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Summary. In recent years, various mobile middleware systems have been devel-
oped that build on top of the protocol stack provided by the underlying network
operating system, to offer a set of higher level services. Common services provided
include remote procedure calls, data sharing, service discovery etc. With the number
of mobile devices, such as PDAs, mobile phones or smart phones increasing, as well
as the impeding flourishing of embedded and wearable computing, the role of mid-
dleware in offering services that hide the complexity in the underlying environment
is at the same time important and complex. The mobile environment is becoming
highly dynamic, with very heterogeneous devices, in terms of both hardware and
software, forming short lived ad hoc networks. In this chapter, we argue that the
provision of static services cannot tackle the peculiarities of this environment. We
present logical mobility as a technique for dynamic adaptation, detail a specifica-
tion of a framework that offers its flexible use, and present a number of dynamic
middleware services, which can be intelligently acquired by a device at runtime.

Key words: distributed objects, components, pervasive computing, model
validation and analysis, process models

1 Introduction

The further decentralisation of computing into increasingly inexpensive mobile
devices, such as personal digital assistants, mobile phones, sensors and laptops,
together with the advances in wireless networking (UMTS, 802.11, 802.15.4,
802.15.1 etc.), create a distributed computing environment that is becoming
highly dynamic and heterogeneous.

Developing applications in this environment is very difficult; Building di-
rectly on the operating system of a device and only having a networking
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protocol stack available to program against is particularly tedious and error-
prone, as it forces the developer to handle directly the complexities of the
environment, such as intermittent connectivity and heterogeneity. As such,
multiple mobile computing middleware systems have been developed, that
build on top of the operating system, hiding some of the complexities of the
environment. Networked middleware systems build on the protocol stack to
offer higher level services to applications. These services range from remote
procedure calls to data sharing and service discovery. This has led to the
development of various incompatible middleware systems, which are able to
provide a fixed set of services.

We argue that this approach does not adequately tackle the dynamicity of
a mobile environment because the provision of fixed and static services cannot
scale. The constant introduction of new devices into the network, which may
offer different services, ranging from temperature sensing to printing, over
different hardware, requires the middleware system to adapt or mutate to
provide the functionality needed to allow an application to communicate with
them. Pre-installing all the services that may be required before a device
ships is not feasible, because mobile devices have strict memory limitations.
Moreover, we argue that it is also very difficult to predict the services that
may be needed throughout a device’s lifetime.

In this chapter, we argue for offering logical mobility, or code relocation
primitives as first class citizens in mobile middleware systems. The primitives
can be used to built dynamic middleware services; in this context, a dynamic
service is a service that can be dynamically deployed into a running system,
or a service that can be changed at runtime. We discuss the utility of logical
mobility for mobile systems and present the process algebra specification for a
platform that allows systems to dynamically send, receive and deploy code. We
then briefly present satin, a component based mobile computing middleware
system, that encapsulates this platform, offering the flexible use of mobile
computing paradigms to applications. We also show how this was used to
build dynamic middleware services, ranging from advertising and discovery to
ubiquitous security.

The chapter continues as follows: Section 2 defines logical mobility and
outlines its advantages for physically mobile systems. Section 3 details our
logical mobility platform. Section 4 briefly outlines satin, and shows how
the platform in Section 3 was instantiated. It concludes by presenting, as
case studies, a number of mobile computing middleware services built and de-
ployed. Section 5 gives a brief outline of related work, while Section 6 discusses
and concludes the chapter.

2 Defining Logical Mobility

Logical Mobility refers to the ability to change the configuration of the software
of a distributed system, by transferring logical units between nodes. Logical
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Fig. 1. A mobile code system, showing the transfer of a unit from Host B to Host
A.

Mobility has been argued [20] to have great potential for engineering mobile
systems, a potential that has not yet been realised. This section claims that
logical mobility can be used as a technique that can adapt services, because
it can encapsulate functionality which can be dynamically deployed onto a
running system. Logical mobility is usually offered using Code Mobility tech-
niques. In the following paragraphs, we define what code mobility is, outline
its relationship to logical mobility and describe its usage paradigms.

2.1 Introduction to Code Mobility

Code mobility has been defined [2] as ‘the capability to dynamically change
the bindings between code fragments and the location where they are executed’.
More informally, code mobility can be defined as the ability to move code
between nodes in the network. It has been argued [5] that code mobility is a
technology that can be used to engineer configurable, scalable and customis-
able large scale distributed systems, by allowing code to migrate and bind to
different nodes of the running system. Mobile code systems usually define a
code unit as a conceptual or realised abstraction that encapsulates a form of
code. A code unit is the minimal unit of transfer or unit of mobility.

Whereas code mobility specifically refers to the transfer of code between
nodes, logical mobility builds on this notion and refers to the reconfiguration
of systems by moving any part of the logical layer between nodes. Logical
Mobility is usually offered using code mobility techniques to transfer informa-
tion, including binary code, compiled for a specific architecture, interpreted
textual scripts, bytecode compiled for a virtual platform, such as the Java
Virtual Machine (JVM), but also application data such as profiles. In this
context, data are defined to be anything that cannot be directly executed by
the underlying platform.

Figure 1, adapted from [15], shows an outline of two systems using mobile
code. The core operating system is built on the hardware layer, and provides
abstractions to access the hardware and basic services such as memory man-
agement. The networking aspects of the operating system are built on top
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of this; they provide basic networking services, such as a TCP/IP protocol
stack. Layered on the network operating system is the Processing Environ-
ment (PE). The processing environment is a container which allows code units
to run; it provides a set of primitives (the extent of which varies between plat-
forms) to allow for code migration, or even for access to local resources. Any
coordination between various units as well as between the units and the rest
of the system happens at this layer. A Processing Environment usually acts
as a sandbox, restricting the access of a unit to protect from malicious code.
Figure 1 shows a unit transferred from one node to another.

