IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006 1

The SATIN Component System—A Metamodel
for Engineering Adaptable Mobile Systems

Stefanos Zachariadis, Cecilia Mascolo, and Wolfgang Emmerich, Member, IEEE Computer Society

Abstract—Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular,
smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution
environments. Adaptation requires the ability to reconfigure the deployed code base on a mobile device. Such reconfiguration is
considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN
(System Adaptation Targeting Integrated Networks) component metamodel, a lightweight local component metamodel that offers the
flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is
implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives
defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of
lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a
number of existing and new applications, including an active network platform developed for satellite communication at the European
Space Agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the

advantages gained.

Index Terms—Distributed objects, components, containers, mobile systems, middleware, pervasive computing, mobile code.

1 INTRODUCTION

OBILE devices, such as mobile phones, Personal Digital

Assistants (PDAs), MP3 players, and palmtop and
laptop computers, are becoming increasingly popular. This
has lead to a further and rapid decentralization of
computing, with devices becoming more capable, cheaper,
more mobile, and even fashionable personal items. The
recent advances in wireless networking (UMTS, Bluetooth,
IEEE 802.11, etc.), combined with the popularity of mobile
devices, allow users to carry sophisticated computing
environments that facilitate access to local and remote
information on the move.

In traditional computing systems, application developers
can often assume that their software will be executed by a
powerful machine that is always connected to a centralized
network using a high bandwidth link. Similarly, traditional
distributed systems are usually composed of powerful
hardware, interconnected using high bandwidth network
links over a fixed topology. Mobility breaks this static model
as mobile devices are considerably less powerful and stable
in terms of computational resources available, such as CPU
speed, battery, network bandwidth, and volatile and
persistent memory. Moreover, the mobile network topology
is considerably more dynamic, as mobile devices may come
and go freely. Mobile devices frequently aggregate dyna-
mically into various hybrid, independent, and even
incompatible (Infrared and Bluetooth, for example) net-
works. Although devices are becoming increasingly more
capable, they will, for the foreseeable future, lag behind

o The authors are with the Department of Computer Science, University
College London, Gower Street, WC1E 6BT, London, UK.
E-mail: {s.zachariadis, c.mascolo, w. emmerich}@cs.ucl.ac.uk.

Manuscript received 18 Aug. 2005; revised 13 Aug. 2006, accepted 13 Aug.
2006; published online DD Mmmm, YYYY.

Recommended for acceptance by R. Schlichting.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0221-0805.

0098-5589/06/$20.00 © 2006 IEEE

their fixed counterparts with respect to their available
resources, particularly in power provision and network
connectivity, which is often fluctuating in bandwidth and
intermittent.

Mobile computing systems may also be highly hetero-
geneous. This heterogeneity occurs in software and hard-
ware. Mobile devices host a large number of different
applications. We refer to these mobile devices as hosts in the
remainder of this article. Mobile hosts use different
operating systems and middleware and often have more
than one network interface. Moreover, mobile applications
are exposed to a highly dynamic environment in terms of their
local and remote context. The current state of practice in
engineering software for mobile systems offers little
flexibility to accommodate such heterogeneity and varia-
tion. Application developers have to decide at design time
what possible uses their applications may have; the
applications do not change or adapt once they are deployed
on a mobile host. Mobile applications are currently
developed in monolithic architectures, which are more
suitable to a fixed execution context rather than a dynamic,
mobile one. Interaction with their environment and peers is
either not considered or is very constrained. Moreover,
mobile applications are usually monolithic [1], composed of
a single large file making little use of libraries; thus,
maintenance and updating of an application is difficult.

We argue that more flexible solutions are required that
empower systems to automatically adapt to changes in the
environment and to users’ needs. Power [2] postulated
more than a decade ago that it is common in distributed
systems that “when something unanticipated happens in the
environment, such as changing user requirements and/or
resources, the goals may appear to change. When this occurs the
system lends itself to the biological metaphor in that the system
entities and their relationships need to self-organize in order to
accommodate the new requirements.” Along those lines, this

Published by the IEEE Computer Society

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

work considers a self-organizing or adaptive system as a
system that is able to mutate to accommodate changes to its
requirements. As a highly dynamic system, a mobile system
encounters, by definition, changes to its requirements to
which it needs to adapt. We investigate how logical
mobility primitives can be used and implemented to
support such adaptation.

Logical mobility is defined as the migration of a partial
or complete application or process from one host to another.
Logical mobility, commonly implemented using code
mobility [3] techniques, allows systems to send and receive
information that includes binary code compiled for a
specific architecture, interpreted code and bytecode com-
piled for a virtual platform, such as the Java Virtual
Machine (JVM), but also application data such as profiles,
remote procedure call parameters, etc. Logical mobility has
been classified into the following paradigms: Remote
evaluation (REV) suggests that a host sends code for
execution to another host. This paradigm is employed by
Distributed. NET [4] and similar distributed computing
environments, which work using the divide and conquer
paradigm to break large computational tasks into smaller,
more manageable tasks and distribute those to machines
around the world. The results are then sent back to the
server orchestrating the problem, which can recompose the
answer to the original challenge. The Code on Demand (COD)
paradigm enables a host to request code from another
machine. Following the request, the code is transferred to
the requesting host and can then be executed there. This is
an example of dynamic code update, whereby a host or
application can update its libraries and available code base
at runtime. A Mobile Agent (MA) is an autonomous piece of
code. It is injected into the network by a host to perform
some tasks on behalf of a user or an application. The agent
can autonomously migrate from one execution environment
to another. COD, REV, and MAs are defined in [3]. We have
identified in [5] that mobile systems require the flexible use
of all the above logical mobility primitives and we show in
this paper that these primitives should be applied to
components [6].

Component-based development decouples a system into
a set of interacting components with well-defined inter-
faces. Traditional component metamodels, such as Micro-
soft’'s Component Object Model (COM), OMG’s CORBA
Component Model, or Sun’s Enterprise Java Bean compo-
nent model, provide only very limited support for logical
mobility. In particular, they do not allow the code that
implements a component to be deployed at runtime onto a
remote host. In this paper, we present a component
metamodel that supports logical mobility as a first-class
concept and we show how this combination supports the
construction of adaptable mobile systems.

Component metamodels for distributed computing are
often implemented in middleware. We follow the same
approach and discuss a middleware that implements our
component metamodel. Hence, the novel contribution of
this paper is the flexible integration of logical mobility
primitives into a component metamodel for mobile envir-
onments and an account of its implementation using a
middleware approach. We evaluate the approach by means
of a number of case studies that develop applications using
the component metamodel and its middleware-based
implementation.

The paper is structured as follows: Section 2 motivates
this work by presenting an industrial example that shows
the usefulness of mobile adaptation. Section 3 presents the
SATIN component metamodel, which can be used to
engineer adaptable component-based mobile systems. Sec-
tion 4 presents the SATIN middleware and shows how the
abstractions it provides can be used to engineer adaptable
mobile systems. Section 5 describes the implementation of
the SATIN middleware system and evaluates it by means of
replicated experimentation. The evaluation addresses both
quantitative and qualitative aspects and relies on a number
of existing and new applications and projects that use
SATIN. Section 6 presents a comparison with related work,
while Section 7 concludes the paper and highlights ideas for
future work.

2 BACKGROUND AND MOTIVATION

In this section, we illustrate a motivating example and
define the concept of adaptation, which will then be used
throughout the paper.

2.1 Case Study: Mobile Application Development,

Deployment, and Maintenance in Practice
The following paragraphs sketch the current state of
practice in engineering mobile applications. We discuss
the state of the research literature on mobile applications in
Section 6. We then discuss its limitations and show how an
adaptive approach based on components together with
logical mobility can help in overcoming them.

Consider one of the recently released smart phones, the
Palm Treo 650. The device, which runs PalmOS [1], has a
312 MHz ARM processor, wireless (Bluetooth, infrared,
cellular, and optional WiFi), and wired (serial) network
connectivity. It has 32 megabytes of RAM and a memory
expansion mechanism. The current version of PalmOS
allows for the creation of event driven, single-threaded
applications. All files (applications and data) are stored in
main memory. Developers compile an application into a
single Palm Resource File (PRC). The operating system
allows for limited use of libraries. Applications are
identified by a unique 4 byte identifier, the Creator ID. A
PalmOS device usually ships with personal information
management (PIM) software installed.

A device like this can be used to connect to the
centralized network using WiFi or cellular connectivity,
but also to various ad hoc networks using the infrared or
Bluetooth interfaces. The potential for interaction with its
environment is great. However, PalmOS only provides
limited primitives for this. The result is that such devices
are still seen as stand-alone and independent computers,
which interact mainly with a desktop to synchronize
changes to shared data—interaction with their environment
and peers is either not considered or is very limited. Thus,
although physically mobile, they are logically static systems.

This model has various disadvantages: There is little
code sharing between applications running on the same
device. There is no middleware providing higher level
interoperability and communication primitives for applica-
tions running on different devices. Applications are mono-
lithic, composed of a single PRC, which makes it impossible
to update part of an application. The procedure needed to
install third party applications is difficult. It involves either

ZACHARIADIS ET AL.: THE SATIN COMPONENT SYSTEM—A METAMODEL FOR ENGINEERING ADAPTABLE MOBILE SYSTEMS 3

locating a desktop computer and performing the installa-
tion there or having the application sent by another device
directly, a procedure which is not automated. In fact, the
only popular updates of mobile phone software are the
download of ring tones and games. The source of the
download is usually the network operator or another
centralized agency. Cellular bandwidth, which is expensive
for both user and operator, is used for the transfer.

A component-based approach using logical mobility
primitives would have several advantages:

e Decomposition of applications as interoperable com-
ponents would allow for updating individual parts,
rather than replacing the application completely.

e Componentization would promote sharing of im-
plementations at runtime, which preserves limited
resources of mobile devices.

e Logical mobility primitives would facilitate discov-
ery and retrieval of components existing on any host
that is in reach, in a peer-to-peer fashion. This would
make application installation much more scalable.

e A component model would provide interaction and
communication primitives between components at
an abstraction level that is higher than the network
protocol stack.

e A component model could support the removal of
infrequently used components when the system is
running out of resources. The components could be
transparently retrieved from peers or a centralized
host when needed again.

Note that, in other, less popular mobile operating
systems, such as Windows CE-based environments and
Linux, the use of components is more prevalent, especially
by parts of the operating system. This paper, however, does
not advocate the use of general component systems for
physical mobility, but rather the use of component systems
with logical mobility. Thus, most of the problems outlined
above still exist in these systems as those devices also do not
interact with services available in their environment and
applications are usually monolithic and static. It can be
concluded that the monolithic nature of current mobile
computing systems contributes to their rigidity: Mobile
software is deployed once and is very rarely updated.
Moreover, mobile systems lack a generalized infrastructure
or middleware system to support interaction with their
environment and adaptation to its changes.

