
Managing Complex Documents Over
the WWW: A Case Study for XML

Paolo Ciancarini, Member, IEEE Computer Society, Fabio Vitali, and Cecilia Mascolo

AbstractÐThe use of the World Wide Web as a communication medium for knowledge engineers and software designers is

limited by the lack of tools for writing, sharing, and verifying documents written with design notations. For instance, the Z language

has a rich set of mathematical characters, and requires graphic-rich boxes and schemas for structuring a specification document.

It is difficult to integrate Z specifications and text on WWW pages written with HTML, and traditional tools are not suited for the

task. On the other hand, a newly proposed standard for markup languages, namely XML, allows one to define any set of markup

elements; hence, it is suitable for describing any kind of notation. Unfortunately, the proposed standard for rendering XML

documents, namely XSL, provides for text-only (although sophisticated) rendering of XML documents, and thus it cannot be used

for more complex notations. We present a Java-based tool for applying any notation to elements of XML documents. These XML

documents can thus be shown on current-generation WWW browsers with Java capabilities. A complete package for displaying

Z specifications has been implemented and integrated with standard text parts. Being a complete rendering engine, text parts and

Z specifications can be freely intermixed, and all the standard features of XML (including HTML links and form elements) are

available outside and inside Z specifications. Furthermore, the extensibility of our engine allows any additional notations to be

supported and integrated with the ones we describe here.

Index TermsÐDocument management systems, hypertext, active documents, XML, Java, specification documents,

Z notation.

æ

1 INTRODUCTION

IN recent years, we have seen the World Wide Web being
slowly transformed from an environment for sharing

documents and data among members of specialized
communities (be they scientific, research, artistic, social
ones, etc.) to a general-purpose new medium for advertis-
ing and marketing commercial enterprises to the public at
large. Since commercial use has a larger impact and
therefore power on the advances of the medium, the
specific needs of specialized communities have been over-
looked in the further development and advances of this
new medium.

For instance, the use of the WWW as an environment
for software design introduces new problems and chal-
lenges: The use of the WWW to support software process
workflows, sharing specification documents, allowing to
read and write them, and providing hypertextual links
among documents is felt as a hot topic [18], [27], but little
specific aid to software designers is available on the
WWW at large.

A very important need that many communities of
engineers have is the support for special notations that
are current or even absolutely necessary within that
community. Currently the Web is very poor in
supporting special notations. The typographical render-
ing of WWW documents is usually defined using the

HTML markup language; currently, it is the basis of
most intranet document management systems [2], [26].
In its many versions, HTML provides textual support
for elements such as input fields, buttons, choice lists,
etc. along with structural and formatting commands for
text within the data format of network documents,
and, of course, the hyperlinking capabilities that gave
it its name.

It has been extremely important that HTML allowed
both complex interfaces and proper and traditional text
content to be described in ASCII-based source docu-
ments. HTML has shown the way that text-based support
for nontextual content eases understanding, tool creation
and debugging of applications that deal with it.
Furthermore, they allow a complete intermix of different
concerns, such as interface elements and text character-
istics, thereby fostering the creation of complex interfaces
that are at the same time rich in content and sophisti-
cated in their interaction with the user.

On the other hand, HTML is limited in that it has only
a small set of allowable elements, that is, only those that
are explicitly defined in the standard. Whenever some
authors' needs exceed the capabilities of the elements
already defined in HTML, a different approach needs to
be used: Either the existing tags are abused for a different
purpose than that for which they were designed, or an
image is used, or a Java applet is created providing the
desired functionality.

These kludges have obvious and well known draw-
backs, that have lead to the development of many
alternative (and partial) solutions. For instance, Cascad-
ing Style Sheets (CSS) [21], [3] allow authors to separate
the efforts to specify special graphic effects and the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 4, JULY/AUGUST 1999 629

. P. Ciancarini, F. Vitali, and C. Mascolo are with the Department
of Computer Science, University of Bologna, Mura Anteo
Zamboni, 7±40127 Bologna, Italy.
E-mail: {ciancarini, vitali, mascolo}@cs.unibo.it.

Manuscript received 14 May 1998; revised 28 Sept. 1998.
For information on obtaining reprints of this article, please send e-mail
to: tkde@computer.org, and reference IEEECS Log Number 109084.

1041-4347/99/$10.00 ß 1999 IEEE

structure and determination of the actual content of the
document, allowing complex typographical rendering to
be built on top of still readable plain HTML documents.
XML [6] is another tentative in that direction: Instead of
forcing authors to the limited and closed set of
predefined elements, XML is a metamarkup language
that allow authors to define their own sets of markup
elements that are most appropriate to the specific class
of documents they are dealing with. Adjunct languages
(XSL, XPointer, and XLink) are used by authors to
associate these elements to some rendering or linking
semantics for their display on paper or screen. This
allows a definitive separation between the description of
structures and roles of the documents and the descrip-
tion of their graphical rendering on a computer terminal
or on a high resolution printer.