There are two manifestations of code mobility: weak mobility, where a code
unit transfered cannot include execution state information and strong mobil-
ity, where this is possible. Strong mobility allows for a process or thread to
suspend execution, move to another host and resume execution from the exact
point at which it stopped on the originating host. At a conceptual level, the
migration of a thread or process using a strong mobility mechanism can be
completely hidden from the application programmer. A weak mobility mech-
anism can approximate the operation of a strong mobility one, provided that
the application programmer is aware of the migration process; the programmer
would need to explicitly save any data that are needed to resume execution
at the recipient host before the transfer takes place and to use the data to
resume appropriately after the transfer process is completed. By definition,
weak mobility platforms consume less computational resources than strong
mobility ones.

2.2 Paradigms of Code Mobility

Usage of code mobility has been classified [5] into a set of paradigms: code
on demand, remote evaluation, client server interactions and mobile agents.
These paradigms mainly differ on the party that initiates transfer of code
and on the party that actually transfers it. We extend these concepts to ap-
ply to Logical Mobility; As such, Client - Server (CS), a popular paradigm
in traditional distributed systems, suggests the execution of some code in a
computing device (the server) triggered by a request of another device (the
client). The most common example of this paradigm are remote procedure
calls (RPCs). Remote evaluation (REV) suggests that a host sends a particu-
lar unit to another host, to be executed there. This paradigm is employed by
Distributed.NET [22] and other similar distributed computing environments,
which work using the divide and conquer paradigm to break large computa-
tional challenges into smaller, more manageable problems and distribute those
to machines around the world. The results are then sent back to the server
orchestrating the problem, which can recompose the answer to the original
challenge. The code on demand (COD) paradigm, enables a host to request
a particular unit from another machine. Following the request, the code is
transferred to the requesting host and can then be executed there. This is an
example of dynamic code update, whereby a host or application can update
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its libraries and available codebase at runtime. A mobile agent (MA), is an
autonomous unit of code. It is injected into the network by a host, to perform
some tasks on behalf of a user or an application. The agent can autonomously
migrate from one execution environment to another.

2.3 Logical over Physical Mobility

In previous work [24], we identified a number of examples showing that all
paradigms of logical mobility can bring tangible benefits to mobile computing.
The examples included dynamic updating in the face of limited resources, of-
fering location-based services, active networking, exploiting distributed com-
putational resources and limiting connectivity costs. Those benefits can be
summarised in the following interrelated points:

• Logical mobility allows applications to update their codebase, hence ac-
quiring new functionality.

• Logical mobility may permit interoperability with remote applications and
environments, which have not been envisioned at design time.

• Logical mobility potentially achieves the efficient use of peer resources, as
computationally expensive calculations can be offloaded to the environ-
ment.

• Logical mobility facilitates the efficient use of local resources, as infre-
quently used functionality can be removed to free some of the limited
memory that mobile devices are equipped with. The functionality may
potentially be retrieved later when needed.

• Logical Mobility primitives can be used to encapsulate, request and trans-
fer functionality between nodes; hence it is a tool that can be used to
create adaptable systems.

• By allowing functionality to be retrieved locally, Logical Mobility allows
for autonomous operation instead of relying on an externally provided
service.

3 Conceptualising the Use of Logical Mobility over
Physical Mobility

Having outlined the benefits of logical mobility for adaptable mobile com-
puting systems, this section presents a conceptual object oriented framework
for logical mobility targeting mobile systems. The system is general enough
as to not be tied to any particular application or paradigm. The framework
presented is built on the notion of weak mobility, because its implementation
requires less resources than a strong mobility one.

This section does not discuss in great detail the Client/Server paradigm
defined above. Client/Server interactions are not directly beneficial for pur-
poses of mobile adaptation, as they do not involve the transfer of functional-
ity. This section will describe a conceptual platform for logical mobility, which
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Fig. 2. The Logical Mobility Unit.

will offer symmetric operation (the ability to both send and receive execution
units), and will be engineered for the intricacies of physical mobility, taking
into account, in particular, heterogeneity, security and limited resources. The
platform describes is composed of various conceptual layers. The remainder of
the section starts by describing a container that is used to encapsulate aspects
of logical mobility; it then builds on that to define all the layers and aspects
of the framework.

3.1 The Logical Mobility Unit

Figure 2 presents a conceptual encapsulation of logical mobility as a Meta Ob-
ject Facility [13]-compliant extension of the UML [12] meta model version 2.0.
It builds upon and extends the concepts of Classifier, Class, InstanceSpecifi-
cation and DataType. The diagram defines three aspects of Logical Mobility:
Classes, ObjectSpecifications and DataTypes; DataTypes are defined as a
bitstream that is not directly executable by the underlying architecture, and
ObjectSpecifications are defined as specialisations of InstanceSpecifications
that reify classes. As such, the framework specifically addresses the transfer
of classes, instances and data as aspects of logical mobility. The Logical Mobil-
ity Entity (LME) is defined as an abstract generalisation of a Class, Instance
or Data. Consequently, an instantiation of an LME represents an aspect of
the logical layer of a system.
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The Logical Mobility Unit (LMU) is defined as the minimal unit of transfer
in this framework. An LMU is a container, that can encapsulate various con-
structs and representations of code and data. As such, an LMU is, in part, a
composition of an arbitrary number of LMEs. This allows an LMU to contain
anything from a single class to a collection of classes, instances and data. The
LMU provides operations that permit inspection of contents. This allows a
recipient to inspect an LMU before using it.

The LMU can potentially encapsulate a Handler class. The Handler can
be instantiated and the resulting object used by the recipient to deploy and
manipulate the contents of the LMU. This can allow sender-customised de-
ployment and binding. The Handler concept and name is taken from [17].
Handlers and deployment in general are further discussed in the next section.