2.2 Mobile Adaptation

This work considers adaptation to be the process by which a
system dynamically acquires or discards functionality. Mobile
adaptation is always a reactive process. It is an action that
occurs as a consequence of a particular event or group of
events. An event can be a change to the environment, a change
to the local context, or a direct result of a user action.

The importance of mobile adaptation is highlighted in
[7], where it is argued that mobility exacerbates the tension
between autonomy and interdependence that is characteristic of
all distributed systems. To function successfully, mobile elements
must be adaptive.

Assuming that events have been emitted that should
trigger an adaptation process, it is important to decide on
how the system will adapt. A taxonomy for adaptation is
defined in [7]. At one end of the spectrum is laissez-faire

adaptation. Systems that offer laissez-faire adaptation
provide the mechanisms needed to adapt but lack a central
arbitrator that encapsulates the decision logic behind the
adaptation process. This is delegated to the application,
which is fully aware of and guides the adaptation process.
At the other end is application-transparent adaptation, where
the application is not aware of the adaptation process; the
latter happens internally in the underlying system. In
between, there are various types of application-aware
adaptation, where the application can influence the central
arbitrator that handles the adaptation process. We adopt a
laissez-faire approach, i.e., we do not provide the decision
logic on how to adapt, but, rather, a structured way to
engineer a system for adaptation. We also provide the
primitives needed to adapt. A laissez-faire adaptable
system can be combined with various decision logic layers
that can be used to arbitrate the adaptation process. In fact,
we have built a decision logic layer for SATIN in [8].

The reader may consider the requirement for adaptation
contradictory to the current success of nonadaptive mobile
systems. This paper claims, however, that adaptation
primitives are necessary for the emergence of a new class
of mobile systems, the pervasive computing systems that
adapt to changes in their environment. In fact, sales of
traditional mobile devices (such as PDAs) are falling
dramatically [9], and this has been explained as a saturation
of the market with devices that do not offer anything new.

3 THE SATIN COMPONENT METAMODEL

Although component-based systems are widely used in
desktop and client/server-type applications, their use in
mobile applications is very limited. This can be attributed to
many factors. In particular, the use of existing component
models implies a computational, memory, and storage' cost
over traditional monolithic systems; until recently, mobile
devices had limited resources that could not accommodate
such cost. With devices becoming increasingly more
capable, this barrier has been effectively lifted and mobile
devices are able to support lightweight component models.

As distributed component systems already address
issues of heterogeneity which are inherent in mobile
computing, it would appear that they are suitable for
mobile devices. A comparison between distribution and
collocation for object systems is presented in [10]. Dis-
tributed systems, such as the OMG’s Common Object
Request Broker Architecture [11] (a comparison of this work
with the CORBA Component Model is presented in
Section 6), Microsoft’s Component Object Model [12], or
the Enterprise Java Bean component model [13], are not
suitable for mobile adaptation in a dynamic environment
for the following reasons:

1. Size. Mobile devices have very limited resources.
Distributed component model implementations are
memory and CPU intensive to deliver functionality
such as transactions, persistence, and concurrency
control, which are often not essential in a mobile
setting. These primitives can be provided at a higher
level (ie., built using the component model) if
needed.

1. Depending on the actual system, a component-based approach can
lead to a decreased storage cost because of code (component) reusability.

Interface

facets

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

SATIN Object

! Instance I | DataType I

SATIN Component

components

notifies

—|> getAttribute(k: Datatype) : Attribute

Container

implements

Deployer

1.+

deploys meve

properties

Reflective

deployLMU(Imu: LMU) : short

1a*
Attribute

key : DataType properties

value : DataType

/\

MutableAttribute

LogicalMobilityUnit

deployed

Fig. 1. The SATIN metamodel.

2. Synchronization Primitives. The most widely available
synchronization primitive in distributed component
models is a remote procedure call (RPC). RPCs
assume continuous, reliable, and low-latency net-
work connections to deliver synchronous invoca-
tions and fail with exceptions if these conditions are
not met. In mobile networks, intermittent, unreliable,
and delayed network connectivity is the norm and,
as a result, the synchronous interaction paradigm
supported by RPCs in distributed component
models is unsuitable [14].

3. Static deployment. Distributed component models
assume that an administrator deploys components
across hosts. The physical mobility and volatile
nature of the network connectivity of mobile devices
dictate that the devices form highly dynamic net-
works, which may even be without a central
administrator who takes deployment decisions.
Even when the latter is not the case, mobile devices
form significantly less predictable topologies than
distributed systems in fixed networks. As a result,
mobile applications are hardly comparable to stan-
dard distributed systems in terms of structure and
deployment.

We now present the SATIN component metamodel,
which is a local component metamodel for mobile adaptive
systems. The rationale for SATIN’s design decisions is given
in terms of the case study presented in Section 2.1.

3.1 sATIN Component Metamodel Overview

The SATIN component metamodel is a local, or in process,
reflective component metamodel for applications hosted on
mobile devices. The model uses logical mobility primitives
to provide distribution services and offers the flexible use of
those primitives to applications; instead of relying on the

invocation of remote services via the network, SATIN
components are collocated on the same address space.
The model supports the remote cloning of components
between hosts, providing for system autonomy when
network connectivity is missing or is unreliable. As such,
an instance of SATIN is represented as a collection of local
components, interconnected using local references and
well-defined interfaces, deployed on a single host. The
model also offers support for structural reflection [15] so that
applications can introspect which components are available
locally, choose components to perform a particular task,
and dynamically change the system configuration by
adding or removing components.

The SATIN component metamodel, as shown in Fig. 1, is
a Meta Object Facility (MOF) [16]-compliant extension of
the UML metamodel [17]. It builds upon and extends the
UML concepts of Classifier, Node, Class, Interface, Data-
Type, and Instance. We have chosen the MOF metamodel
rather than using the UML extension mechanisms because
the concepts introduced by SATIN are too radically different
from existing component models to be defined by stereo-
types or tagged values. The most novel aspect of the
component model is the way in which it offers distribution
services to local components, allowing instances to dyna-
mically send and receive components at runtime. We
describe the model informally in the remainder of this
section in order to make the model more accessible to
practitioners who wish to use SATIN. A formal definition of
the metamodel semantics using a process algebra is
provided in [18].

3.2 Components

A SATIN component encapsulates particular functionality,
such as, for instance, a user interface, a service advertise-
ment protocol, a service, an audio codec, or a compression

ZACHARIADIS ET AL.: THE SATIN COMPONENT SYSTEM—A METAMODEL FOR ENGINEERING ADAPTABLE MOBILE SYSTEMS 5

library. SATIN components separate interfaces and imple-
mentations. A component is implemented by one or several
SATIN classes. It can implement one or more interfaces,
called facets (a term borrowed from the CORBA component
model [19]), with each facet offering any number of
operations. A metamodel for components that are going
to be deployed across autonomous domain boundaries
needs to ensure that interfaces that have once been defined
cannot be changed. For that reason, SATIN facets are
immutable and application designers who wish to change
an interface will have to create a new facet that the
component is going to implement as well. A similar choice
has been made in Microsoft’s Distributed Component
Object Model.

3.2.1 Component Metadata

SATIN is designed to support applications on heterogeneous
set of mobile devices and architectures. Hence, the SATIN
component abstraction must be rich enough to describe
components that may be deployed across a large number of
platforms. A device must be able to reason about whether a
component is compatible with its hardware and whether it
depends on the existence of another component to verify its
authenticity, etc. To this end, SATIN uses attributes to
describe a component, similarly to the Debian Project’s [20]
.deb packaging system.

A SATIN component attribute is a key/value pair. The set of
all attributes of a component is the properties of the
component. A component uses properties to express its
dependencies on both the underlying software and hard-
ware infrastructure. A set of attribute keys, or an ontology
for both keys and values, is not defined by the metamodel
but is determined by an application designer using the
metamodel. Examples of attributes are an ID attribute,
which acts as a component identifier, and a VER attribute,
which denotes the version of the component implementa-
tion. As such, a component implementation can be uniquely
identified using the ID and VER attributes. This also allows
for differentiating between different versions of a compo-
nent implementation.

Generally, the component properties allow for attaching
arbitrary metadata to a component. Attributes can be
mutable. As such, the component properties are a memory
segment assigned to each component, managed by the
SATIN container (see below). When updating a component,
some state may need to be maintained. As attributes can be
used by a component implementation to encapsulate such
state separately from the component logic, the latter can be
updated while maintaining the former.

Each SATIN component implements at least one facet, the
Component facet. The purpose of this facet is to allow a
device to reason about the component and its attributes. As
such, it permits access to the properties of the component
by retrieving, adding, removing, and modifying attributes.
The component facet also contains a constructor, which is
used to initialize the component, and a destructor, which is
used when removing the component from the system (see
below). Finally, the component facet allows for enabling or
disabling a component (see Section 3.5).

3.3 Components and Containers

To reason about how to adapt, a device must reflect on
what it can currently do or what its capabilities are. The
central component of every SATIN system is the container

component. A container is a component specialization that
acts as a registry of components installed on the system. As
such, a reference to each component is available via the
container. The container component implements a specia-
lization of the component facet that exports functionality for
searching components that match a given set of attributes.

An adaptive system must also be able to react to changes
in component availability. For example, a media player in a
smart phone must be able to reason about which streams it
can decode—if a new codec is installed, the media player
should allow the user to connect to a new service, which is
now decodable. Hence, the container permits the registra-
tion of listeners (represented by components that imple-
ment the ComponentListener facet) to be notified when
components matching a set of attributes given by the
listener are added or removed. As such, the Component -
Listener facet provides a very simple event notification
service, which is implemented by components that need to
react to the availability of new components.

To allow for dynamic adaptation, the container can
dynamically add or drop components to and from the
system. Registration and removal of components is dele-
gated to one or more registrars. A registrar is a component
that implements a facet that defines primitives for loading
and removing components, validating dependencies, ex-
ecuting component constructors, and adding components to
the registry. When removing a component, a registrar is
responsible for checking that the removal of the particular
component will not invalidate the dependencies of others,
calling its destructor, and removing it from the registry.
This allows the system to be left in a consistent state after a
component removal. Different registrars can have different
policies on loading and removing components (from
different sources, for example) and verifying that the
dependencies are satisfied. For example, a smart phone
with limited resources can run implementations of the
container and registrar to keep track of how often
components are used—this frequency-based approach can
be used to drop the least-recently used components when
the system runs out of memory. Moreover, implementations
of the registrar can emit events to notify interested listeners
of component registration failures. Finally, registrar im-
plementations may offer atomic registration and removal of
groups of components.