Neither solution is currently completely satisfying for
supporting specialized notations because both are only
concerned with supporting text-oriented content only.
Many notations have sophisticated need that go well
beyond texts. For instance, specification languages like Z
[29] are often based on specialized notations (mathematics
and logic symbols); it would be useful to be able to give a
visual interpretation of these symbols and to allow them to
be displayed on WWW pages.

The purpose of this paper is to report on a Java rendering
engine for XML data that we have implemented. The engine
allows standard typographical support for text-oriented
XML documents, as well as extensible graphical support for
additional needs, in particular for specialized notations. We
have created a complete graphical and typographical
support for formal specification documents written in Z.
The rendering engine we are describing works as a
completely autonomous applet inside unmodified Java-
enabled browsers such as Netscape Communicator or
Microsoft Internet Explorer.

The paper is structured as follows: In Section 2, we
summarize the state of the art of the rendering of Z
documents as hypertexts. In Section 3, we describe the idea
of extending HTML with Java using the displets concept.
Section 4 explains the implementation details of our Z
browser, whereas Section 5 describes the browser from the
point of view of the author. In Section 6, we draw some
conclusions and sketch our future work.

2 CREATING Z SPECIFICATIONS

2.1 Writing, Printing, and Visualizing Z
Specifications

Several tools exist to this date to help software
designers to write, test, and share documents containing
their Z specifications. A complete guide to all the
existing tools for Z can be found in the site:

http://www.comlab.ox.ac.uk/archive/z.html
We can divide the available tools into four main

categories: Fonts, browsers, editors, and type checkers.
True Type fonts for Z are available to use with

common word processors on many platforms including
Windows and Macintosh, but fonts of course only give
access to the special mathematical characters of the Z
language, forcing users to use nonspecific features of

available tools to create the graphic boxes of schemata
and other Z elements.

Customizable formatters such as LaTeX [20] are the most
common tools to write Z specifications. General style files
for LaTeX, such as oz.sty, fuzz.sty, ztc.sty, have been
published to precisely render Z specifications.

Logica has created a syntax-driven WYSIWYG editor
for Z on MS Windows platforms. Such an editor also
integrates a type checker and forces the production of
well-formed Z specifications by providing facilities for
building, editing, checking, and viewing Z specification
documents. Being WYSIWYG, the editor can display the
Z constructs and symbols as they would appear on a
printed page.

This paper [25] describes the Z Browser, an application
for displaying Z specifications running on MS Windows.
Such a tool is aimed at Z novices, and is integrated with a
complete help system for Z grammar and notation, thus it
supports the construction, syntactical check, and visual
layout of Z documents.

Several analysis tools also exist for Z specifications.
For instance, CadiZ [16] is an integrated suite of tools for
creating Z documents. It understands source files in
LaTeX and Word for Windows, and can visualize implicit
Z expressions (i.e. schema calculi) by showing their
expansions.

Finally, the ZTC [15] type checker accepts LaTeX-
formatted Z specifications as well as text-based ones.
ZTC also suggests using a special syntax based on
concatenation of ASCII characters for mathematical
symbols.

In summary, it is clear that Z is a highly structured
notation both graphically and semantically complex, and
that writing, checking, and displaying Z specification
documents is yet an unsolved issue.

2.2 Hypertext and Z Specifications

There are several good reasons to provide hypertext
functionalities to Z specifications. A complex specification
is intrinsically composed of many connected chunks
(schemas, etc.) that refer to each other in a peculiar,
often unpredictable way. Furthermore, the idea of literate
programming [19] requires that schemas and texts
interleave freely, so that the reader is provided with a
narrative explanation of the most complex schemas, and
a formalized and exact specification of vaguer descrip-
tions. These remarks naturally call for a hypertext
solution.

Moreover, collaboration and sharing are even better
reasons for providing hypertext support to Z specifica-
tions: Formal specifications are but one step in the
complex process of system design, verification, and
implementation [11]. Modern development processes are
enacted by teams of people that cooperate, interact, and
discuss. Being able to create, access, and verify formal
specifications within the usual tools of our everyday
work, publish them, connect them to the other deliver-
ables of the design and implementation processes would
allow a tighter integration between formal design and
actual implementation [8].

630 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 4, JULY/AUGUST 1999

Until recently, Z specifications could only be visua-
lized on the WWW by creating images in one of the
supported inline formats, such as GIF. This leads to a
very cumbersome and unnatural creation process, since
the Z specifications have to be created in a different
environment than the text, and furthermore nonspecia-
lized graphic editors have to be used and restrained in
order to produce graphically acceptable schemas. It is
also a very unnatural and clumsy way of accessing to
the information: An image of a schema is a completely
opaque object, where the subparts, the texts, the
formulas are completely inaccessible; it is a bitmap
that cannot be further processed because the content
and meaning have been lost. The content of a schema
cannot be searched, the specifications cannot be
indexed, analyzed or verified.