An LMU also encapsulates a set of attributes, called the properties of the
LMU. An attribute is a tuple containing a key and a value and the properties
of the LMU map each key to its associated value. As such, a reference to an
attribute encapsulated in the LMU can be obtained by identifying its key. At-
tributes represent the metadata of the LMU. Attributes can be either mutable
or immutable. The number and type of attributes is not fixed. The properties
are used to describe the LMU they are associated with. For example, logical
(software) or physical (hardware) dependencies, digital signatures and even
end-user textual descriptions can be expressed as attributes. As such, they
can be used to express the heterogeneity of the target environment. For ex-
ample, an LMU that contains Java classes may specify that it requires a Java
Virtual Machine that implements version 2 of the appropriate specification as
an attribute. An ontology for attribute keys and values is not defined at this
stage. Mutable attributes are useful because they allow for storing the state
of the Logical Mobility Entities separately to their logic. This allows users, in
principle, to update the logic of a logical mobility entity, while maintaining
its state. This is useful in many scenarios; for example in self-updating mobile
agents.

The LMU and its contents can be serialised and deserialised. As such,
the use of logical mobility techniques is equivalent to composing the LMU,
serialising it, transferring it, deserialising it and deploying it, as well as trig-
gering this sequence of operations. The next section describes a framework
that allows this.

3.2 A Framework for Logical Mobility

Figure 3 outlines a framework for the use of logical mobility techniques by mo-
bile systems, as a collection of conceptual layers, built on top of the network
operating system. The following paragraphs describe each layer in detail. The
operations of the framework are modelled as a collection of interacting con-
current processes, using the Finite State Processes (FSP) process algebra [8],
with each layer represented by a process. A process algebra was chosen over
alternatives such as axiomatic and denotational models because of the algebra
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allows for a clear definition of the various states of each process and of the
system as a whole. FSP was chosen in particular for reasons of familiarity,
ease of use and tool support. The process algebra allows us to express safety
and liveness properties on the framework, and verify that it operates correctly,
while allowing callers to use any logical mobility paradigm.

The process algebra specification for the platform follows:
//Trust & Security Layer
TRUSTANDSEC = ( inspect -> INSPECTION

|examine -> EXAMINATION ),
EXAMINATION = ( trusted -> TRUSTANDSEC

|mistrusted -> TRUSTANDSEC ),
INSPECTION = ( accepted -> TRUSTANDSEC

|rejected-> TRUSTANDSEC ).

//Serialisation & Desirialisation Engine
SERDESERENGINE = ( deserialise -> DESERIALISING

|serialise -> SERIALISING),
DESERIALISING = ( deserialised -> CONFLICTCHECK

|deserFailed -> SERDESERENGINE ),
CONFLICTCHECK = ( conflict -> RESOLVECONFLICT

|noConflict -> deserSuccess -> SERDESERENGINE ),
RESOLVECONFLICT = ( deserReject -> deserFailed -> SERDESERENGINE

|conflictResolved -> deserSuccess -> SERDESERENGINE ),
SERIALISING = ( serSuccess -> SERDESERENGINE

|serFailed -> SERDESERENGINE ).

//Communications Layer
CONTROLLER = ( controllerStart -> ON ),
ON = ( sendRequest -> ON

|receiveRequest -> REQUESTRECEIVED
|controllerStop -> CONTROLLER ),

REQUESTRECEIVED = ( acceptRequest -> ON
|rejectRequest -> ON).

SENDERRECEIVERCONTROL = ( srStart -> ON ),
ON = ( receiveLMU -> ON

|sendLMU -> ON
|srStop -> SENDERRECEIVERCONTROL ).

RECEIVER = ( receiveLMU -> deserialise -> DESERIALISATION
|srStop -> RECEIVER ),

DESERIALISATION = ( deserSuccess -> inspect -> INSPECTION
|deserFailed -> RECEIVER ),

INSPECTION = ( accepted -> deployLMU -> deployed -> RECEIVER
|rejected -> RECEIVER ).

SENDER = ( sendLMU -> examine -> EXAMINATION
|srStop -> SENDER ),

EXAMINATION = ( trusted -> serialise -> SERIALISING
|mistrusted -> SENDER ),

SERIALISING = ( serSuccess -> lmuSend -> SENDER
|serFailed -> SENDER ).

||SENDERRECEIVER = ( SENDERRECEIVERCONTROL || SENDER || RECEIVER ).

||API = ( SENDERRECEIVERCONTROL || SENDER || RECEIVER
|| TRUSTANDSEC || SERDESERENGINE ||CONTROLLER).

//APPLICATION
APPLICATION = ( deployLMU -> DEPLOYLMU ),
DEPLOYLMU = ( lmuPartialAccept -> deployed -> APPLICATION

|lmuAccept -> deployed -> APPLICATION
|lmuInstantiateHandler -> deployed -> APPLICATION
|lmureject -> deployed -> APPLICATION ).

//Safety and Liveness Properties
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property SERIALISETRUSTED = ( trusted -> serialise -> SERIALISETRUSTED ).
property SENDSERIALISED = ( serSuccess -> lmuSend -> SENDSERIALISED ).
property INSPECTDESERIALISED = ( deserSuccess -> inspect ->INSPECTDESERIALISED ).
property DEPLOYACCEPTED = ( accepted -> deployLMU -> DEPLOYACCEPTED ).
progress SENDANDRECEIVELMUS = { sendLMU, receiveLMU }
progress SENDANDRECEIVEREQUESTS = { sendRequest, sendRequest }

//Framework
||FRAMEWORK = ( SENDERRECEIVERCONTROL || SENDER || RECEIVER

|| TRUSTANDSEC || SERDESERENGINE || CONTROLLER
|| APPLICATION || SERIALISETRUSTED || SENDSERIALISED
|| INSPECTDESERIALISED || DEPLOYACCEPTED ). )

Transport

Trust & Security Serialisation/Deserialisation Engine
Communications

API

Controller Sender/Receiver

Application

Fig. 3. A Logical Mobility Framework.