The use of a container allows for introspecting the status
of the platform, as callers of the container facet can reason
about the current availability of functionality, encapsulated
in components. Combined with the use of registrars to
allow dynamic addition and removal of components, the
SATIN container offers structural reflection at the compo-
nent level, that is, the ability to reason about the
components in the system.

3.4 Distribution and Logical Mobility

A system built using SATIN can reconfigure itself by using
logical mobility primitives, as proposed in Section 1. As
different paradigms can be applied to different scenarios,
our metamodel does not build distribution into the
components themselves, but it provides it as a service;
implementations of the SATIN metamodel can, in fact,
dynamically send and receive components and employ any
of the above logical mobility paradigms. This functionality
is provided using Logical Mobility Entities and Units, as

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

well as Deployer and Reflective components. Their relation-
ships are outlined in Fig. 1 and discussed below.

We consider four aspects of Logical Mobility: Compo-
nents, Classes, Instances, and DataTypes; the last is defined
as a bit stream that is not directly executable by the
underlying architecture. One such, the Logical Mobility
Entity (LME), is defined as an abstract generalization of a
Class, Instance, or DataType.

The Logical Mobility Unit (LMU) is defined as a container
that can encapsulate various constructs and representations
of code and data. As such, an LMU is a composition of an
arbitrary number of LMEs; in effect, the LMU is used to
encapsulate Logical Mobility Entities, which were defined
as either classes, data, instances, or components. The LMU
provides operations that permit inspection of its content.
This allows a recipient to inspect an LMU before using it.

The LMU can potentially encapsulate a Handler class.
The Handler can be instantiated and the resulting object
used by the recipient to deploy and manipulate the contents
of the LMU. This can allow sender-customized deployment
and binding. The Handler concept and name are taken from
MuCode [21], which is a code mobility toolkit written in
Java. An earlier prototype implementation of SATIN was
built using this toolkit. Handlers and deployment in general
are discussed further in the next paragraphs.

Similarly to SATIN components, an LMU also encapsu-
lates a set of attributes called the properties of the LMU. The
properties are used to describe the LMU they are associated
with. For example, logical (software) or physical (hardware)
dependencies, digital signatures, and even end-user textual
descriptions can be expressed as attributes. As such, they
can be used to express the heterogeneity of the target
environment. For example, an LMU that contains Java
classes may specify that it requires a Java Virtual Machine
that implements version 2 of the appropriate specification
as an attribute. An ontology for attribute keys and values is
not defined by the metamodel, but will be defined by the
application designer.

The LMU and its contents can be serialized and de-
serialized. Logical mobility is then equivalent to composing
the LMU, serializing it, transferring it to a remote device,
deserializing it, and deploying it.

We now need to define how and where to deploy an LMU
in the local system. In the SATIN component metamodel, an
LMU is always deployed in a Reflective component. A
Reflective component is a component specialization that can
be adapted at runtime by receiving LMUs from the SATIN
migration services. By definition, the container is always a
reflective component, as it can receive and host new
components at runtime.

A SATIN LMU has two required attributes; TARG, which
specifies the intended target node, and LTARG, which
specifies the logical target or reflective component in the
host specified by TARG to which the LMU is going to be
deployed. For example, when deploying a component into
the system, the value of the LTARG attribute points to the
instance of the container in that system. As such, TARG is
referred to as the physical destination of the LMU, whereas
LTARG is the logical destination. Hence, the use of the
location attributes allows for deploying components in
specific targets uniquely identified by the (TARG, LTARG)
tuple. LMUs can be implemented using JAR archives, for
example.

I AContainer

| A:Registrar || B:Deployer

| B:Container

Trid

ger
1 get(attributes) 1

Adaptation

get(attributes) !
——————

returns COmpOnen‘D
- - - - - -

1

1

1

1

1

1

I

|
[S E—

1

1

1

1

1

1

1

1
R I E—

register(component) 1

Fig. 2. A sequence diagram showing the adaptation process.

A SATIN application cannot send an LMU directly. The
functionality of sending, receiving, and deploying LMUs is
handled by the Deployer. The Deployer is a SATIN
component specialization that manages requesting, creat-
ing, sending, receiving, and deploying LMUs to the
appropriate reflective components. A Deployer is directly
accessible to any application through the container. The
Deployer can be used to implement any logical mobility
paradigm. Remote Evaluation becomes composing, send-
ing, and deploying an LMU; Code on Demand becomes
requesting, receiving, and deploying an LMU; and Mobile
Agents become sending an LMU that encapsulates a
Handler, which is used to represent the active agent.

A Deployer will reject any request to send LMUs that do
not specify a logical and a physical destination as it would
otherwise be responsible for serializing and sending the
LMU to the Deployer component instance located at the
physical destination. When receiving an LMU, the Deployer
uses the container to verify that the component identified
by the logical destination of the LMU exists in the local
SATIN instance and that it is a reflective component. The
LMU is then moved to its logical destination, which has the
option of inspecting the contents before deployment; by
using the methods exported by the LMU, a reflective
component can access the properties and contents of the
LMU before accepting it. As such, the inspection can result
either in full acceptance, which means that the contents of the
LMU are accepted in their entirety; partial acceptance, which
means that parts of the LMU are accepted and others
discarded; rejection, which means that the LMU is rejected
and dropped; or handler instantiation, which means that the
reflective component instantiates the Handler, encapsulated
in the LMU, to perform the deployment. The result is
determined by the reflective component, based on the
contents of the LMU. This gives flexibility to the reflective
component implementer and is part of the laissez-faire
nature of SATIN.

Fig. 2 shows a sequence diagram depicting an adaptation
sequence. In it, an adaptation trigger (a user, a component
reacting to an environmental change, an adaptation logic
engine, etc.) asks the local Deployer for a component
satisfying a set of attributes. The Deployer contacts a remote
Deployer instance (we do not discuss how the remote
Deployer is located at this stage but come back to it in
Section 4) for the component. The remote Deployer asks for
the component from the Container instance in the remote
node, packs it inside an LMU, and sends it back to the
original Deployer. The latter deploys it to the local
Container, which delegated the registration process to the
default Registrar. The Container then notifies the original
Adaptation trigger, provided that it is a ComponentListener
that has registered itself with the container for the event.

ZACHARIADIS ET AL.: THE SATIN COMPONENT SYSTEM—A METAMODEL FOR ENGINEERING ADAPTABLE MOBILE SYSTEMS 7

TABLE 1
A Fragment of the SATIN Metamodel Notation

Notation Description

Name

A SATIN Component called Name.

<Facet>>

Name A SATIN facet called Name.

Name

A reflective SATIN component called Name.

Name

A SATIN container called Name. Note that
it is also a reflective component.

sl

Name 4 |

<

v

A SATIN deployer called Name. Note that it
is also a reflective component.

3.5 Component Life Cycle

SATIN supports a very simple and lightweight component
life cycle. When a component is passed on to the container
for registration by loading it from persistent storage, using a
Deployer, etc., the container delegates registration to a
registrar component. The registrar is responsible for
checking that the dependencies of the component are
satisfied, instantiating the component using its constructor,
and adding it to the registry. Note that the component facet
prescribes a single constructor. An instantiated component
can use the container facet to get references to any other
components that it may require.

A component deployed and instantiated in the container
may be either enabled or disabled. The semantics of those
and the initial state of the component depend on the
component implementation. The functionality needed to
manipulate the state of the component is exported by the
component facet.

SATIN does not distinguish between multiple instances
of the same component. This can be achieved by using
specializations of the container. When removing a compo-
nent, a registrar is responsible for verifying that the removal
of the component does not break any dependencies in the
system, disabling it, calling the destructor of the compo-
nent, and then removing it from the registry. Instantiations
of the metamodel may choose to associate the registrar that
registered the component with the component itself. In this
way, the same registrar can be automatically called to
remove the component when requested.

We have defined a notation that can be used to describe
systems that instantiate the metamodel by extending the
UML notation. The notation is used in the next sections. The
full notation is available in [18], while a fragment including
only the entities used in the diagrams of the next sections is
presented in Table 1.

4 THE SATIN MoBILE COMPUTING MIDDLEWARE
SYSTEM

The previous section described a lightweight component
metamodel that provides logical mobility primitives in
support of adaptation of mobile systems. Metamodels for
distributed computing are only useful in practice if they are
implemented by some middleware. The aim of middleware

Registrar

SATIN Container

Applications
Jahoideg

Services

Fig. 3. The architecture of the SATIN middleware.

in general is to provide higher level interaction primitives
than those provided by the network operating system as a
layer upon which applications are then constructed. In
doing so, the middleware hides the complexities of
addressing distribution, heterogeneity, and failures. This
section shows how the SATIN middleware implements the
SATIN metamodel. Since the aim of the paper is to
demonstrate the flexible use of logical mobility primitives,
we focus on distribution.

It is good practice in middleware design to rely on and
use the primitives provided by the metamodel in the design
of the middleware itself. The services provided by any
CORBA implementation, for example, use the interaction
primitive of remote object requests defined by the CORBA
object metamodel also for the internal communication across
higher level CORBA services. In this tradition, the SATIN
middleware uses the adaptation primitives defined by the
SATIN component model to build a flexible and adaptable
middleware platform for mobile computing. Hence, while
describing the design of the SATIN middleware, we also
validate the SATIN metamodel by showing how it can be
used to build a complete middleware system, which offers
dynamically adaptable services. Thus, the middleware itself
and all applications built with it are represented as a
collection of SATIN components registered with the SATIN
middleware. The interfaces to these components are speci-
fied in a number of facets.

4.1 Middleware Overview

Fig. 3 shows a high-level overview of the SATIN middle-
ware. By instantiating the metamodel, the middleware itself
is adaptable and allows applications to use any logical
mobility primitive.

The system is built on top of the network operating system
and provides an instance of the SATIN container, as defined in
Section 3. This container is the central aspect of every instance
of the middleware system. Registered with the container are
all the components that are part of the system. This includes
application components (such as a media player application),
libraries (such as audio codecs), and system services (such as
any registrars, deployers, service advertising, and discovery
components, etc.). All components make their dependencies
explicit through their properties. The circular notation used
in Fig. 3 denotes that, from the point of view of the container,
all other components available to the system are equal. The
core of every SATIN system is the container, with every other
service (including logical mobility) or application compo-
nents built on top of it. Thus, even though components

RemoteComponent
0.

requests

|:|:| RCDeployer % 5

<<Facet>>
Advertisable
<<Facet>>
Advertiser
<<Facet>>
<<Facet>> ComponentListener
DiscoveryFacet

0.*

notifies

1
1
1
1
v o

| Discovery

0.4]

Fig. 4. The advertising and discovery services.

may build complex dependency graphs expressed via
their properties, to the container, they all implement
components facets. Components can be added and
removed at runtime. This allows the middleware itself
to adapt.