A first attempt to show Z specifications on the WWW
was described in [24], designing a plug-in for Netscape and
Internet Explorer that accepts Z specifications written using
one of the existing LaTeX styles.

Although this approach is very original it has two main
limitations: First, visualizing Z documents requires the
availability of the plug-in, which is architecture-dependent
(it only exists for MS Windows). Secondly, the LaTeX
format is alien to the available SGML-based formats
suggested for the WWW: In fact, writing Z schemas in
LaTeX requires a different syntax and approach than
writing the surrounding free-flow text in HTML, and the
specifications live independently of the host document. The
first problem has been addressed: The Z browser is
becoming a Java applet, which is architecture-independent
and can be run on most computers of the current
generation.

We know that also Bowen and others are working on a
Java applet to visualize Z schemas [4]. Our approach,
detailed in Section 5, is related but with relevant
differences.

2.3 Advantages of Markup Languages

HTML has been extremely successful in allowing unso-
phisticated network users to become authors of fairly
complex documents, even in the absence of widespread
editing tools. Nonetheless, there has been in the past two
or three years a widespread awareness ([28]) that HTML
has reached its potential, and that a change of paradigm
was necessary.

The major drawback of HTML is that it allows only a
prespecified set of elements. Authors can only use these
elements, and have to limit their authoring needs to what is
available within the existing language, or to force these
elements beyond their intended meaning.

HTML is an application of the Standard Generalized
Markup Language [28], that is, a class of documents
conforming to the SGML Document Type Definition
(DTD) that describes ªHTML documents.º SGML, being a
metalanguage describing classes of documents rather than
one specific class, is free of the above mentioned limitations
of HTML: By appropriately creating a custom class of
documents, and defining the legal elements therein, authors
can provide support for any kind of rhetoric need, however
complex and arcane.

Unfortunately, SGML is considerably more complex to
learn and design documents with than HTML, and it has
been felt that this would prevent its generalized adop-
tion. Therefore the SGML working group of the Word
Wide Web Consortium was asked to develop a new
mark-up metalanguage, namely the Extensible Markup
Language (XML) [6], to take the place of SGML on the
Web. XML documents would have to be straightfor-
wardly usable over the Internet, compatible with SGML,
and easy to create.

There are several standards being developed within the
XML framework: The most important is XML itself, a
metamarkup language that allows user to create their own
set of elements for their class of documents. XPointer [23]
and and Xlink [22] extend HTML linking mechanism by
providing external specifications of locations, multiple
links, external links, etc. XSL [10] associates rendering
behavior (e.g., character and paragraph settings) to XML
elements through a mapping and rewriting language. XML-
Namespace [5] allows elements coming from different
namespaces (document types, for instance) to live together
in the same document. Very important is MathML [14], a
markup language for mathematics, formerly part of the
unborn HTML 3.0 and subsequently detached in an
autonomous standard finally converted into XML. MathML
covers most needs for mathematical rendering, and is
capable of showing most of the strange glyphs that are part
of the Z language, but is not thought for Z and does not
provide support for other, more specific needs of the Z
notation.

Interestingly, in the Z community an SGML-based
language for Z specifications already exists: The Z Inter-
change Format (ZIF for short) [7] defines a portable
representation of Z, that can be used by all tools
supporting SGML. The ZIF is basically a Document Type
Definition (DTD), namely an SGML specification defining
the syntax of documents that contain Z specifications. In
[12], a study of the usage of the ZIF was presented,
according to which ZIF can be fruitfully used to create
editors for Z documents using standard SGML tools, and
that Z specifications encoded using ZIF could easily be
included in other SGML documents.

XML documents are valid SGML documents. Most
existing SGML DTDs can be used with no modifications
in an XML environment. Notably, the Z Interchange Format
is one of such DTDs.

It is, therefore, possible to use the definitions specified in
the ZIF within XML tools, in order to create web-friendly
visualizations of Z specifications. Alternatively, XML tools
allow the HTML tag set to be described and extended as
needed. By joining the HTML DTD with the ZIF DTD, and
producing a capable browser, it is possible to write HTML
documents that contain Z specifications as markup items,
instead of images, thereby keeping all the useful properties
that markup has over bitmaps.

In this paper, we report about one such tool, that
allow the display of text-based XML documents enriched
with Z specifications. This mechanism can obviously be
extended to handle the display of any kind of notation
within a XML document.

CIANCARINI ET AL.: MANAGING COMPLEX DOCUMENTS OVER THE WWW: A CASE STUDY FOR XML 631

3 DISPLETS AND MARKUP LANGUAGES

Displets were proposed in [30] as a way to extend HTML
documents using Java. The HTML language was extended
on a per-document basis by defining new tags as needed,
and providing Java classes to take care of their graphical
display. While not providing all the functionality and
flexibility of a full metamarkup language such as XML (see
Section 2), HTML extended with displets could allow all
kinds of specialized notations and graphical effects while at
the same time leveraging over the existing and well-known
set of elements defined by HTML.