The specification is discussed in the following paragraphs.

The Trust & Security Layer.

There are many aspects to consider when trying to establish a secure mobile
computing environment that uses logical mobility. In particular, privacy of
communications, system integrity against malicious LMUs and trust should
be calculated and maintained between the various nodes.

System integrity and trust are the responsibility of the trust & security
layer, of which there can be various realisations that employ different trust
models, digital signatures and trusted third party-based verifications, heuristic
virus scanning, or even logic based techniques such as proof carrying code [10]
to offer various levels of security.

It is represented as the TRUSTANDSEC process, which may either inspect
an incoming LMU (thus trying to maintain system integrity) or examine the
host to which an LMU is to be sent (thus implementing a trust mechanism).
The result of the inspection (represented by INSPECTION) is either accepted,
which denotes that the LMU is not malicious and that it behaves as ad-
vertised, or rejected otherwise. The result of the examination (represented by
EXAMINATION) is either trusted, or mistrusted. The exact semantics of accepted,
rejected, trusted and mistrusted depend on the particular realisation.

The Serialisation & Deserialisation Engine.

The serialisation & deserialisation engine is responsible for converting an
LMU into a bitstream and vice versa. Different implementations may use dif-
ferent encodings to write and read the stream. When deserialising a bitstream,
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the engine is responsible for instantiating an LMU with the contents of the
bitstream into a processing environment where it can be inspected by the
trust & security layer. Deserialisation may fail if an element in the LMU has
references which cannot be restored in the recipient node or if, because of
a failure in the transport layer, the bitstream was not successfully received.
Upon deserialisation, the elements of the LMU are checked for conflicts with
elements already in the system. Essentially, conflicts may occur if elements
of the LMU define themselves using names that are already in use in the re-
cipient node. If a conflict is detected, implementations of the serialisation &
deserialisation engine may either reject the LMU, or try to resolve the conflict,
by loading it, for example, into a private namespace. The layer is represented
by process SERDESERENGINE. The process can either deserialise an incoming
LMU or serialise an outgoing one. In the former scenario, represented by
DESERIALISING, the process can either fail (deserFailed), if, for example, the
incoming bitstream was invalid (due to a transport layer failure) and could
not be read or references contained in the LMU could not be restored, or
succeed (deserialised). In the latter case, the serialisation & deserialisation
engine checks whether the contents of the LMU conflict with the running
system (CONFLICTCHECK). If a conflict is not detected (noConflict), then the
deserialisation process is successfully completed (deserSuccess). If a conflict
is detected, then the engine may try to resolve it (RESOLVECONFLICT), by, for
example, loading the contents in a private namespace. If the conflict resolu-
tion process is successful (conflictResolved), then the deserialisation process is
successfully completed (deserSuccess). Otherwise, the LMU is rejected (deser-
Reject) and the deserialisation process fails (deserFailed). When serialising an
outgoing LMU (SERIALISING), the process may either successfully complete
(serSuccess) or fail (serFailed). A reason for failure is, for instance, that the
contents of the LMU contained non serialisable references, such as a reference
to a hardware resource that does not exist on the recipient host.

The Communications Layer.

The communications layer builds on the basic primitives provided by the
transport layer for sending and receiving LMUs. In particular, it is composed
of two different modules, the controller and the sender - receiver, both of
which are described below. The controller implements an application layer
Client/Server protocol that allows hosts to request the composition and trans-
fer of a particular LMU from a remote host. The protocol encapsulating the
request is considered to be specific to the implementation, but it is expected
that the request message will be based on LMU attributes. Thus, the controller
allows remote hosts to pull logical mobility units. Note that the protocol im-
plemented by the controller is asynchronous; a request is non blocking and an
LMU requested may be retrieved at a later stage. Moreover, a request that
has been denied simply results in the requested LMU not being sent - no other
information is generated and the requesting host is not notified of the failure.
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This chapter considers potential failure to be typical of the dynamicity of
a mobile distributed system - as such, failure is not an exception, rather it is
a frequent event that the application programmer (or a middleware system
built around this framework) must be aware of.

In the process algebra specification, the controller, represented by pro-
cess CONTROLLER, is not active initially - this means that no requests can
be sent or received. The controller can be activated (controllerStart) and
an active controller (ON) can receive a request (receiveRequest), send a re-
quest (sendRequest) or be deactivated (controllerStop). Notice that this im-
plies that application programmers using this framework should be made ex-
plicitly aware of the fact that their requests may fail and that no reply is ex-
pected when sending a request, as explained above. When a request is received
(REQUESTRECEIVED), it can be either rejected (rejectRequest) or accepted (ac-
ceptRequest). An accepted request implies that an LMU will be composed and
sent (sendLMU in the sender - receiver - see below). Note that failures in the
transport layer may result in a request not being successfully sent or received.
Realisations of the framework may notify the caller about these failures.

The Sender - Receiver. Using the infrastructure provided by the serial-
isation & deserialisation engine and the trust & security layer, the sender
- receiver allows for sending and receiving LMUs. In the process algebra
specification the Sender - Receiver is modeled as process SENDERRECEIVER.
SENDERRECEIVER is modelled as a concurrent composition of processes SENDER,
RECEIVER and SENDERRECEIVERCONTROL. The latter is responsible for enabling
and disabling the functionality of sending and receiving LMUs, while SENDER
and RECEIVER are responsible for sending and receiving LMUs, respectively.
The sender - receiver is inactive initially, meaning that no LMUs can be sent
or received. It can be activated (srStart), and an active sender - receiver (ON)
can receive an LMU (receiveLMU), send an LMU (sendLMU) or be deacti-
vated (srStop). When receiving an LMU, the serialisation & deserialisation
engine is used to deserialise the incoming bitstream into an LMU. The dese-
rialisation process (DESERIALISATION), can either succeed (deserSuccess) or
fail (deserFailed). In the former scenario, the sender - receiver uses the trust
& security layer to inspect the deserialised LMU (INSPECTION) for malicious
elements. This can either result in rejecting the LMU (rejected), or accepting
it (accepted) and passing it to the application for deployment (deployLMU).