4.2 Advertising and Discovery

The SATIN middleware provides a number of services to
applications. The services themselves are seen as regular
components built on top of the container. As such, they can be
dynamically added and removed. In the following para-
graphs, we outline how the SATIN metamodel primitives are
used to provide adaptable advertising and discovery services
for SATIN components.

In general, one of the pivotal requirements of mobile and
adaptable pervasive computing is the ability to reason
about the environment. The environment is defined as the
network of hosts that can, at a specific point in time,
communicate with each other. In order to adapt, a mobile
system needs to be able to detect changes that occur in its
environment. As the host itself is also part of that
environment, it needs to advertise its presence. A mobile
host, however, may be able to connect to different types of
networks, either concurrently or at different times, with
different networking interfaces. There also are many
different approaches to advertising and discovery. Impos-
ing a particular advertisement and discovery mechanism
can hinder interoperability with other systems, making
assumptions about the network, the nodes, and the
environment, which may be violated at some later stage
or simply not be optimal in a future setting—something
which is likely to happen, given the dynamism of the target
area of this work.

From the point of view of SATIN, the ability to reason
about the environment is addressed by the ability to
discover components currently in reach and to advertise
the components installed in the local system. This is
achieved via the use of Remote and Discovery components,
as well as Advertiser, Advertisable, DiscoveryFacet, and
ComponentListener facets. The design of the advertising
and discovery service using the SATIN component
metamodel concepts is shown in Fig. 4. The notation,
outlined in Table 1, denotes that RemoteComponent,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

RCDeployer, Core, and Discovery are Components; RCDe-
ployer and Core are Reflective Components; Discovery-
Facet, ComponentListener, Advertiser, and Advertisable
are facets; and Discovery and Core both implement the
DiscoveryFacet. The service is described in detail below.

Components that wish to advertise their presence to the
environment must implement the Advertisable facet.
Examples of advertisable components include codec repo-
sitories, services, etc. The Advertisable facet exports a
method that returns a message that is used for advertising;
thus, the advertising message allows the Advertisable
component to express information that it requires to be
advertised. An advertising technique is represented by an
Advertiser component, which is a component implementing
the Advertiser facet. An advertiser component is
responsible for accepting the message of advertisable
components, potentially transforming it into another format
and using it to advertise them. An advertiser allows
components that wish to be advertised to register them-
selves with it to be advertised. The combination of
component availability notification and advertiser registra-
tion allows an advertisable component to register with the
container to be notified when specific advertisers are added
to the system. The advertisable component can then register
to be advertised by them. Moreover, an advertisable
component can express that it requires a particular
advertiser in its dependencies. Thus, the semantics of the
advertisable message are not defined and depend on the
advertisable component and on the advertising technique
(i.e. the advertiser component) used. Note, that a compo-
nent can implement both the Advertiser and the
Advertisable facets. This allows for the advertising of
advertising techniques; in this way, for example, the
existence of a multicast advertising group can be advertised
using a broadcast advertiser. Combined with the use of
logical mobility primitives, this allows a host to dynami-
cally acquire a different advertising and discovery mechan-
ism for a network that was just detected. For example, upon
approaching a Jini network [22], a node can request and
download the components that are needed to advertise to,
and use functionality from, the network.

The design of discovery techniques is analogous. A
Discovery component is a component that implements a
discovery service and is able to locate remote advertisable
components. The latter are represented on the local instance
(i-e., the instance of the container that hosts the Discovery
component instance) as RemoteComponents. Note that a
Remote Component is not a component that can be accessed
remotely (as SATIN is a local component model)—it just
provides methods to access the information in the advertis-
ing message and properties of the original advertisable
component. The component can, however, be passed on to a
Deployer instance (represented by RCDeployer) to be
requested for deployment on the local host. As such,
Discovery components act as a registry of Remote Compo-
nents. Given the similarity with the container, both
Discovery techniques and the container instance in the
SATIN middleware (denoted by Core in Fig. 4b) implement
the same facet, called the DiscoveryFacet, providing a
common interface to the programmer.

The SATIN advertising and discovery service is general.
It supports the implementation of facets and abstractions on
top of existing techniques. As such, implementations of the

ZACHARIADIS ET AL.: THE SATIN COMPONENT SYSTEM—A METAMODEL FOR ENGINEERING ADAPTABLE MOBILE SYSTEMS 9

service can use Jini, UPnP, etc., as their underlying service
advertising and discovery techniques. Section 5.2 describes
two very different implementations using IP Multicast and
Publish-Subscribe.

5 IMPLEMENTATION AND EVALUATION

This section details the implementation of the SATIN
middleware. The implementation is benchmarked and its
performance on mobile devices is evaluated by measuring
memory overhead and time needed to adapt. Both meta-
model and middleware were used to develop a number of
applications, some of which are adaptations of existing
software. The suitability of SATIN for mobile adaptation is
evaluated by illustrating how each application adapts and
how this is made possible through the use of SATIN.

5.1 On Evaluating SATIN

The methodology used to evaluate SATIN follows the
established combination of qualitative and quantitative
evaluation. We use a combination of replicated experi-
ments, dynamic analysis, case studies, assertions, and
comparisons with legacy data [23] to evaluate the metamo-
del and its implementation. Thus, this section evaluates
SATIN using the following approach:

e Feasibility. How practical are the metamodel abstrac-
tions, their instantiation, and their actual implemen-
tation for the constraints of mobility? To answer this
question, this section begins by defining a class of
devices which will be specifically targeted and
continues by detailing the middleware implementa-
tion. We show that this implementation is light-
weight enough to run on mobile devices despite the
added functionality. We measure the memory
footprint as well as the time needed to adapt. We
compare the size of the implementation to that of
other approaches in this area of research.

e Utility and Completeness. Can complete systems be
built using the abstractions defined? Are they
sufficient to support system level, as well as
application level adaptation? To answer these ques-
tions, this section details the design of numerous
systems and applications using SATIN and shows
how they address specific issues identified in the
motivating example presented in Section 2.1.

o Usability and Complexity. How easy is it to program
using SATIN? How easily can existing projects be
converted to use SATIN? Are the abstractions and
design provided by SATIN usable by third parties?
To answer these questions, this section describes
the conversion of existing open source applications
into SATIN components. By doing so, we can
quantify the overhead created by SATIN and weigh
it against the advantages in terms of adaptability
of the applications.

We decided against using simulation as an evaluation
technique because SATIN does not propose any new
networking protocols the behavior of which would be
advantageous to simulate. Rather, this paper presents a new
approach to engineering mobile systems. As the approach
itself is inherently modular, the details of the implementa-
tion of each individual module or component (which can be

TABLE 2
Details on the SATIN Implementation

Item Size (in bytes) | Lines of Code
MiToolkit 89,072 800
Meta Model 13,607 233
Midleware (Model) 47,650 925
Advertising and Discov- 6,668 118

ery Framework

Publish Subscribe 22,797 574

IP Multicast 22,161 418
Total 201,955 3,068

replaced) are not deemed important to simulate or bench-
mark extensively against. As such, we present an extensive
quantitative evaluation of only one of the example applica-
tions. The other two applications are presented in order to
illustrate the ease of refactoring existing code as SATIN
components and to show the advantages that its port to the
SATIN framework brings.

5.2 Implementation

While implementing SATIN, we had to make design choices
regarding the class of mobile device on which it would run.
Considering the rate at which hardware changes, this may
be considered immaterial; however, by defining an actual
target, quantifiable assertions about speed and resource
requirements can be made. With these statements in mind,
the devices that the implementation presented in this
section targets are PDAs. More specifically, the target was
one of the most popular PDAs of 2001, the Compaq iPAQ
H3600. It uses a 206 MHz ARM CPU and 64 MB of RAM (32
of which are used as storage, so, in effect, the PDA has
32 MB of RAM). An IEEE 802.11b wireless adaptor was also
connected to it. This device was chosen because the
hardware that it offers is very mediocre by today’s
standards. In fact, entry-level PDAs are significantly more
powerful, and mobile phones are starting to offer equiva-
lent (or better) resources. Thus, by showing that the current
implementation of SATIN can scale down to run on an old
device like this, we can infer that it will run even better on
more recent devices, like the one presented in Section 2.1.

SATIN has been implemented using Java 2 Micro Edition
(Connected Device Configuration (CDC), Personal Profile).
There are many reasons for this choice: Java, the Java 2
Micro Edition in particular, is a portable language and
virtual machine for mobile devices. The virtual machine
and the Java bytecode are used for binary-level interoper-
ability between components. The CDC and personal profile
were specifically chosen because they allow the use of the
Java Object Serialization framework and Reflection API for
the deployer implementation; this enables the dynamic
sending and receiving of Java classes and objects. A mobile
code toolkit, MiToolkit [24], was used to realize a logical
mobility platform that is encapsulated by the SATIN
Deployer. MiToolkit is the library that can be used to send
and receive Java-based LMUs. The Advertising and Dis-
covery framework was implemented using IP Multicast and
also by using a simple centralized publish/subscribe
protocol we devised.

Table 2 gives details on the size of the SATIN imple-
mentation. Note, that the size figure presented represents
the uncompressed size, which is against the typical Java
tradition. The Source Lines of Code (SLOC) were calculated

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

TABLE 3
Evaluation Coverage Matrix

Program Launcher | Music Player | Active Networking

Application Level Adaptation X

Middleware Level Adaptation

Legacy Code Adaptation X X
Adbvertising & Discovery Framework X
Code On Demand X X
Remote Evaluation X X
Limited Resources X X X

using SLOCCount [25] and the number does not include
comments or blank lines. The metamodel implementation
represents the abstract classes and interfaces that represent
the SATIN metamodel. Those are reified as a middleware
system to provide the actual functionality.

These numbers compare favorably to other related
projects. For example, OpenCOM [26] requires 28,160 or
18,432 bytes for its ARM and x86 implementation, respec-
tively, versus the 13,607 bytes that the SATIN metamodel
requires. The complete SATIN implementation requires
201,955 bytes of storage versus 609,700 bytes that, for
instance, Lime [27], a data sharing middleware system that
uses mobile agents, requires. Starting up the middleware
and registering the deployer takes 1,846 milliseconds on a
Pentium II 266 MHz machine with 64 megabytes of RAM.
At that time, the middleware objects require 113,872 bytes
of heap memory.