Our first experiment with rendering arbitrary, nontext-
based markup extensions [30] was to modify an existing
browser to allow the parsing and the visualization of new
HTML-like elements. To do so, we took an early version of
the HotJava browser, whose source code was freely
available, and modified it so that it could accept on-the-
fly extensions of the HTML DTD and load the appropriate
classes (called displets) whenever the newly defined tags
were to be displayed. That experiment was extremely
limited, in that we used an old version of the Java language,
and worked only on a specific version of a specific browser.
Furthermore, we heavily relied on the existing rendering
architecture of the browser and just provided a minimal
effort implementation (basically a displet was just a
sequence of drawing instructions for the visualization of
the elements).

In [9], on the other hand, we reported about the
DispletManager applet, a general, extensible rendering
and architecture we have been working on, which can
be used for both extensions to HTML and straight
XML documents. This architecture is embodied in a
Java applet that can be run within any Java-enabled
browser such as Netscape Communicator or MS
Internet Explorer.

Fundamental design requirements for the rendering
engine have been:

. That it must be possible to create special code for
rendering arbitrarily odd data types, in particular
nontextual data (displets).

. That all displets must easily integrate with each
other. A chart element may have a mathematical
formula as one of the labels, and some staff
notation as another, where some notes may act as
hypertext links.

. That the rendering engine must work both for
extended HTML and for straight XML, and the
displet classes must be identical.

Fig. 1 shows the general structure of the DispletManager
applet.

The document chunk to be displayed, be it HTML or
XML, is loaded by the displet manager and parsed by
the appropriate parser. The resulting tree is then
recursively (depth-first) analyzed: The appropriate displet
classes are activated to create the rendering (i.e., the
display object) of their element on the basis of the
rendering of their subelements. No class is allowed direct
access to the screen: On the contrary, each displet creates

a (set of) off-screen bitmap(s) that its ancestor can pass,
ignore, modify, or add to.

Several specialized browsers exist for XML-based
special notations. For instance, WebEQ for MathML
[31] and Jumbo for CML, a XML-based notation for
chemical data [17]. Although a specialized browser
would have probably been more efficient and sophisti-
cated for Z elements, too, we felt that a general
rendering engines for all kinds of notation was preferred,
leading us to a more general and extensible architecture
for Z and other needs.

3.1 Applying Displets to XML Documents

The XML language allows authors to define their own set
of elements (tags) to structure and organize their
documents. Of course these elements do not have a
predefined meaning, nor even a predefined visualization.
For instance, while it is known that the ºH1º element in
HTML has both a structural role (the heading of a first
level section) and a graphical rendering (use a large font
and align it on the left), a corresponding ºmajor-headingº
element in a XML document would have no machine-
understandable structural role (but this is not a problem),
nor a known graphical rendering (we cannot even
determine whether the element is a block, a paragraph
or an inline element).

The XSL [10] language is used for associating
rendering information to an XML document. Each XML
document that needs to be displayed on screen or on a
printer would have a XSL document associated. The XSL
document contains a series of ºrulesº mapping the XML
elements of the document to one or more flow objects
(i.e., graphical objects such as blocks, paragraphs and
inline texts).

There are two competing syntax for XSL stylesheets: The
first is based on a very early proposal for XML stylesheets
[1], and is the one implemented on most applications and
discussed in most books about XML (for instance, [13]). The
second one, a W3C Recommendation, came out recently

632 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 4, JULY/AUGUST 1999

Fig. 1. The general structure of the DispletManager applet.

(August 1998, [10]) and still very little support can be found

for it. Our terminology, discussion and implementation

relies still on the first version.
Although in XSL the set of available flow objects is fixed,

we allow the specification of new flow objects, that can be

specified in the rules just like the standard ones. Each flow

object corresponds directly to a displet class.
What follows is an example of a simple XML

document contained in the DispletManager applet and

its associated XSL style rules. The style sheet refers to

two flow objects: A standard paragraph object (belonging

to the CSS family of flow objects available within the

standard XSL proposal), and a special ºreverseº flow

object that is prepared as a displet by the author of the

document:

<applet code=ºDispletManager.classº
width=500 height=200>

<param name = ºstyleº value = º

<xsl>
<rule>

<target-element value='para'/>
<css.div font-size='12'>

<children/>
</css.div>

</rule>

<rule>
<target-element value='rev'/>
<example.reverse>

<children/>
</example.reverse>

</rule>

</xsl> º>

<param name = ºXMLcodeº value=º

<para>This is an example of a text
rendered in

<rev>reverse</rev></para>

º>
</applet>

The DispletManager applet for XML has two argu-

ments: The first contains the style sheet document

according to the XSL rules, while the second one contains
the XML document that has to be displayed, using the

elements that are described in the XSL style sheet
associated.

