precision (p) and recall (r) are measured as
proportions of true positives (tp), false positives (fp), and false
negatives (fn):

p =
tp

tp+ fp
; r =

tp

tp+ fn
(9)

Since each algorithm outputs an ordered list, we also verify
the extent to which the ranking reflects users’ interests; i.e.,
that venues that are highly ranked are indeed those that will be
more frequently visited. To do so, we first define the interest
i that a user u has in a venue s as the proportion of times
that the user checks into that venue during the test period.
We then define ranku,s as the percentile ranking of venue s
for user u in the ranked list of venues; if ranku,s = 0, then
the venue appears first in the list, while ranku,s = 1 implies
that the venue was the last in the list. We combine these with
each user’s interest in the station interestu,s and average the
results to measure the Average Percentile Ranking (APR):

APR =

∑
u∈U

∑
s∈L

iu,s × ranku,s∑
u∈U

∑
s∈L

iu,s
(10)

In the following sections, we report and discuss the empirical
results we obtained following the above methodology and
metrics.



Foursquare Gowalla
City popularity rwr popularity rwr
Austin 0.235 0.222 0.175 0.144
Boston 0.204 0.196 0.313 0.258
Dallas 0.247 0.232 0.248 0.197
Denver 0.233 0.200 0.285 0.236
London 0.264 0.262 0.311 0.244
Los Angeles 0.212 0.196 0.281 0.242
New York 0.192 0.185 0.280 0.242
Paris 0.265 0.256 0.271 0.204
San Francisco 0.208 0.200 0.220 0.183
Seattle 0.238 0.218 0.264 0.226
Seoul 0.210 0.226 0.410 0.381
Average 0.228 0.217 0.278 0.232

TABLE V
APR ACHIEVED BY THE POPULARITY AND RWR PREDICTION METHODS
ACROSS CITIES IN BOTH DATASETS. FOR EACH SERVICE WE HIGHLIGHT

THE CITY WITH THE BEST APR SCORE.

B. Results

In order to put the following results into an appropriate
context, we also compare them to a random predictor, which
simply shuffles the candidate set of unvisited venues for each
user. In this case, APR results are 0.5 and both precision and
recall are near zero. We further note that better results are
obtained with lower APR values and higher precision and
recall values.

1) Performance Across Methods: Tables III and IV show
the APR, precision@10 and recall@10 for the Foursquare
and Gowalla datasets respectively. The most eminent result
is that nearly all methods, including social filtering and all
(kNN and MF) versions of collaborative filtering—which were
supposed to better model users’ preferences— fail to outper-
form the popularity-based baseline. The Activity predictor,
which ranks venues based on the categories of the venues
visited by each user, also ranks amongst the top performing
approaches. The random walk variants are the only approaches
that outperform popularity, and are amongst the top performing
methods for both datasets: rwr achieves an improvement of
5% in Foursquare and of 18% in Gowalla with respect to
popularity, the best performing among the other methods.

In general, the three metrics agree with each other in terms
of algorithms’ relative performance, with one exception. When
considering precision and recall, both placenet and, to
a lesser extent, socialnet achieve results similar to the
best four methods. This difference between APR and preci-
sion/recall is due to the fact that placenet and socialnet
are the only two methods that do not rank all the available
places, but only a subset of places specific to the target user.
As their recommendation lists may thus contain fewer items,
they are penalized in the APR score, which is agnostic to list
size, but they benefit in precision and recall, where list size is
important.

2) Performance Across Cities: Although there are perfor-
mance variations across cities, our method based on a random
walk consistently outperforms the other approaches. This
observation is reflected in Table V, which presents the APR
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Fig. 4. Average APR of the best approaches for users with a different
minimum number of visited places in the training snapshot in Foursquare (a)
and Gowalla (b).

scores for popularity and rwr achieved across different
cities in both services; we observed a similar pattern for
the precision and recall metrics (not shown). Moreover, this
analysis suggests that there is no strong correlation between
the individual city statistics presented in Tables I and II, such
as the number of active users and places, and the prediction
performance. One outlier seems to be Seoul in Gowalla, with
much lower performance: this might be due to the fact that
this case has the lowest level of user activity across all the
considered cities. On the other hand, New York in Foursquare
and Austin in Gowalla, which are the cities with most check-
ins in the corresponding datasets, show the best performance.

Furthermore, the results obtained across the two datasets
agree with one another; this is a notable result since both
systems have different interfaces and incentives for user par-
ticipation. We must note that no location recommendation
engine was put in place by either service during the data
collection period. The most prominent difference in perfor-
mance is obtained with the home distance feature, that is
consistently better in Gowalla than in Foursquare across all
the performance metrics. This could be due to the fact that
the average number of user check-ins in Gowalla is higher
than that observed in Foursquare, thus allowing the “home”
location inference to be more accurate. In addition, in Gowalla,
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Fig. 5. Average Precision@N obtained by each algorithm on all cities for
various values of N in Foursquare (a) and Gowalla (b).

when the entirety of user social links and check-ins are present,
the random walk models achieve a larger performance gain,
as they are able to exploit higher quality data to build the
network structure.