5.3 Code Fragments
This section includes some actual code fragments from the
applications described below. For more details, the reader is
referred to the SATIN open source project at [28].

The following shows how to initialize SATIN and register
a Deployer and a discovery service with the container:

new Core(); //initialize the container

//get a reference to it

Container container =
Container.getContainer () ;

//get a reference to the registrar
RegistrarFacet registrar =
container.getDefaultRegistrar();

//Initialize the deployer
DeployerFacet d = new MiToolkitDeployer () ;

//register it with the middleware
registrar.registerComponent ((Component)d) ;

d.setEnabled(true); //enable it

//initialize the discovery component
CentralDiscovery disc=new CentralDiscovery () ;

registrar.registerComponent (disc) ;
//register it
The following fragment shows how to initialize and send

the Ogg Vorbis codec (see below) to a node with the
IP address 192.168.0.1:

ComponentFacet c=new OggVorbisCodec () ;
registrar.registerComponent (c) ;

//gets a reference to the deployer, using its
identifier
DeployerFacet

d=container.getComponent (“TN:MITKDEP”) ;

The following statement creates a new LMU,
Fwith target #“192.168.0.1" and

defines its destination as “STN:CONTAINER”,
which is the container of the recipient host.

This effectively defines that the LMU should
be sent to the
container of 192.168.0.1.

% ¥ ¥ X X X X * *

The container will try to register it.

*/

LMU lmu=new HashLMU (“192.168.0.1",
“STN:CONTAINER”) ;

1mu.addComponent (c) ;

//adds the component to the LMU.

d.send(1lmu) ; //sends the LMU

The following fragment shows requesting to be notified
when a component with the value of the BITRATE attribute
greater than or equal to 32 and the value of VER equal to 1 is
found. This specification matches the Ogg Vorbis codec
encapsulation.

Hashtable template=new Hashtable() ;
template.put (“BITRATE”,

new MatchAttribute (“BITRATE”,

new Integer (32),

new GreaterEqualThanFilter()));
template.put (“VER”,

new GenericAttribute (“VER”,

new Integer (1), true));

//adds a listener for a component based on that

template

container.addListener (
(ComponentListener)this, template) ;

SATIN was used to implement a number of applications,
some of which are outlined below. Table 3 outlines what
aspects of SATIN each example illustrates. The Program
Launcher example illustrates how SATIN can be used to

ZACHARIADIS ET AL.: THE SATIN COMPONENT SYSTEM—A METAMODEL FOR ENGINEERING ADAPTABLE MOBILE SYSTEMS 11

offer a middleware level adaptable service that allows end
user applications to adapt. It demonstrates the use of the
advertising and discovery framework. Moreover, it in-
cludes an extensive qualitative evaluation, examining how
SATIN runs on a device with limited capabilities. The
purpose of the Music Player and Satellite Active Network-
ing applications is not to further benchmark SATIN (though
some numbers are presented for completeness), but to
illustrate how the same metamodel and middleware can be
used to develop two vastly different systems, one exhibiting
application level adaptation and another offering a low
level networking service, but both adhering to the same
principles. Both also exhibit how legacy code can be fitted to
run under SATIN and be deployed dynamically. All three
examples illustrate how SATIN has a minimal overhead and
is suitable for scenarios with devices that offer limited
resources.

5.4 The sATIN Program Launcher

Inspired by the problems discussed in Section 2.1, this
application is a Dynamic Program Manager, or Launcher,
for mobile devices. It is similar to the PalmOS Launcher in
that its basic purpose is to display and launch applications
that are registered with the container. The applications
installed are shown as buttons, with the component
identifiers as labels. The Launcher also manages and
controls all installed components. Applications are compo-
nents that implement the Application facet. As such, the
program launcher registers itself with the container, to be
notified when a component implementing the Applica-
tion facet (i.e., a new application) is registered, in order to
automatically redraw its interface to be able to launch it.

The dynamic program launcher offers the following
services: Using the deployer, it can install any component
from any discoverable source (i.e., through any discovery
service). Using the same mechanism, it can update the
components installed in the system, either transparently or
as a result of a user command. If the device running the
Launcher runs out of memory, it can discard unused
components based on their frequency of use.

The application caters to the scenario presented in
Section 2.1: Mobile devices roam through a dynamic context,
able to transparently update their libraries and install new
applications available in their current environment. Appli-
cation are componentized, which facilitates maintenance.

The components of the launcher use 39,749 bytes as an
uncompressed jar file and were written in 778 SLOC. The
launcher is fully componentized; as such, the updating
mechanism and the remote install mechanism are encapsu-
lated as separate components. Fig. 5 shows the architecture
of the Launcher expressed as a collection of interdependent
components.

Testing. There were three devices in our tests: node
alpha, which is a PDA (200 MHz StrongARM CPU,
32 MB of RAM as described above); node beta, which is a
laptop (266 MHz Pentium II CPU, 64 MB of RAM); and
node gamma which, is another laptop (1.5 GHz PowerPC
G4 CPU, 1.25 GB of RAM). Alpha is connected to beta using
an IEEE 802.11b card in ad hoc mode, while beta was
connected to gamma using a fast Ethernet connection. Thus,
alpha and gamma cannot connect to each other. Note that
the connections are all single hop, with no artificial latency
induced in either the wireless or the Ethernet network.
Alpha and beta are running Linux (familiar 0.6 and
Debian 3.1, respectively), while gamma is running
MacOSX 1.4.4. Note that node alpha is running a beta

ComponentListener

MiToolkitDeployer
itDeploy b

I:F Updater

nofies

otfes
o-
Installer
Discovery

Fig. 5. The SATIN Launcher as a collection of components.

version of Java, with no Just In Time (JIT) compilation. This
virtual machine was chosen because it is the only connected
device configuration/personal profile compliant virtual
machine for this platform. Moreover, by using interpreta-
tion rather than JIT compilation, we further restrict,
artificially, the capabilities of our underlying platform, thus
demonstrating how our implementation can scale down.

Our testing scenario tries to illustrate how an application
can be transparently updated on heterogeneous nodes
connected in heterogeneous networks. In the fast Ethernet
network, there is a publish/subscribe advertising and
discovery service. Node alpha cannot access it, as it does
not have Ethernet connectivity. On the ad hoc wireless
interface, however, there is a multicast advertising and
discovery service running. Only node alpha and beta can
access it, as gamma does not have a wireless interface.
Alpha, beta, and gamma have the components needed to
access the respective services available. All discovery
services are preconfigured to access their respective adver-
tisers. The multicast advertiser is configured to advertise
new components every five seconds, while the publish
subscribe server publishes messages to interested parties
with the registration of every matching component.

A sample “Hello World” component was created, which
is Advertisable. The component requires 1,257 bytes.
Initially, alpha and beta are the only hosts online, and they
have version 0 of the component. At some point, gamma
comes online, advertising (over the publish subscribe
service), the availability of version 1 of the component.
The Launcher libraries of beta locate the component and
request it, resulting in the deployment of version 1 on beta.
However, version 1 of the sample component is now also
advertised on the wireless network through beta, via the IP
multicast service. Node alpha discovers this, requests it,
receives it, and deploys it. Table 4 shows

1. the startup time of SATIN (with the multicast
advertising and discovery service registered but
without the launcher) on alpha, which excludes the
Java Virtual Machine startup time;

2. the memory (heap) usage on alpha once the launcher
and the sample component are also loaded;

3. the time node beta takes to discover and request
version 1 of the sample component, after node
gamma starts advertising it;

4. the time taken to receive, deserialize and load
version 1 into the Java Virtual Machine of beta;

5. the time taken to deploy the component into the
container of beta (checking any dependencies, etc.);

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

TABLE 4
Quantitative Evaluation Results of Program Launcher

Test Mean Standard Deviation Variance Confidence Interval
Startup time (alpha) 955.56 ms 0.5014 0.2514 0.1390

Memory usage (alpha) 1065784.48 bytes 3452.4369 11919320.65 956.9491

Discovery time (beta) 10.44 ms 2.2782 5.1902 0.6315

Receiving time (beta) 495.96 ms 32.3242 1044.8556 8.9597

Deployment time (beta) 2.54 ms 0.5035 0.2535 0.1395

Discovery time (alpha) 5.86 ms 0.4046 0.1637 0.1121

Receiving time (alpha) 1777.5 ms 57.4787 3303.8061 15.9320
Deployment time (alpha) 4.46 ms 0.5034 0.2535 0.1395

6. the time alpha takes to discover version 1 after it has

been deployed on beta;

7. the time alpha takes to receive, deserialize and load

version 1 into its Java Virtual Machine; and

8. the time alpha takes to load the component into the

container (checking any dependencies, etc.).
The tests were run 50 times. The table includes the mean,
variance, standard deviation, and confidence intervals with
a 95 percent confidence level of each test.

The results obtained above show that the current
implementation, even though unoptimized, is reasonably
efficient. The tests illustrate that the most expensive
operation is receiving, unpacking, and loading the classes
that constitutes a component into the Java Virtual Machine
of a node. One reason for this could be the Java Security
Model, which verifies at runtime all incoming classes.
Moreover, MiToolkit checks the incoming classes for name-
space conflicts. The large difference in the receiving time
between nodes alpha and beta is notable, with beta being
approximately 2 to 3 times faster. This can be attributed to
three main factors: First, node beta is much more capable,
with twice as much memory and a faster CPU (even
megahertz per megahertz, the Pentium II is faster than the
StrongARM, as the latter lacks an FPU and is optimized for
power consumption, rather than speed). Second, nodes beta
and gamma are connected by a much faster and more
reliable network. Finally, the Java Virtual Machine running
on alpha interprets all the code running, rather than
compiling it at runtime.

5.5 The sATIN Music Player
We implemented a simple music player using SATIN. This
is a relevant application, as different media formats exist
and new ones emerge constantly, demanding updates of the
media player code. Media formats are commonly imple-
mented in codecs. In our media player, SATIN components
that implement audio codecs must implement the AUDIO-
FORMAT facet. The Music Player then uses the notification
service to be notified whenever a component that provides
this facet is registered. Moreover, it uses the deployer and
the discovery components to download any codecs that are
found remotely. The application itself occupies 6,568 bytes
as an uncompressed jar file and was written in 133 SLOC.
Note that this excludes any codec—it provides a basic user
interface and an API for codecs to control the player.
JOrbis,* an open source Ogg Vorbis [29] implementation,
was also adapted to run as a SATIN audio codec component.
Ogg Vorbis is an open source, lossy compression audio

2. The version of JOrbis used was 0.0.14.

codec. Both the music player and the componentized audio
codec can be dynamically sent and deployed on SATIN
nodes. The application is automatically notified when a
codec component is found and adapts its interface accord-
ingly. The JOrbis component occupies 169,978 bytes as an
uncompressed Java archive and is composed of 50 classes.
The Music Player application is a Java 2 Standard Edition
application and not a Micro Edition application. This is
denoted in the component attributes. Java 2 Standard
Edition was used for this application because there are
very few open implementations of the Java Mobile Media
API for the Connected Device Configuration of Java 2 Micro
Edition. JOrbis occupies 169,454 bytes as an uncompressed
jar file.