Upon loading the applet, the displet manager will start
the XSL engine and read in the `style' parameter. This is

parsed (by a XML parser, because it is itself a XML
document) and organized. Then the XMLcode parameter is

read and parsed by the same XML parser, creating a tree of

elements and data.
The XSL engine will then match each element in the

XML document with the pattern contained in each XSL

rule. When the most suitable match has been found, the

rest of the rule (the action part) is executed, creating the
flow objects listed and feeding them their content

(usually the rendering of their subelements, as specified

by the < children= > tag).
In this example, the 'para' element of the XML document

matches the first XSL rule, triggering the creation of a 'div'

object of the standard CSS package (a paragraph) with a

specific parameter (font-size = 12), fed with the children of
the element (i.e., the words and the elements contained

within the para tags). Then the 'rev' element is considered,
and matched to the second rule of the stylesheet, triggering

the creation of a 'reverse' object belonging to the 'example'

package, fed with its content. As soon as the rendering of its
content has been readied (by creating the necessary

bitmaps), the displet class corresponding to the flow object

is activated.
Each displet will then produce a (list of) bitmaps of its

content. For instance, the 'div' displet of the CSS package

will set a few parameters (such as margins, line spacing,

font, and size) that may affect its subelements, wait for the
XSL engine to return control after its content has been

readied, and build its own content by combining the
bitmaps of each word into lines according to the given

constraints. Fig. 2 shows the above mentioned document

results on screen:

CIANCARINI ET AL.: MANAGING COMPLEX DOCUMENTS OVER THE WWW: A CASE STUDY FOR XML 633

Fig. 2. Rendering a simple displet.

4 THE RENDERING ENGINE

The rendering engine used by the DispletManager

applet consists of a set of Java classes that provide

the rendering for the appropriate document elements.

These classes are all subclasses of the DocElement class,

which provides the framework of the rendering

procedure.
All classes provide a createBitmap() method,

whose purpose is to create and return the bitmap of

the flow object of the considered markup element on

the basis of the bitmaps of its subelements. The

createBitmap() method is usually not seen by the

implementer of new classes, and provides the following

functionalities:

. An active drawing environment is managed.
The drawing environment is a set of para-
meters that are used by the rendering methods
of the classes in order to decide how to create
the bitmaps. For instance, a paragraph-like class
may set some parameters that will be used by
itself, such as margins, line spacing, alignment,
etc., and some that will be used by its
subelements, such as font name, font size, font
color, etc. The createBitmap() method allows
a displet to set its own attributes with the
setParams() method, and restores the pre-
vious situation when the displet is finished.
Since createBitmap() methods are recursively
activated, this creates a stack that provides the
proper parameters at any level of recursion.

. The rendering of subelements is managed. The
presence/absence of the element in the XSL rule
may cause or prevent the rendering of the subele-
ments of the current element.

. The rendering of the element is managed. After the
bitmaps of the subelements of the element have been
created (if appropriate), the createBitmap()

method calls the render() method, which in
turn creates the final bitmap (or set of bitmaps)
that will be returned. Different classes will
implement render() differently: For instance,
the render() method of a block element will
collect the bitmaps of its subelements in a
vertical stack (one above the other), and provide
a single bitmap of the whole element, while the
render() method of a paragraph will collect
its subelements side-by-side in lines of the given
width, and provide a bitmap for every line it
has created; this allow the element containing
the paragraph to decide how much of the
paragraph to display at a time (for instance, in
case of scrolling).

. Active elements are specified and created. Active
elements are those that will need to react to user and
system events after they have been displayed. For
instance, form elements and anchors have an
associated behavior that is activated when the user
selects them.

Fig. 3 shows the inheritance structure of the classes of the
module library.

DocElements can either be data, entities or tag
elements. DataElement classes are used for the content
of markup elements, i.e., #PCDATA in SGML and XML
DTDs. They can either be text or hidden elements.
EntityElements are provided for the management of XML
and HTML entities such as & or the definition of
new ones. TagElements are used for the creation of the
structure flow objects of the document; they are either
flow objects, block objects, inline elements or special
elements:

. A block element is a single object that stands
alone in the vertical layout of the document.
Paragraphs or tables are block elements. A flow
element is a block element that is built piecemeal.
While plain block elements are built from start to
end before the createBitmap() returns, flow
elements build each of their subelement and
return, and are called as many times as there
are subelements. This allows long and complex
elements to be rendered only for the possibly
small section that is actually displayed. For
instance, HTML and BODY are considered flow
elements, so that the display of an HTML
document can start as soon as the first object is
completed, and be interrupted when the available
display space is filled.

. Inline elements are elements that can be put side
by side with their siblings. Inline elements are
used within block elements and may be text-
based, images or something else. The StyledText
class allows the specification of text runs of
arbitrary styles. Inline elements specify the places
where they can be broken by creating as many
bitmaps as break points. This allows the contain-
ing paragraph or block element to determine
where the line should be broken.

. Special elements are completely tailorable. While
in the previous classes displet programmers can
only overload the setParams() and render()

methods, here all methods are overloadable, and
can be customized.