When sending an LMU (sendLMU) the recipient host is first examined (ex-
amine) by the trust & security layer, to see whether the local host trusts it to
send it information. The result of this process (EXAMINATION), is that the host
is either trusted or mistrusted. If the host is trusted, then the serialisation &
deserialisation engine attempts to serialise the LMU. As mentioned above,the
serialisation process (SERIALISING) can either result in success (serSuccess),
allowing the LMU to be sent (lmuSend), or in failure (serFailed).

Note that failures in the transport layer may result in the LMU not being
successfully sent or received. In this case, the deserialisation process in the
receiving host, as performed by the serialisation and deserialisation engine,
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Fig. 4. A state machine representing the Sender.

Fig. 5. A state machine representing the Receiver.

will fail. SENDER and RECEIVER are visualised as state machines in Fig. 4 and
5 respectively.

Note that LMUs can be sent independently of the controller - i.e. an LMU
can be sent without the host having requested it. The recipient does, how-
ever, have the option of rejecting an incoming LMU. As such, when modelled
as concurrent processes, the sendLMU action is available independently of
whether a request has been received and accepted. This allows for the opera-
tion of the Mobile Agent and Remote Evaluation paradigms, as will be shown
in Section 3.3.

Both the controller and the sender - receiver can be realised as concurrent
threads which can be started and stopped by the Application Programmer
Interface. By allowing this to happen, we allow implementations to stop mon-
itoring for requests, conserving resources, such as battery, and catering for the
eventuality of network disconnection.

The Application Programmers Interface.

The Application Programmers Interface (API) builds on the functionality
provided by the lower layers and provides primitives that an application can
use to create and send an LMU, to request an LMU to be received as well
as to start and stop the controller and the sender - receiver. Algebraically,
the functionality exposed by the API can be represented as a concurrent
composition of the above.
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The Application Layer.

Applications built using this framework are part of the application layer. When
the communication layer receives an LMU which is successfully deserialised
and inspected, it passes it on to an application for deployment. Note that,
in this context, an application may represent any software abstraction that
uses this framework for logical mobility; as such, applications can range from
end-user applications to aspects of the system.

In the specification, an Application deploying an LMU is modeled by pro-
cess APPLICATION. When an LMU is passed to an application for deployment
(deployLMU), it is inspected (shown in DEPLOYLMU). The results of the inspec-
tion can be the following:

• Partial Acceptance. Some aspects of the LMU are accepted, while others
are rejected. This is represented by lmuPartialAccept.

• Full Acceptance. All the contents of the LMU are accepted by the appli-
cation. This is represented by lmuAccept.

• Instantiation of the Handler. The application may not know how to deploy
the LMU received. If the LMU contains a Handler, then the latter can
be instantiated to take care of the deployment. This is represented by
lmuInstantiateHandler.

• Rejection. The LMU may also be rejected by the application. There can
be many reasons for this - the application may, for example, have no need
for the contents of the LMU. This is represented by lmuReject.

SERIALISETRUSTED, SENDSERIALISED, INSPECTDESERIALISED,
DEPLOYACCEPTED are the safety properties for this framework. In particular,
the safety and liveness properties for the platform state the following:

• SERIALISETRUSTED is a safety property that ensures that an LMU will
only be serialised to be sent (action serialise) if the recipient host is trusted
(action trusted) to receive it.

• SENDSERIALISED is a safety property that ensures that an LMU will only
be sent (action lmuSend) if it has been successfully serialised (action ser-
Success).

• INSPECTDESERIALISED is a safety property that ensures that an LMU
will only be inspected for security reasons (action inspect) if it has been
successfully deserialised (action deserSuccess).

• DEPLOYACCEPTED is a safety property that ensures that an LMU will only
be deployed (action deployLMU) if it is accepted (action accepted) by the
inspection process.

• SENDANDRECEIVELMUS is a liveness property that ensures that, given an
infinite length of time, the framework will be able to send and receive an
infinite number of LMUs (actions sendLMU and receiveLMU), avoiding
deadlocks. In other words, that both sending and receiving will happen an
infinite number of times.
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• SENDANDRECEIVEREQUESTS is a liveness property that ensures that, given
an infinite length of time, the framework will be able to send and re-
ceive an infinite number of requests for LMUs (actions sendRequest and
receiveRequest), avoid deadlocks.

The framework was found to satisfy all safety and liveness properties, by
using the FSP model checking tool, LTSA [8]. The next section describes the
framework and shows how it can be used to offer all the paradigms discussed
in 2.2.

3.3 Transferring Logical Mobility Units

The following paragraphs demonstrate the generality and applicability of this
framework, by showing how it can be used by applications to employ the
logical mobility paradigms outlined in Section 2.2. In particular, this section
shows how Code On Demand, Remote Evaluation and Mobile Agents can
be mapped onto a sequence of actions on the model of the framework. To
illustrate this, two instances of the framework, A & B, are composed. The
composition is as follows:

||TWOINSTANCES = ( a:FRAMEWORK || b:FRAMEWORK )
/{a.sendRequest/b.receiveRequest, a.receiveLMU/b.lmuSend,

b.sendRequest/a.receiveRequest, b.receiveLMU/a.lmuSend}.

The / notation renames actions. This results, for example, in b.receiveRequest
to be renamed to a.sendRequest. This results in modelling that when A sends
a request, B receives it.