The component abstraction for JOrbis occupies 1,371 bytes
as an uncompressed Java archive. It was written in 60 SLOC.
It is outlined as a collection of SATIN components in Fig. 6.

A number of tests were conducted using the Ogg Vorbis
codec component. The startup times needed for playing an
audio stream via the componentized codec were measured
and compared with those of the JOrbis stand-alone
implementation. Moreover, the time needed to send the
componentized codec from one node to another was
measured. The figures are shown in Table 5.

The tests were run using the two laptops described
above. They show that the overhead (which includes the
full SATIN middleware running) is relatively small. More-
over, the time needed to send and deploy the LMU
containing the componentized Ogg Vorbis codec is quite
small. The sending of an LMU took considerably more time
than its deployment. This is consistent with the results of

<<Facet>>
ComponentListener

AudioFormat

MusicPlayer

MiToolkitDeployer

notifies
o

o_,ﬂ

<

notifies

Fig. 6. The SATIN music player as a collection of components.

ZACHARIADIS ET AL.: THE SATIN COMPONENT SYSTEM—A METAMODEL FOR ENGINEERING ADAPTABLE MOBILE SYSTEMS 13

TABLE 5
Quantitative Evaluation Results of Music Player
Component-Based Overhead (includes SATIN) 19000 bytes
Time to Send LMU: 2682 ms
Time to Deploy LMU | 860 ms

the Program Launcher tests described above. Also note that
the Ogg Vorbis component is a significantly more complex
component than the sample component described above as
it is composed of 50 classes. This explains why it takes
much more time to receive and deploy.

The Music Player demonstrates an application that uses
the container to listen to the arrival of new components and
then adapts its interface and functionality to reflect the
arrival of a new component. It also demonstrates reaction to
context changes as the application monitors the discovery
services for new codec components and schedules them for
download as soon as they appear. The operation is
transparent to the end user. Finally, it illustrates the ease
with which existing code can be adapted to run under
SATIN. The adapted code gains the ability to be deployed
dynamically at runtime and to be used as part of a
component-based application, such as the music player.
Hence, it can express dependencies on other components or
platforms, it can be required by other components, and a
component-based application can be built with it. These
abilities impose minimal overhead.

5.6 Media Transcoding for Satellite Active Networks

As part of the PANAMAS project [30], funded by the
European Space Agency, we investigated the use of SATIN
to implement an Active Network [31] platform for satellite
systems. The scenario of the project is that media producers
broadcast a single stream through the satellite system;
active components can dynamically adapt the stream based
on network conditions (e.g. packet loss), potentially offering
different versions of the stream to users, depending on from
which spot beam (or link) they are accessing the satellite.
Hence, a lower-resolution version of the satellite data
stream could be viewed on a PDA or a lower bit-rate
version by users on a slow link, thus helping solve issues of
network congestion and offering a good quality of service.
Active components can be dynamically shipped and used to
reprogram the satellite system for types of streams that
have not been envisioned at design time. Given the
longevity and cost of a satellite system, reprogrammability
and adaptation are very desirable characteristics. It is also
important to note that, because of durability and weight
restrictions, the hardware capabilities of satellite systems
are very limited.

Note that we did not have access to a real satellite—this
project was a feasibility study for technologies for future
satellites. As such, we created a testbed that involved a
media producer, a satellite ingress host acting as the host
that manages the satellite, and a host emulating the satellite
itself. We then had a number of clients accessing media
served by the producer, connected through the satellite on
different spot beams. SATIN was running on the ingress and
satellite nodes.

To emulate access to the satellite, we implemented an
HTTP proxy as a Reflective SATIN component. The proxy
is responsible for getting the content from the media
producer and forwarding it to the requesting client. As it is

<<Facet>>
Transcoder

1
deployed 1
1

:5 Supervisor

OF — |

JPEG2000
%Mi oolkitDeployer
Y >

SatPlatform

Fig. 7. The satellite platform as a collection of components.

a Reflective component, it can dynamically accept LMUs.
Thus, it allows an arbitrary number of transcoding
components to be deployed into it. A transcoding
component is a component that actively manipulates the
multimedia stream by either recoding (for example, into a
smaller resolution) or transcoding into a different format.
A transcoder can thus be used to send different qualities of
the same stream to different users. For example, a PDA
user can receive a lower resolution video than a high
definition television user, or a user on a congested link can
receive a video at a lower bit rate (i.e., with more artifacts).
We encapsulated the Java reference implementation of the
JPEG 2000 encoder and decoder as a SATIN transcoding
component. We also implemented a supervisor component,
responsible for spawning multiple proxies on the satellite,
as SATIN does not, by default, support multiple instances
of components. The different spot beams were emulated
using the Linux traffic conditioning framework, which
allowed us to introduce delays and limit the bandwidth.
An outline of the satellite platform, represented as a
collection of SATIN components is presented in Fig. 7.

The satellite control platform deployed the supervisor
and proxy components to the satellite dynamically. Two
instances of the proxy were spawned, simulating client
connection on two different spot beams, one slower than the
other. The clients on the slow link experienced problems in
viewing the media. The transcoder was dynamically
deployed and reprogrammed the appropriate proxy to
recode the stream to a lower bit rate. Hence, both spot
beams allowed users to watch the stream, albeit one with
lower quality.

The component encapsulation of the transcoder required
155 SLOC. The PANAMAS project showed the practicality
of developing an Active Network system using SATIN. It
demonstrated the utility of the abstractions defined by the
metamodel, in dynamically reprogramming a network
architecture to adapt in response to changes to link quality
and perceived user experience. Hence, the purpose of this
example was to illustrate the ease of adaptation of existing
programs to run under SATIN and the ability of SATIN to be
used to offer an active networking system—a system that is
radically different from the examples described above.

6 RELATED WORK

There is a substantial body of work on self-organizing, self-
healing, and adaptable systems, component deployment

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

and middleware systems. This section presents a compar-
ison of the SATIN approach with related work in all three
areas. Note that we will not extensively compare with
advertising and discovery mechanisms; the purpose of the
SATIN advertising and discovery framework and its
implementation is to show how the metamodel can be used
to build middleware-level services and how mobile code
and components can be used to offer dynamicity in service
discovery mechanisms, an area which is traditionally fixed
and inflexible. The middleware systems with which this
section compares SATIN were chosen because of their use of
logical mobility or related adaptation primitives.

6.1 Advertising and Discovery Mechanisms

Universal Plug And Play (UPnP) [32] is a set of networking
protocols that allows devices to describe, advertise, and
control services using XML and SOAP. It also includes an
event-based mechanism that allows devices to communi-
cate state changes to each other. Implementations of the
SATIN Advertising and Discovery framework can use UPnP
to describe, advertise, and discover components that
implement services. The developer will also have to
implement the control and event-based communication
mechanisms that UPnP provides. The SATIN migration
primitives can be used to dynamically deploy a UPnP
implementation to any SATIN-enabled node.

Web Services and the Web Services Description Lan-
guage (WSDL) [33] can be used by SATIN advertisable
components to describe services and allow clients to
communicate with them. The clients of Web Services use
XML and HTTP to convey requests to the service, the
interface of which is described using WSDL. Note that both
Web Services and UPnP would be more suitable service
discovery and communication paradigms for hosts that do
not change location very frequently.

The OMG Data Distribution Service (DDS) [34] is a QoS-
aware data-centric public subscribe communication model
for distributed nodes. Implementations of the SATIN
Advertising and Discovery framework can use DDS to
advertise and discover services. Moreover, components that
offer data dissemination services can use DDS to distribute
the data to subscribers. The SATIN logical mobility
primitives can be used to dynamically deploy a DDS
implementation to any SATIN-enabled node.

6.2 Component Systems

OpenCOM [26] is a lightweight component model based on
Microsoft COM, the purpose of which is to implement a
popular component model with reflective and adaptation
capabilities. OpenCOM components export interfaces and
have “required interfaces,” or Receptacles. A Receptacle
represents a dependency of a Component to another.
OpenCOM is similar to SATIN in that it provides a
lightweight component model with support for reflection.
The OpenCOM Capsule is also similar to the SATIN
Container. It does not, however support logical mobility
and, therefore, has limited adaptability.

The CORBA Component Model [19] (CCM) is an
extension of the CORBA Object Model that appeared with
the third version of the CORBA specification. It is a
distributed and language-independent component model
that allows multiple containers to host multiple components
on each server. Components offer services expressed as

interfaces and require other services as defined in recepta-
cles. The CCM also provides an event-based communica-
tion system, an attribute system, and structural reflection
capabilities. Components can be dynamically deployed into
component servers. A number of services, such as transac-
tions, security, persistence, etc., are offered.

Related to this is the CORBA Deployment and Config-
uration (D&C) [35] specification, which prescribes, in an
MDA-compliant way, how CORBA Component Model
systems can be reconfigured by dynamically deploying
components or by choosing which component to use to
perform a particular task at runtime. Deployment and
configuration also allows applications to define themselves
in terms of assemblies, which are component packages and
assorted metadata. The D&C specification defines concepts
similar to the SATIN Deployer and Logical Mobility Unit,
which are able to serialize, send, receive, and deploy
components. It offers various nonfunctional services, such
as QoS support, hierarchical assemblies, etc.

There are two major differences between SATIN and the
D&C specification. CORBA D&C does not allow for sending
arbitrary classes and objects and, thus, cannot be used to
offer the flexible use of any logical mobility paradigm as a
computational primitive. In contrast, SATIN can deploy any
class, object, or component to any Reflective target. Another
difference is that implementations of the CCM and the D&C
are too heavyweight to run on mobile devices, as will be
discussed below. In contrast, SATIN has been implemented
and is fully operational on 200 MHz ARM PDAs, and we
have deployed a prototype for mote sensors.

The CORBA Component Model requires too many
resources to be implemented on mobile devices. The
Lightweight CORBA Component Model (LwCCM) was
created as a subset of the full specification. It still offers
point to point communication, event-based communication,
and multiple container types. Despite the similarity of the
CCM and, in particular, the LwCCM to SATIN, SATIN is
fundamentally different in that it is a local component
metamodel, with distribution built on top as a service, as
justified in Section 3. The distributed nature, multiple
interaction paradigms, and multiple container types offered
by the LwCCM by default make it far more resource-
demanding than SATIN by definition. As an example, CIAO
[36], a popular implementation of the LwCCM, requires
multiple megabytes to be installed with all its dependencies
on a Debian Linux system.