As an example, this is the complete source code of the
'reverse' displet:

package example;
import displet.*;

public class reverse extends StyledText {
public void

setParams(StyledTextParams p) {
Color c = p.fgColor ;
p.fgColor = p.bgColor ;
p.bgColor = c ;

}
}

The reverse displet is a subclass of the StyledText, which
is a subclass of the InlineElement class. These are classes for
text-based objects that behave as in-line elements (eg. bold,
italic, etc.). As it can be seen, the programmer of such a

634 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 4, JULY/AUGUST 1999

displet only has had to specify a parameter and have the
render() method of its superclass handle all the details.
The displets for showing Z specifications are shown in the
following section.

5 THE Z BROWSER

The main extension to HTML we have considered
using displets is the implementation of the complete
ZIF DTD. Authors writing Z specifications can create
documents containing their Z specifications in a
markup language similar to HTML and completely
intermixable with plain text and other HTML features
such as links, tables, etc.

The ZIF format defines several elements (tags) for the
building blocks of the language, such as schemas,
definitions, etc., and several entities (literal macros) for
the special characters inherited from mathematics and
logics. Each element is implemented by a displet that
creates a bitmap where the content of the element is
appropriately composed and the graphical elements such
as boxes, lines, etc. are then added. Entities on the other
hand are elements of a graphical alphabet that is
contained in a single GIF image and is loaded with the
displets.

The following is an example of a Z schema using the
Z Interchange format:

<givendef>
NAME, DATE

</givendef>
<schemadef>

BirthdayBook
<decpart>

<declaration> known: &pset;
NAME</declaration>

<declaration> birthday: NAME &pfun;
DATE </declaration>

</decpart>
<axpart>

<predicate>known = &dom;

birthday</predicate>
</axpart>

</schemadef>

A schema is defined by a tag called schemadef,
which contains three elements: the name of the
schema, a declaration part, and an axiom part. The
declaration part contains one or more declarations,
and the axiom part contains zero or more predicates.
Appropriate ordering and nesting of elements is
enforced by the DTD, and is checked when parsing
the document. The notations ª&pset;º, ª&pfun;º, and
ª&dom;º are three entities (respectively, the partial set
symbol, the partial function symbol, and the domain
symbol) that will be substituted by the corresponding
element in the graphical alphabet containing all the
relevant Z symbols. The displet manager can appro-
priately show document bits as the previous one in a
WWW browser.

Since many Z specifiers use LaTeX to produce their
Z documents, we have developed an off-line translator
called ªZed2XMLº that transforms Z specifications
written in LaTeX using style oz.tex into a corre-
sponding HTML document with the appropriate ex-
tension.

For instance, given the following Z specification (the
basic birthday book example from [29]):

[NAME, DATE]

CIANCARINI ET AL.: MANAGING COMPLEX DOCUMENTS OVER THE WWW: A CASE STUDY FOR XML 635

Fig. 3. The inheritance structure of the module library.

corresponding to the following LaTeX source document:

\documentclass[Italian, 12 pt, twoside,
openright]{report}

\usepackage{amsfonts}
\usepackage{oz}

\begin{document}

\begin{zed}
[NAME, DATE]
\end{zed}

\begin{schema}{BirthdayBook}
known: \power NAME\\
birthday: NAME \pfun DATE
\where
known = \dom birthday
\end{schema}
\end{document}

The Zed2XML application transforms the previous

LaTeX example in the corresponding applet specification:

<applet archive=ºdisplet.zipº
code=ºXMLManager.classº
width=450 height=200>

<param name = ºXMLcodeº value=`

<givendef>
NAME,
DATE

</givendef>
<schemadef>

BirthdayBook
<decpart>

<declaration>
known: &pset;

NAME
</declaration>
<declaration>

birthday:
NAME

&pfun; DATE
</declaration>

</decpart>
<axpart>

<predicate>
known = &dom; birthday

</predicate>
</axpart>

</schemadef>

`> <param name = ºstyleº value='
<xsl>

<import name=ºhtmlcss.stlº/>
<import name=ºZpackage.stlº/>

</xsl>

'></applet>

The output of Zed2XML is the HTML specification of the
DispletManager applet. As it can be seen, we are following
the ZIF format quite strictly. For the sake of brevity and
reusability, standard stylesheets are used and invoked by a
simple import command in the specification of the applet.

The 'htmlcss.stl' document contains the XSL rules to use
HTML elements within XML documents. For instance, we
are using here HTML links with the A tag. This is the
relevant excerpt from the 'htmlcss.stl' document:

<rule>
<target-element type=ºaº>

<attribute name=ºhrefº value=º%2º/>
</target-element>
<css.a href=º%2º>

<children/>
</css.a>

</rule>

The 'Zpackage.xsl' document contains the XSL rules to
use the Z displets within XML documents. This is an
excerpt from this stylesheet:

636 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 4, JULY/AUGUST 1999

Fig. 4. Visualization on the WWW of a Z schema.