Code On Demand

The use of Code on Demand is equivalent to sending a request via the con-
troller and getting the code requested by the sender - receiver. In the following
trace, node A requests and receives an LMU from node B:
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Step Number Action Description
0 a.srStart starts the sender - receiver on node A
1 a.controllerStart starts the controller on node A
2 b.srStart starts the sender - receiver on node B
3 b.controllerStart starts the controller on node B
4 a.sendRequest A sends a request for the code required
5 b.acceptRequest B accepts the request
6 b.sendLMU B packs and tries to send the LMU
7 b.examine B inspects the target node (A) to see whether

it is trusted
8 b.trusted B finds that A is trusted
9 b.serialise B tries to serialise the LMU
10 b.serSuccess B successfully serialises the LMU
11 a.receiveLMU B sends the LMU / A receives it
12 a.deserialise A deserialises the LMU
13 a.deserialised the LMU is deserialised and checked for conflicts
14 a.conflict a conflict is detected
15 a.conflictResolved conflict is resolved
16 a.deserSuccess deserialisation process is successfully completed
17 a.inspect LMU is inspected for security
18 a.accepted it is accepted into the system
19 a.deployLMU LMU is passed on to the application for

deployment
20 a.lmuAccept the application fully accepts it
21 a.deployed LMU is successfully deployed on A

Remote Evaluation

The use of Remote Evaluation is equivalent to sending the LMU via the sender
- receiver. The recipient host may decline the LMU. In the following trace,
node A sends an LMU to node B.

Step Number Action Description
0 a.srStart starts the sender - receiver on node A
1 b.srStart starts the sender - receiver on node B
2 a.sendLMU A packs and tries to send the LMU to B
3 a.examine A inspects the target node (B) to see whether

it is trusted
4 a.trusted A finds that B is trusted
5 a.serialise A tries to serialise the LMU
6 a.serSuccess A successfully serialises the LMU
7 b.receiveLMU A sends the LMU / B receives it
8 b.deserialise B deserialises the LMU
9 b.deserialised the LMU is deserialised and checked for conflicts
10 b.noConflict no conflict was found
11 b.deserSuccess deserialisation process is successfully completed
12 b.inspect LMU is inspected for security
13 b.accepted it is accepted into the system
14 b.deployLMU LMU is passed on to the application for deployment
15 b.lmuPartialAccept the application partially accepts it (i.e.

parts of the LMU are discarded)
16 b.deployed the LMU is successfully deployed on B

Note that this framework does not directly address the issue that an applica-
tion using Remote Evaluation may request a reply based on the execution of
the LMU sent. The request may be stored in the properties of the LMU. The
reply sent is considered to be an application level issue.
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Mobile Agents

The use of Mobile Agents is equivalent to sending an LMU with a Handler, re-
sponsible for activating a thread representing the agent on the recipient host.
In the following trace, node A sends an agent to node B.

Step Number Action Description
0 a.srStart starts the sender - receiver on node A
1 b.srStart starts the sender - receiver on node B
2 a.sendLMU A packs and tries to send the LMU to B
3 a.examine A inspects the target node (B) to see

whether it is trusted
4 a.trusted A finds that B is trusted
5 a.serialise A tries to serialise the LMU
6 a.serSuccess A successfully serialises the LMU
7 b.receiveLMU A sends the LMU / B receives it
8 b.deserialise B deserialises the LMU
9 b.deserialised the LMU is deserialised and checked

for conflicts
10 b.noConflict no conflict was found
11 b.deserSuccess deserialisation process is successfully

completed
12 b.inspect LMU is inspected for security
13 b.accepted it is accepted into the system
14 b.deployLMU LMU is passed on to the application for

deployment
15 b.lmuInstantiateHandler application instantiates the handler

of the LMU
16 b.deployed the LMU is successfully deployed on B
17 handler starts a thread representing

the agent.

The agent can then use the API of the framework to migrate itself to an-
other host.

It is important to note that the framework offers the ability to reject an
incoming LMU at many different stages. As such, an LMU can be rejected
if deserialisation fails, if it is malicious, or if it creates an unresolvable con-
flict in the system. Moreover, finer-grained control is given to the application
programmer, who may inspect the contents of the LMU before accepting it
or rejecting it, partially or fully. Similarly, the process of sending an LMU
can fail on two stages: if the target host is not trusted or if the serialisation
process fails. Finally, realisations of the serialisation & deserialisation engine
may decline serialising an LMU if it contains data that should not be shared
(for legal reasons, for example) or cannot be shared (as the data can contain
non serialisable elements).

4 Logical Mobility for Mobile Computing Middleware

This section starts by outlining a middleware system that we have developed,
which makes use of the logical mobility platform described above. It then
proceeds by describing a number of services that were built using it.
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4.1 The satin Component Metamodel and Middleware System

In order to engineer a mobile computing system to take advantage of the
logical mobility platform described above, we designed the satin component
metamodel, which we instantiated as the satin middleware system. The meta-
model is described in [25] in detail, and is outlined in the following paragraph.

satin is a local component model, where components reside in the same
address space and are interconnected using local references. A satin compo-
nent encapsulates functionality, from user interfaces and libraries, to protocol
stacks. A component offers functionality through well defined interfaces, called
facets. Components can have arbitrary metadata attached; satin allows for
dynamically querying the local system as to what components are available,
and provides support for late binding of components. Moreover, the satin
metamodel provides for the first class use of logical mobility primitives, allow-
ing instances to send and receive components dynamically. This is abstracted
in the metamodel by a Deployer component. Finally, satin provides an event
mechanism, that allows listeners to be notified of changes in component avail-
ability.

The platform described above was implemented in MiToolkit [7], and was
used by satin as a library to send and receive Java-based LMUs. The im-
plementations of satin and MiToolkit require 150329 bytes in total, and are
written in Java 2 Micro Edition (Connected Device Configuration / Personal
Profile). satin and MiToolkit enabled us to build a number of middleware
services, which are outlined below.