Beanome [37] and Gravity [38] are component models
built on top of the Open Services Gateway Initiative (OSGi)
Framework [39]. OSGi is a commercial framework for the
Java platform that allows service providers to deliver
services to consumer devices attached to a residential
network and to manage those devices remotely. Beanome
and Gravity have been built for a different setting that can
assume constant network connectivity at relatively low
latency. This justifies a strict client/server architecture,
which would not work in a mobile setting.

The Dynamically Programmable and Reconfigurable
Software (DPRS) architecture [40] discusses a design for
dynamic programmable and reconfigurable systems. The
notion of a Micro-Building Block (MBB) is defined, which is,
essentially, a minimal component that inputs data in the
form of tuples, performs some action on it, and outputs a
result in tuples. The state of the MBB is stored as tuples in a
state storage area that is provided by the system. The main
difference to SATIN is that the latter defines a way to

ZACHARIADIS ET AL.: THE SATIN COMPONENT SYSTEM—A METAMODEL FOR ENGINEERING ADAPTABLE MOBILE SYSTEMS 15

dynamically reconfigure the system by sending and
receiving components via the use of the Deployer and
Reflective components. The DPRS architecture does not
define any logical mobility mechanism. Finally, the DPRS
implementation is rather heavyweight, as witnessed in its
testing procedure that requires multi-GHz machines,
whereas Section 5 shows that SATIN is lightweight.

DACIA [41] is an adaptable distributed component
based system for groupware applications that allows for
the reconfiguration of the system in the event of user
mobility. The main differences to SATIN are SATIN’s focus
on device mobility and limited resource consumption.
Moreover, SATIN component interconnections are local.

PCOM [42] is a distributed component model for
pervasive computing. Built on top of BASE, a middleware
system that allows for dynamically selecting communica-
tion protocol stacks, PCOM treats an application as a
collection of potentially distributed components, which
make their dependencies explicit. If those dependencies are
invalidated, PCOM can attempt to automatically adapt by
detecting alternatives according to various strategies.

The FarGo-DA [43] distributed component model uses
logical mobility to allow disconnected operations. As such,
when a FarGo component is disconnected, it has a number
of options to allow the remote reference to remain valid.
These options include cloning and replacing the reference.
The SATIN component metamodel provides a much more
general use of logical mobility primitives and focuses on the
reconfiguration of autonomous hosts.

In [44], a software architecture-based, distributed com-
ponent model is proposed that has the ability to update the
components that constitute applications engineered using
it. Using the concepts of components, which describe the
logic and state of the system, connectors, which are
responsible for interconnecting local and remote compo-
nents, and configurations, which define topologies of
components and connectors, the approach requires pre-
loading of the software architecture skeleton (or metalevel
configuration) on all hosts where the component-based
application is to be deployed. SATIN offers more fine-
grained use of Logical Mobility built into the model
(whereas the approach in [44] can only send and receive
components) and allows for reflection and late binding
without requiring that any architecture description be
preloaded on any node.

6.3 Middleware Systems

Lime [27] is a mobile computing middleware system that
allows mobile agents to roam to various hosts sharing tuple
spaces. PeerWare [45] allows mobile hosts to share data,
using logical mobility to ship computations to the remote
sites that host the data. Jini [46] is a distributed networking
system that allows devices to enter a federation and offer
services to other devices or use code on demand to
download code allowing them to utilize services that are
already being offered. The Software Dock [47] is an agent-
based software deployment network that allows negotiation
between software producers and consumers. The one.world
system [48] for pervasive applications facilitates dynamic
service composition, migration of applications, and dis-
covery of context, using remote evaluation and code on
demand. A limitation of these approaches is that their use of
logical mobility is focused to solving specific problems of a
particular scope, such as data sharing, distributed compu-
tations, or disconnected operations. In contrast, SATIN
allows for the flexible use of logical mobility by applications

for any purpose. Moreover, these approaches are not
suitable for heterogeneity and mobility as they usually
predefine advertising and discovery services, making
interoperability with different middleware systems and
networks particularly difficult.

ReMMoC [49] is a middleware platform which allows
reconfiguration through reflection and component technol-
ogies. It provides a mobile computing middleware system
which can be dynamically reconfigured to allow the mobile
device to interoperate with any middleware system that can
be implemented using OpenCOM components. The generic
request broker UIC [50] defines a skeleton of abstract
components, which have to be specialized to the particular
properties of each middleware platform the device wishes
to interact with. The limitation of these approaches is that
they do not provide adaptation primitives or the use of
logical mobility primitives to the applications running on
the middleware; they only allow for the reconfiguration of
the middleware system itself.

7 DiscussiON AND CONCLUSIONS

In this paper, we presented SATIN, a lightweight compo-
nent metamodel instantiated as a middleware system for
adaptable mobile systems. SATIN offers logical mobility
primitives as first-class citizens. SATIN was used to create
and port a number of applications that show different
aspects of adaptation. The overhead of the SATIN imple-
mentation was shown to be minimal, despite the added
flexibility.

SATIN was designed to be very flexible and lightweight.
This flexibility was demonstrated in the breadth of different
applications and systems that were developed using it. As
such, it makes a number of design choices that affect this.
To begin with, SATIN does not differentiate between
different component instances by default. This behavior
was found to be adequate in our testing. To support
different instances, an extension of the container and
default component life cycle would be needed and was
built for the ESA project. Similarly, SATIN does not
constrain adaptation in any way. This means that adapta-
tion can potentially leave the system in an undesirable state
(by removing, for example, the only Deployer). This will be
addressed in future work via the use of component
frameworks [6].

SATIN supports the construction of laissez-faire adapta-
ble systems. It provides the architecture to engineer an
adaptable system and the means to adapt it, but does not
provide for the mechanism to select how a system should
adapt (thus becoming an adaptation-aware system). To that
end, we have created Q-CAD (QoS and Context Aware
resource Discovery) [8], which employs application profiles
and utility functions to decide on how to adapt.

Last, an issue that was not discussed in this paper was
trust and security. At the current stage, our architecture
provides for the use of digital signatures embedded in
LMUs. This assumes the existence of a trusted third party,
such as the ISP of the user. We consider it important in
future work to investigate the use of Proof Carrying Code
[51] techniques or even a trust-based mechanism [52],
which may alleviate this need.

To conclude, SATIN provides a novel way to build
adaptable mobile systems. The use of logical mobility, as
offered by SATIN, allows a mobile system to adapt to
changes in context. SATIN breaks the monolithic nature of
mobile systems by representing them as collections of

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 10, OCTOBER 2006

interacting collocated components, which can mutate using
logical mobility techniques. Reflecting on the work pre-
sented, it can be concluded that mobile systems can benefit
from the flexibility offered by component systems offering
logical mobility primitives without suffering significant
performance penalties. In particular, SATIN allows for build-
ing novel adaptable systems and also permits the porting of
existing systems and applications, with the ports benefiting
from the reconfiguration primitives that SATIN provides.
The performance of an unoptimized version of SATIN
running both new applications and ports of existing
systems on mobile computing hardware that is several
years old was found to be adequate and the time needed to
adapt was measured to be minimal. An alternative
approach to using components and logical mobility would
be to create a programming language that allows the
specification of modular systems but that also offers built-in
logical mobility primitives. The major drawback of such an
approach would be, however, that the complete software
development chain, from the linker to the compiler to the
development environment to the adaptable software itself,
would have to be written from scratch. In contrast, SATIN
allows the use of existing software and tools.

Moreover, the porting of the SATIN architecture to even
smaller devices such as sensors is under consideration—the
severely limited resource availability of a sensor platform
offers a new set of research challenges. That said, we
already have a prototype of the platform running as a
Contiki [53] Service on the TelosB sensor platform. This is a
testament to how implementations of the SATIN metamodel
can scale down to devices that only offer 10 KB of RAM and
an 8 MHz 16 bit CPU. We are planning to research further
into code deployment consistency, dependency, and man-
agement issues, which are related to code mobility, the
discarding of parts of a component received by a host, and
the deployment of new code on a host which does not have
the required functionality. We are also researching the use
of model-driven architecture in specifying SATIN systems.
Finally, SATIN is currently being used in the SEINIT [54]
and RUNES [55] EU projects. It has been released as an
open source project under the GNU LGPL and is available
online at [28].

ACKNOWLEDGMENTS

The authors thank Saleem Bhatti, Licia Capra, Wolfgang
Fritsche, Gerhard Gessler, Stephen Hailes, Peter Kirstein,
Karl Mayer, Lionel Sacks, and Mirco Musolesi for their help
in producing this work. The authors also acknowledge the
support of the EPSRC through project GR/R70460, the
European Union through Project RUNES, and the European
Space Agency through contract number 18376/04/NL/AD.

REFERENCES

[1] Palmsource Developers Program, http:/ /www. palmsource.com/
developers/, 2004.

[2]]. Power, “Distributed Systems and Self-Organization,” Proc. 1990
ACM Ann. Conf. Cooperation, pp. 379-384, Feb. 1990.

[3] A. Fuggetta, G. Picco, and G. Vigna, “Understanding Code
Mobility,” IEEE Trans. Software Eng., vol. 24, no. 5, pp. 342-361,
May 1998.

[4] The Distributed.net Project, http://www.distributed.net, 1995.

[S] S. Zachariadis, C. Mascolo, and W. Emmerich, “SATIN: A
Component Model for Mobile Self-Organisation,” On the Move to
Meaningful Internet Systems 2004: Proc. CooplS, DOA, and ODBASE,
pp- 1303-1321, Oct. 2004.

o]
(7]

(8]

[16]

(171

(18]
(19]
[20]

(21]

(22]

(23]

(24]

[25]
[20]

[27]

(28]
[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison Wesley, 1998.

M. Satyanarayanan, “Accessing Information on Demand at Any
Location. Mobile Information Access,” IEEE Personal Comm.,
vol. 3, no. 1, pp. 26-33, Feb. 1996.

L. Capra, S. Zachariadis, and C. Mascolo, “Q-CAD: QoS and
Context Aware Discovery Framework for Adaptive Mobile
Systems,” Proc. Int’l Conf. Pervasive Services (ICPS '05), pp. 453-
456, July 2005.

T. Kort and K. Dulaney, “Sony’s Exit from the PDA Market Hurts
PalmSource,” June 2004.

W. Emmerich, Engineering Distributed Objects. John Wiley & Sons,
Apr. 2000.

Object Management Architecture Guide, R M. Soley, ed. Wiley, 1992.
R. Grimes, DCOM Programming. Wrox, 1997.