<rule>
<target-element type=ºgivendefº/>
<zpack.givendef>

<children/>
</zpack.givendef>

</rule>

<rule>
<target-element type=ºschemadefº>
<zpack.schemadef>

<children/>
</zpack.schemadef>

</rule>

When run on a WWW browser, the previous documents is
shown as in Fig. 4.

We remark that all displets integrate with each other and
can refer to each other freely. In our case, the Z schema
contains a hypertext link described in a different package. Z
elements and plain text based XML elements freely
intermix: It is possible to put standard HTML tags within
Z schemas; for instance an author may require that some
declarations of a schema are written in bold. The Zed2XML
translator automatically connects types used in declarations
to their definitions using plain HTML links. The author may
freely add or modify the available links and HTML features,
and include additional HTML elements, as well as native
XML elements or elements belonging from other packages
of displets.

6 CONCLUSIONS

We have presented a tool for visualizing Z specifications on
the WWW: It fits every browser and every platform. The
tool is based on XML displayed through ªdisplets.º

The advantage of having a Z browser running on all
platforms is essentially that sharing of Z documents is
encouraged by the diffusion of WWW on the Internet.

A possible application can be a groupware tool for
editing and versioning formal documents; such a tool could
be integrated with other software tools in order to improve
the specification phase of the software process.

The reuse of parts of documents obviously benefits from
having these hypertextual Z documents. The tools will also
improve the search of pieces of specifications in complex
documents: Every element in the Z specification can be
labeled or linked to other pieces of documents or to URL on
the Internet.

XML can be further extended in order to include new
symbols and integrate Z specification with other notations:
New Java classes have to be written for the new symbols.

Our most ambitious goal consists of defining all XML
displets necessary in an organization to support the intranet
management system of formal documents typical of such an
organization. For instance, we are currently working on
displets for managing UML documents.

A displet site is available at
http://www.cs.unibo.it/~fabio/displet.html

This site contains the code for the rendering engines,
examples for both HTML and XML, and a list of all the
displets we have created so far.

ACKNOWLEDGMENTS

We would like to acknowledge the help and contributions
of our students, Alfredo Rizzi and Stefano Pancaldi, and
the help and suggestions of Michael Bieber and Chao-Min
Chiu. We also would like to thank the anonymous
reviewers for their helpful comments and suggestions on
both the paper and the project itself.

REFERENCES

[1] S. Adler, A. Berglund, J. Clark, I. Cseri, P. Grosso, J. Marsh, G.
Nicol, J. Paoli, D. Schach, H. Thompson, and C. Wilson, ªA
Proposal for XSL,º submitted to W3C; http://www.w3.org/TR/
NOTE-XSL.html, Aug. 1997.

[2] J. Bannan, Intranet Document Management, Addison-Wesley, 1997.
[3] B. Bos, H. Lie, C. Lilley, and I. Jacobs, ªCascading Style Sheets,

Level 2 CSS2 Specification,º W3C recommendation; http://
www.w3.org/TR/REC-CSS2, May 1998.

[4] J. Bowen and D. Chippington,, ªZ on the Web Using Java,º J.
Bowen, A. Fett, and M. Hinchey, eds., Proc. 11th Int'l Conf. Z
Formal Method (ZUM), Lecture Notes in Computer Science, vol.
1,493, pp. 66±80, Springer-Verlag, Berlin, Sept. 1998.

[5] T. Bray, D. Hollander, and A. Layman, ªNamespaces in XML,º
World Wide Web Consortium Working Draft, http://
www.w3.org/TR/WD-xml-names, Sept. 1998.

[6] T. Bray, J. Paoli, and C. Sperberg-McQueen, ªExtensible Markup
Language (XML),º World Wide Web J., vol. 2, no. 4, 1997.

[7] S. Brien and J. Nicholls, ªZ Base Standard,º Programming
Research Group, Nov. 1992.

[8] P. Ciancarini, A. Fantini, and D. Rossi,, ªA Multi-Agent Process
Centered Environment Integrated with the WWW,º Proc. Sixth
IEEE Workshops Enablings Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE), pp. 113±120, Boston, IEEE CS Press, Los
Alamitos, Calif., June 1997.

[9] P. Ciancarini, A. Rizzi, and F. Vitali, ªAn Extensible Rendering
Engine for XML and HTML,º Computer Networks and ISDN
Systems, vol. 30, nos. 1-7, pp. 225±238, 1998.

[10] J. Clark and S. Deach, ªExtensible Stylesheet Language (XSL),º
Version 1.0, World Wide Web Consortium Working Draft, http://
www.w3.org/TR/WD-xsl, Aug. 1998.

[11] M. Fraser, K. Kumar, and V. Vaishnavi, ªStrategies for Incorpor-
ating Formal Specifications in Software Development,º Comm.
ACM, vol. 37, no. 10, pp. 74±86, Oct. 1994.