4.2 A Dynamic Advertising and Discovery Framework

One of the fundamental services of mobile computing middleware systems, is
the ability to reason about the environment. The environment is defined as the
network of devices that can, at a specific point in time, communicate with each
other. The devices can be both mobile and stationary - with the presence of
mobile devices, however, the environment can be rapidly changing. In order to
adapt, a mobile system needs to be able to detect changes to its environment.
As the device itself is also part of that environment, it also needs to advertise
its presence. A mobile device, however, may be able to connect to different
types of networks, either concurrently or at different times, with different
networking interfaces. There also are many different ways to do advertising
and discovery. Imposing a particular advertisement and discovery mechanism
can hinder interoperability with other systems, making assumptions about
the network, the nodes and environment, which may be violated at some later
stage or simply not be optimal in a future setting - something which is likely
to happen, given the dynamicity of the target area of this chapter.

From the point of view of satin, the ability to reason about the environ-
ment is translated into the ability to discover components currently in reach
and to advertise the components installed in the local system. This is achieved
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via the use of Remote and Discovery components, as well as Advertiser, Ad-
vertisable, DiscoveryFacet and ComponentListener facets. This is described in
detail bellow.

Components that wish to advertise their presence in the environment must
implement the Advertisable facet. Examples of advertisable components
include codec repositories, file transfer services or sensing capabilities. The
Advertisable facet exports a method that returns a message that is used for
advertising; thus, the advertising message allows the Advertisable component
to express information that it requires advertised.

An advertising technique is represented by an Advertiser component, which
is a component implementing the Advertiser facet. An advertiser component
is responsible for accepting the message of advertisable components, poten-
tially transforming it into another format and using it to advertise them. An
advertiser allows components that wish to be advertised to register for adver-
tising. The combination of component availability notification and advertiser
registration, allows an advertisable component to register to be notified when
specific advertisers are added to the system. The advertisable component can
then register to be advertised by them. Moreover, an advertisable compo-
nent can express that it requires a particular advertiser in its dependencies.
Thus, the semantics of the advertisable message are not defined and depend
on the advertisable component and on the advertising technique (i.e., the ad-
vertiser component) used. Note that a component can implement both the
Advertiser and the Advertisable facets. This allows for the advertising of
advertising techniques; in this way, for example, the existence of a multicast
advertising group can be advertised using a broadcast advertiser. Combined
with the use of logical mobility primitives, this allows a host to dynamically
acquire a different advertising and discovery mechanism, for a network that
was just detected. For example, upon approaching a Jini network [23], a node
can request and download the components that are needed to advertise to,
and use functionality from, the network.

Similarly, discovery techniques are encapsulated by Discovery Compo-
nents, which implement the DiscoveryFacet facet. There can be any number
of discovery components installed in a system. A discovery component acts
as registry of advertisable components located remotely. The middleware sys-
tem defines the RemoteComponent. It is used to represent components, which
have been found remotely. A remote component is an immutable component
that cannot directly export any functionality to local components. It only ex-
ports methods needed to access its properties, location and advertising mes-
sage. Hence, Discovery Components act as a collector of Remote component
references, which can be added and removed dynamically, as they are discov-
ered. Discovery components emit events representing the availability of remote
components. Local components can register a ComponentListener with a dis-
covery component, to be notified when components satisfying a given set of
attributes are located. ComponentListener is represented as a satin facet.
The advertising and discovery framework allows for Remote Components, to
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Fig. 6. The SEINIT architecture

be requested and deployed locally. Moreover, the logical mobility function-
ality encapsulated by satin, allows the framework and instantiations of the
framework to be dynamically deployed and used.

The framework itself requires 6668 bytes. We have implemented a cen-
tralised publish discovery and a multicast implementation of the framework.
Those require 22797 and 22161 bytes, respectively.

4.3 A Dynamic Pervasive Security Framework

The IST-funded SEINIT project [21] focused on the area of pervasive comput-
ing security. It involved the development of a trusted and dependable security
framework that could operate across multiple devices and heterogeneous net-
works. The main challenges were to provide an environment within which
users could communicate securely while moving through multiple different se-
curity domains, without having to worry about continually keeping track of
their changing environmental context. The aim of the project was to design
an architecture that abstracts away from the low-level technology-specific se-
curity configuration. Users are able to define security policies per domain.
The system is responsible for translating a policy to a concrete technology
and using it to transparently maintain the appropriate level of security per
domain.

Figure 6 provides a high-level illustration of the overall SEINIT architec-
ture. The SEINIT middleware is composed of three main building blocks: In-
formation, Decision and Action. Any information that is gathered and stored
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within the Information module (such as trust status, user policies, dynamic en-
vironmental context and device configuration), is then analysed and processed
within the Decision module. This generates and establishes the necessary se-
curity policy and configuration ready for enforcement. The Action module is
responsible for invoking the appropriate functionality required to enforce the
relevant policies.

As users move through different security domains, they may find them-
selves connected to a security domain that is either untrusted, or in which
some malicious activity is suddenly detected. At this stage, security re-
negotiation takes place automatically, to ensure that communication remains
appropriately secured to the level defined in the security policies. However,
this inevitably means that users may find themselves unable to communi-
cate securely unless they have a specific security technology’s functionality
available on their devices (e.g. IPSec configuration). To overcome this situa-
tion, SEINIT defines a class of code units called TechnoWrappers (Technology
Wrapper). Each TechnoWrapper encapsulates the functionality and configu-
ration required for invoking a specific security technology. A TechnoWrapper
is defined as a satin component that implements the Advertisable facet.