R. Monson-Haefel, Enterprise Javabeans. 1999.

C. Mascolo, L. Capra, and W. Emmerich, “Principles of Mobile
Computing Middleware,” Middleware for Comm., Q. Mahmoud,
ed., pp. 261-280, John Wiley, 2004.

B.C. Smith, “Reflection and Semantics in a Procedural Program-
ming Language,” PhD thesis, Massachusetts Inst. of Technology,
Jan. 1982.

“Meta Object Facility (MOF) Specification,” technical report,
Object Management Group, Mar. 2000.

“Unified Modeling Language,” version 1.5, Object Management
Group, http://www.omg.org/docs/formal/03-03-01.pdf, Mar.
2003.

S. Zachariadis, “Adapting Mobile Systems Using Logical Mobility
Primitives,” PhD thesis, Univ. of London, 2005.

“CORBA Component Model,” Object Management Group,
http:/ /www.omg.org/cgi-bin/doc?orbos/97-06-12, 1997.

I. Murdock, “Overview of the Debian GNU/Linux System,”
Linux J., vol. 6, Oct. 1994.

G.P. Picco, “uCode: A Lightweight and Flexible Mobile Code
Toolkit,” Proc. Second Int’l Workshop Mobile Agents, K. Rothermel
and F. Hohl, eds., 1998.

J. Waldo, “The Jini Architecture for Network-Centric Computing,”
Comm. ACM, vol. 42, no. 7, pp. 76-82, July 1999.

M.V. Zelkowitz and D. Walace, “Experimental Validation in
Software Engineering,” Proc. Conf. Empirical Assessment and
Evaluation in Software Eng., Mar. 1997.

M. Jjaha, “Mitoolkit,” MS thesis, Univ. College London, UK.,
2004.

D.A. Wheeler, “SLOCCount,” 2004.

M. Clarke, G.S. Blair, G. Coulson, and N. Parlavantzas, “An
Efficient Component Model for the Construction of Adaptive
Middleware,” Proc. IFIP/ACM Int'l Conf. Distributed Systems
Platforms, pp. 160-178, 2001.

A.L. Murphy, G.P. Picco, and G.-C. Roman, “Lime: A Middleware
for Physical and Logical Mobility,” Proc. 21st Int’l Conf. Distributed
Computing Systems (ICDCS 21), pp. 368-377, May 2001.

The SATIN Open Source Project, “The SATIN Component
Model,” http:/ /satin.sourceforge.net/, 2005.

The OGG Vorbis Project, Xiph.org Foundation, http:/ /xiph.org/
ogg/vorbis/, 1998.

The European Space Agency, “Programmable Active Networks
for Next Generation Multimedia Services (PANAMAS),” 2005.
D.L. Tennenhouse,].M. Smith, W.D. Sincoskie, D.J. Wetherall, and
G.J. Minden, “A Survey of Active Network Research,” IEEE
Comm. Magazine, vol. 35, no. 1, pp. 80-86, 1997.

“Universal Plug and Play,” UPnP Forum, http://www.upnp.
org/, 1998.

R. Chinnici, M. Gudgin, J.-J. Moreau, and W. Weerawarana, Web
Services Description Language (WSDL) 1.2. World Wide Web
Consortium, Mar. 2003.

G. Pardo-Castellote, “OMG Data-Distribution Service: Architec-
tural Overview,” Proc. 23rd Int’l Conf. Distributed Computing
Systems (ICDCSW “03), p. 200, 2003.

“The CORBA Component Model Deployment & Configuration
Specification,” Object Management Group, http://www.omg.
org/cgi-bin/doc?ptc/2005-01-07, 2004.

D.C. Schmidt, “Component-Integrated Ace ORB,” http://www.
cs.wustl.edu/%7Eschmidt/CIAO.html, 2006.

H. Cervantes and R. Hall, “BEANOME: A Component Model for
the OSGi Framework,” Software Infrastructures for Component-Based
Applications on Consumer Devices, Sept. 2002.

ZACHARIADIS ET AL.: THE SATIN COMPONENT SYSTEM—A METAMODEL FOR ENGINEERING ADAPTABLE MOBILE SYSTEMS 17

[38] H. Cervantes and R. Hall, “Autonomous Adaptation to Dynamic
Availability Using a Service-Oriented Component Model,” Proc.
26th Int’l Conf. Software Eng. (ICSE "04), pp. 614-623, May 2004.
The OSGi Framework, OSGi Alliance, http:/ /www.osgi.org, 1999.
M. Roman and N. Islam, “Dynamically Programmable and
Reconfigurable Middleware Services,” Proc. Middleware Conf.,
pp- 372-396, Oct. 2004.

R. Litiu and A. Parakash, “Developing Adaptive Groupware
Applications Using a Mobile Component Framework,” Proc. 2000
ACM Conf. Computer Supported Cooperative Work (CSCW '00),
pp- 107-116, 2000.

C. Becker, M. Handte, G. Schiele, and K. Rothermel, “PCOM—
A Component System for Pervasive Computing,” Proc. Second Int’l
Conf. Pervasive Computing and Comm., pp. 67-76, Mar. 2004.

Y. Weinsberg and 1. Ben-Shaul, “A Programming Model and
System Support for Disconnected-Aware Applications on
Resource-Constrained Devices,” Proc. 24th Int’l Conf. Software
Eng., pp. 374-384, May 2002.

M. Mikic-Rakic and N. Medvidovic, “Architecture-Level Support
for Software Component Deployment in Resource Constrained
Environments,” Proc. IFIP/ACM Working Conf. Component Deploy-
ment (CD ’02), pp. 31-50, 2002.

G. Cugola and G. Picco, “Peer-to-Peer for Collaborative Applica-
tions,” Proc. IEEE Int’l Workshop Mobile Teamwork Support/Int’l
Conf. Distributed Computing Systems (ICDCS '02), pp. 359-364, July
2002.

K. Arnold, B. O’Sullivan, R.-W. Scheifler, J. Waldo, and A.
Wollrath, The Jini(TM) Specification. Addison-Wesley, 1999.

R.S. Hall, D. Heimbigner, and A.L. Wolf, “A Cooperative
Approach to Support Software Deployment Using the Software
Dock,” Proc. 1999 Int’l Conf. Software Eng., pp. 174-183, 1999.

R. Grimm, T. Anderson, B. Bershad, and D. Wetherall, “A System
Architecture for Pervasive Computing,” Proc. Ninth ACM SIGOPS
European Workshop, pp. 177-182, 2000.

P. Grace, G.S. Blair, and S. Samue, “Middleware Awareness in
Mobile Computing,” Proc. First IEEE Int'l Workshop Mobile
Computing Middleware (MCM '03)/Int’l Conf. Distributed Computing
Systems (ICDCS "03), pp. 382-387, May 2003.

M. Roman, F. Kon, and R.H. Campbell, “Reflective Middleware:
From Your Desk to Your Hand,” IEEE Distributed Systems
Online |., special issue on reflective middleware, July 2001.

G.C. Necula, “Proof-Carrying Code,” Proc. 24th ACM SIGPLAN/
SIGACT Symp. Principles of Programming Languages, pp. 106-119,
Jan. 1997.

L. Capra, “Engineering Human Trust in Mobile System Colla-
borations,” Proc. SIGSOFT/12th Int’l Symp. Foundations of Software
Eng. (FSE-12), pp. 107-116, Nov. 2004.

A. Dunkels, B. Groenvall, and T. Voigt, “Contiki—A Lightweight
and Flexible Operating System for Tiny Networked Sensors,” Proc.
First IEEE Workshop Embedded Networked Sensors, Nov. 2004.

The SEINIT Project: Security Expert Initiative, http:/ /www .seinit.
org, 2003.

The RUNES Project: Reconfigurable Ubiquitous Network Em-
bedded Systems,” http:/ /ist-runes.org, 2004.

[39]
(40]

[41]

(42]

(43]

(44]

[45]

[40]

[47]

(48]

[49]

(50]

[51]

[52]

[53]

[54]

[55]

Stefanos Zachariadis received the PhD in
computer science from University College Lon-
don. During his time there, he published in the
area of data synchronization, peer to peer
systems, mobile computing and midleware,
mobile code, and sensor systems. His research
has led him to participate in various research
projects, and his work has been used by various
parties, including the European Space Agency
and sensor network operating system devel-
opers. His interests are in the areas of software architectures, testing,
and mobile, distributed, and resource constrained systems. He currently
works as a software engineer for the Zihlke Technology Group in
London. More details of his profile are available at www.zachariadis.net.

Cecilia Mascolo received the MSc and PhD
degrees in computer science from the University
of Bologna (ltaly). She is an EPSRC Advanced
Research Fellow and a senior lecturer with the
Department of Computer Science at University
College London. She has published extensively
in the areas of mobile middleware, delay tolerant
routing, ad hoc networks, mobility models, soft-
ware architectures for ubiquitous systems, and
code mobility. Dr. Mascolo is currently working
on projects in middleware for mobile and sensor networks, delay tolerant
and opportunistic networking, publish-subscribe systems, and sensor
networks. She is an investigator on projects in mobile computing
middleware, pervasive middleware for health care, middleware for
emergency applications, and mobility models. Dr. Mascolo has served
as a program committe member in many middleware, mobile system,
and delay tolerant network conferences and she has been cochair of a
number of workshops and conferences focusing on mobile systems.
She also delivered tutorials on mobile computing middleware. More
details of her profile are available at www.cs.ucl.ac.uk/staff/c.mascolo.

Wolfgang Emmerich received the PhD in
computer science from the University of Pader-
born and an MSc in informatics from the
University of Dortmund in Germany. He is a
professor of distributed computing at University
College London, a leading British university. He
heads the Software Systems Engineering Re-

; search Group in the Department of Computer
‘, Science, where he is currently also director of

18 research. He is a member of London Software
Systems. Prior to joining UCL, he held a lectureship at the City
University in London and was a visiting research fellow in the Software
Verification Research Centre at the University of Queensland in
Brisbane, Australia. His research interests are in the area of software
architectures for large-scale distributed and mobile systems. He is a
member of the editorial board of the IEEE Transactions on Software
Engineering. He has served on numerous program committees of
international conferences in software engineering and distributed
systems. He currently serves as program cochair of the International
Conference on Software Engineering, to be held in Minneapolis in 2007.
He is a chartered engineer and a member of the IEEE Computer
Society, the ACM, and the Institution of Engineering and Technology. He
is also a cofounder and partner of the Zlihlke Technology Group, a
medium-sized pan-European service provider of systems engineering
services.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