[12] D. German and D. Cowan, ªExperiments with the Z Interchange
Format and SGML,º J. Bowen and M. Hinchey, eds., Proc. Ninth
Int'l Conf. Z Formal Specification Notation (ZUM), Lecture Notes in
Computer Science, vol. 967, pp. 224±233, Limerick, Ireland,
Springer-Verlag, Berlin, Sept. 1995.

[13] S. Holzner, XML Complete, McGraw-Hill, 1998.
[14] P. Ion and R. Miner, ªMathematical Markup Language (MathML)

1.0 Specification,º W3C recommendation, http://www.w3.org/
TR/REC-MathML, Apr. 1998.

[15] X. Jia, ªZTC: A Type Checker for ZÐUser's Guide,º Inst. for
Software Eng., Dept. of Computer Science and Information
Systems, DePaul Univ., Chicago, 1994.

[16] D. Jordan, ªCADiZÐComputer Aided Design in Z,º S. Prehn and
W. Toetenel, eds., Proc. VDM: Formal Software Development
Methods, Lecture Notes in Computer Science, vol. 551, pp. 685±
690, Springer-Verlag, Berlin, Oct. 1991.

[17] ªJumbo browser for CML,ºhttp://www.venus.co.uk/omf/cml/.
[18] G. Kaiser, S. Dossick, W. Jiang, and J. Yang, ªAn Architecture for

WWW-Based Hypercode Environments,º Proc. 19th Int'l Conf.
Software Eng. (ICSE), pp. 3±13, Boston, May 1997.

[19] D. Knuth, ªLiterate Programming,º The Computer J., vol. 27, no. 2,
pp. 97±111, May 1984.

[20] L. Lamport, LaTeX: User's Guide and Reference Manual, Addison-
Wesley, 1986.

[21] H. Lie and B. Bos, Cascading Style Sheets: Designing for the Web,
Addison-Wesley, 1997.

[22] E. Maler and S. DeRose, ªXML Linking Language (XLink),º
World Wide Web Consortium Working Draft, http://
www.w3.org/TR/WD-xlink, Mar. 1998.

CIANCARINI ET AL.: MANAGING COMPLEX DOCUMENTS OVER THE WWW: A CASE STUDY FOR XML 637

[23] E. Maler and S. DeRose, ªXML Pointer Language (XPointer),º
World Wide Web Consortium Working Draft, http://www.w3.
org/TR/WD-xptr, Mar. 1998.

[24] L. Mikusiak, M. Adamy, and T. Seidmann, ªPublishing Formal
Specifications in Z Notation on the WWW,º M. Bidoit and M.
Dauchet, eds., Proc. Conf. Theory and Practice of SW Development
(TAPSOFT 97), pp. 871±874, Lecture Notes in Computer Science,
vol. 1214, Lille, France, Springer-Verlag, Berlin, 1997.

[25] L. Mikusiak et al., ªZ Browser: A Tool for Visualization of Z
Specifications,º J. Bowen and M. Hinchey, eds., Proc. Ninth Int'l
Conf. Z Formal Specification Notation (ZUM), Lecture Notes in
Computer Science, vol. 967, pp. 510±525, Limerick, Ireland.
Springer-Verlag, Berlin, Sept. 1995.

[26] S. Ressler, The Art of Electronic Publishing, Prentice Hall, 1997.
[27] W. Scacchi and J. Noll, ªProcess-Driven IntranetsÐLife Cycle

Support for Process Reengineering,º IEEE Internet Computing, vol.
1, no. 5, pp. 42±51, Sept./Oct. 1997.

[28] C. Sperberg-McQueen and R. Goldstein, ªHTML to the Max:
A Manifesto for Adding SGML Intelligence to the World
Wide Web,º Electronic Proc. Second Int'l WWW Conf.: Mosaic
and the Web, 1994.

[29] J. Spivey, The Z Notation: A Reference Manual, second ed., Prentice
Hall, 1992.

[30] F. Vitali, C. Chiu, and M. Bieber, ªExtending HTML in a
Principled Way with Displets,º Computer Networks and ISDN
Systems, vol. 29, nos. 8-13, pp. 1,115±1,128, 1997.

[31] ªWebEQ,ºhttp://www.webeq.com/.

Paolo Ciancarini received the PhD degree in
computer science from the University of Pisa,
Italy, in 1988. He is now an associate professor
of computer science at the University of Bolog-
na, Italy. His research interests include coordi-
nation models and agent-oriented languages,
Web-based document management systems,
and environments, methods, and tools for soft-
ware engineering.

Fabio Vitali received the PhD degree in compu-
ter science and law from the University of
Bologna, Italy, in 1994. He is now a research
associate of computer science at the University
of Bologna. His research interests include user
interface design, hypertext models, markup
languages, versioning systems, and coordination
languages.

Cecilia Mascolo is a PhD degree student in the
Department of Computer Science of the Uni-
versity of Bologna, Italy, where she received
her Laurea degree in 1995. Her research
interests include specification, analysis, and
prototyping of software systems containing
mobile components.

638 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 4, JULY/AUGUST 1999