Once security re-negotiation has determined the specific technology re-
quired to secure the user’s communication through a given security domain,
the satin Discovery process is used during decision-making, to discover and
request the appropriate TechnoWrapper code unit from a satin advertising
server. On retrieval, action is taken by the satin Deployer to fetch and de-
ploy the appropriate TechnoWrapper code unit ready for invocation of its
functionality.

Each TechnoWrapper code unit encapsulates into an LMU both its own
code, and the data that it requires. This LMU is then transferred to the user’s
local device. On receipt of the LMU, the operations that permit inspection of
an LMU’s contents are used to extract the TechnoWrapper code, instantiate
it, and initialise it with the appropriate data ready for use on the user’s local
device.

The SEINIT TechnoWrapper code unit hierarchy consists of an abstract
class TechnoWrapper, written in 315 physical source lines of code and con-
taining functionality to encapsulate common data files into an LMU for
transfer, undertake common policy transformations, and initiate basic acti-
vation of the security technology. The subclasses TechnoWrapperIPSec and
TechnoWrapperPANA are defined, written in 78 physical source lines of code.
These contain specialised functionality to encapsulate the TechnoWrapper
code and any technology-specific data files into the LMU for transfer. The
transfer has been noted to occur in the order of tenths of a second across a
local-area network.

The use of satin in SEINIT shows the suitability of logical mobility tech-
niques in the security domain - in particular, as mobile devices cannot have all
the code needed to communicate securely in every possible security domain,
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logical mobility techniques and satin in particular are used to discover and
download the code when needed.

4.4 Miscellaneous Services

We conclude this section by showing how two smaller scale dynamically de-
ployable services built: a scripting service, and a service allowing the deploy-
ment of system (i.e. native) software packages.

The satin Scripting Framework

BeanShell [11], an open source Java source interpreter and scripting mech-
anism, was adapted to run as a satin component. This allows satin com-
ponents to use scripts and to be scripted. A “Shell” application was created
for satin using the BeanShell, which allows developers to manipulate the
container and its contents by typing Java statements at runtime. The Shell
component and BeanShell encapsulation require 10,028 bytes. Logical Mobil-
ity Units can be used to dynamically deploy both the scripting framework and
scripts.

System Package Management

In ongoing work to use satin in a programmable active networking project, we
required the ability to interface with the underlying operating system, and in
particular with the local package manager. In particular, we needed to create
satin components that used system software to do intelligent packet dropping
(using netfilter/IPTables) and media transcoding (using VideoLAN). The idea
behind the project, is that if there is not enough bandwidth, active networking
satin components will be deployed to routing nodes in the network and either
drop packets, or dynamically transcode a media stream to a lower bitrate. As
such, we needed the ability to express dependencies on system packages and
to dynamically ship and deploy them. Hence, we needed to interface with the
underlying package manager.

Using the DataType LME specialisation, we encapsulated RPM packages
into LMUs. We created RPMPackageManager as a component that tries to
install any RPM packages included in an incoming LMU to the underlying
system. It can also query the RPM database on the existence of particular
packages. RPMPackageManager was written in 135 physical source lines of code,
and exports functionality through an 8 line facet. Using it, we can send, receive
and deploy RPM packages through the code mobility service. Moreover, the
RPMPackageManager itself can be sent and received dynamically.
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5 Related Work

This section briefly discusses related approaches in conceptualising logical mo-
bility and critically outlines mobile middleware systems that employ its use. [5]
provides a conceptual framework for reasoning about code mobility, on which
this chapter is based. The paper discusses code mobility and its applications,
defines a mobile code system, as shown in Fig. 1, and examines the paradigms
of code mobility as discussed in Section 2.2. It also provides a survey of mobile
code toolkits and outlines some application domains for the use of mobile code.
There has also been research in evaluating the performance of logical mobility.
[6] describe a UML-based methodology for performance analysis of logically
mobile software architectures. UML sequence and collaboration diagrams, are
annotated with mobility-related stereotypes, allowing the developer to model
the code migration aspects of the system. The diagrams are then annotated
with probabilities and cost information, and a performance model of the ap-
plication is obtained, allowing the designer to evaluate the choices made. In
[16], the notion of location in a Mobile Unity [19] program is used to model the
various paradigms of transferring of code between nodes. Although similar to
what presented in this chapter, the main difference the described the transfer
of code, rather than the framework required to transfer it. µCode [14] is a
lightweight Java library which provides a minimal set of primitives allowing
code mobility. The framework presented in this chapter shares µCode’s objec-
tive to offer a very lightweight set of primitives to support code mobility. Its
non-obtrusiveness allows it to be easily integrated with various middleware
systems, and its small footprint makes it suitable for mobile middleware. The
framework described in this chapter differes in that it is modular, with each
module modeled, and addresses concerns of heterogeneity through the use
of metadata. There have also been a number of mobile middleware systems,
that employ some logical mobility techniques. The difference with our sys-
tem is that it is more general; other approaches offer the use of particular
paradigms to solve problems which are limited in scope, while others only use
logical mobility internally, hiding it from the application developer. Examples
include Lime[9], where mobile agents are used to share data, PeerWare[4],
where remote evaluation is used to perform operations on remote data sites
and Jini[1], where code on demand is used to offer services.

6 Conclusions

This chapter argued for the utility of adaptable mobile middleware services,
which can be dynamically deployed into a running system. Logical mobility
was presented as a technique for adaptation, its advantages for physical mo-
bility were outlined, and a conceptual framework that allows its flexible use
by mobile systems was detailed. The instantiation of this framework in the
satin middleware system was described, and its suitability was demonstrated,
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by illustrating a number of dynamically deployable services that were built
using it.

We are currently experimenting on using aspects of this framework in
the RUNES project [3], which would allow RUNES middleware instances to
dynamically adapt. Furthermore, we are currently porting the framework to
motes, using the Contiki operating system. Mitoolkit, satin and a number of
applications have been released as open source at [18].
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