3) Impact of User Activity: We have discussed how users
which have visited more places tend to visit fewer new
places, as presented in Figure 3. Thus, we investigate how
prediction performance changes when we consider users with
progressively higher amount of visited places. We filter out
users which have visited less than a certain number of places
in the train snapshot and we compute how the average APR
over all the remaining users changes when we progressively
increase the minimum number of visited places. As shown
in Figure 4, where we depict some of the best performing
methods, prediction performance decrease as we focus on the
most active users. A noticeable difference is the placenet
feature, which achieves better results when we filter out less
active users, while overall its performance hardly compete with
the best methods. However, as the vast majority of users have
visited only few places, any improvement for active users is
not likely to impact the performance across the entire user
base.

4) Impact of Recommendation List Size: Finally, we ex-
plore the effect of a varying recommendation list size on the
final performance. As the number of venues recommended
to a user increases recall tends to improve, while precision
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Fig. 6. Average Recall@N obtained by each algorithm on all cities for
various values of N in Foursquare (a) and Gowalla (b).

might suffer. In Figure 5 we plot the average precision@N
obtained by each algorithm on all cities: we find that precision
decreases as we increase list size, with the different features
maintaining their relative ranking in performance. Similarly
but with an opposite trend, recall@N quickly increases as the
recommendation list grows larger, as depicted in Figure 6;
again, the dominating features outperform the others over the
entire range of list size. This analysis highlights the trade-
off between precision and recall that each feature faces: real
systems should tune their results according to what users
require.

C. Discussion

The data that we obtained has a number of characteristics
that differentiate it from the typical recommender system
scenario. An important difference is that while in other sce-
narios users reveal their preferences through ordinal ratings,
in our case check-ins only capture numeric frequencies: as a
consequence, there is no negative feedback provided by users.
Furthermore, the data is highly sparse, with many users and
venues having a single check-in. At the same time, across both
datasets there are few places with extremely high number of
check-ins, while the majority of them only enjoys few user
check-ins. Thus, there is a high heterogeneity across how users
check in at places, with some venues reaching high levels
of popularity. This may go some way to explaining the high



performance of popularity-based recommendations.
The previous section also uncovered that the worst perform-

ing algorithms for this task were the ones that are typically
associated with recommender systems (i.e., nearest neighbors
and matrix factorization). There are a number of reasons why
this may be the case. First, check-in data may not be sufficient
to fully capture users’ preferences. In fact, unlike web ratings,
it leans towards capturing habitual behavior well and does
not allow for negative feedback. Second, like-mindedness may
not suffice to model why people visit venues; the random-
walk approaches outperform standard CF by simultaneously
leveraging several sources of data, encoding them in the net-
work structure. Moreover, computing recommendations using
a random walk is not tied to this particular dataset: it is
generalizable to any situation where signals of user preference
can be encoded into a graph.

VII. CONCLUSION

This paper has examined the novel problem of learning to
predict which previously unvisited places users of location-
based social networks will visit, in order to build a new-venue
recommendation system. We collected behavioral, social, and
spatial data from Gowalla and Foursquare (via Twitter) for
a range of the world’s metropolises, and evaluated how a
variety of learning algorithms—from simple, non-personalized
popular venue recommendation to predictions based on matrix
factorization methods—were able to rank and classify the
new venues for each user. We found that the collaborative
filtering approaches that have been successful in online rec-
ommendation scenarios have not achieved a similar status with
mobility data: instead, we found that our proposed random-
walk based model was able to consistently achieve the best
performance, by learning from both social ties and venue-visit
data simultaneously.

The problem setting that we have examined captures a
characteristic that all recommender systems will soon face: the
abundance of social-based and contextual data beyond explicit
ratings that is available to improve users’ recommendations.
For example, even services such as Netflix (which have been
at the focal point of recommender system literature since the
Netflix Prize) are turning to streaming films and connecting
their services to online social networks like Facebook. This
new generation of services, often mainly used on mobile
devices, are likely to already hold social, behavioral, and geo-
graphical information about their users and the mobile devices
that are used to stream films. The open research challenge is
thus to design learning algorithms that can leverage all this
information for better recommendations.

In terms of future work, we seek to evaluate supervised
learning methods that could be accommodated in the new
venue recommendation problem. Supervised frameworks have
been applied successfully to social based systems [22]: even
social link prediction systems based on random walks have
benefited from the use of supervised learning, as shown by the
authors in [2]. Finally, matrix factorization techniques could be

extended to include the multiple sources of information avail-
able in check-in datasets of location-based social services.
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