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Abstract

Online Social Networks (OSNs) are increasingly be-
coming one of the key media of communication over the
Internet. The potential of these services as the basis to
gather statistics and exploit information about user be-
havior is appealing and, as a consequence, the number of
applications developed for these purposes has been soar-
ing. At the same time, users are now willing to share
information about their location, allowing for the study
of the role of geographic distance in social ties.

In this paper we present a graph analysis based ap-
proach to study social networks with geographic infor-
mation and new metrics to characterize how geographic
distance affects social structure. We apply our analy-
sis to four large-scale OSN datasets: our results show
that there is a vast portion of users with short-distance
links and that clusters of friends are often geographically
close. In addition, we demonstrate that different social
networking services exhibit different geo-social proper-
ties: OSNs based mainly on location-advertising largely
foster local ties and clusters, while services used mainly
for news and content sharing present more connections
and clusters on longer distances. The results of this work
can be exploited to improve many classes of systems and
a potential vast number of applications, as we illustrate
by means of some practical examples.

1 Introduction

In the recent years massive Online Social Networks
(OSNs) such as Facebook, MySpace, LinkedIn, Flickr
and Twitter have become increasingly popular, gathering
millions of users and engaging them in the production,
sharing and consumption of information over social
links. The numbers are overwhelming: for example,
Facebook has more than 400 million active users, which
share about 3.5 billion pieces of content each week and
upload about 2.5 billion photos each month [4].
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The growth of these services has attracted the interest
of the academic community [11, 15, 10]: even if “of-
fline” social networks have been under investigation for
many decades [19], the availability of such large OSNs
provides fascinating opportunities to understand how so-
cial structures develop and arise at a large scale.

OSNss are increasingly becoming location-aware: they
offer the opportunity to share geographic location in or-
der to generate location-tagged information and to search
for it. For instance, there are social networking services
grounded on the idea of advertising your exact location to
all your friends in real-time, such as Gowalla. Similarly,
Twitter has always provided its users with the option of
sharing some information about their location, with an
increasing proportion of them already doing so. These
new features open novel research directions which are
largely unexplored, such as the design of new social ap-
plications and the improvement of existing large scale
systems. Hence, it becomes important to investigate how
geographic distance between individuals affects OSNs in
order to deepen our understanding of these networks.

In this paper we firstly present a new approach for
the analysis of networks with geographic information:
then, we define new geo-social metrics which are able to
quantify if an individual has short-range or long-distance
social ties and to discern if its neighbors form clusters
at a large or small scale. We show how these metrics
provide a better understanding of these networks, since
they take into account geographic properties of the
social ties across people. We apply our metrics to four
different OSNs which provide location information for
their users: we study two purely location-based social
networking services (BrightKite and FourSquare), one
blogging community (LiveJournal) and a social micro-
blogging platform (Twitter). We study their geo-social
properties and we find that their users exhibit a tendency
to have short-range social connections and that clusters
of friends tend to be geographically confined. Moreover,
we show how location-based OSNs exhibit different



geo-social properties than services mainly based on
content sharing and broadcasting, for they seem to foster
more local, short-range interactions among users.

The main contributions of this paper can be summa-

rized as follows:

e We describe an analytical framework where net-
work nodes are embedded in a metric space, in or-
der to study the relationship between social con-
nections and geographic distance. We define two
new geo-social measures: a node locality metric,
which quantifies how much a node is engaged with
a local rather than global set of individuals, and
a geographic clustering coefficient, which extends
the standard notion of clustering by taking into ac-
count how much clusters of people are connected by
short-range ties.

e We describe and analyze the social, geographic and
geo-social properties of four different datasets of
real OSNs with geographic information. We char-
acterize some recurrent properties of the networks:
in particular, we observe that there is a vast portion
of users with short-range friendship links and that,
at the same time, clusters of friends are often geo-
graphically close.

o We show how different OSNs present contrasting
characteristics, which may be explained by a vary-
ing attitude of their users towards the social and
geographic aspects of online friendship: location-
based OSNs engage their users in short-range so-
cial connections more than sharing-based services,
which exhibit social ties on a wider scale.

2 Motivation

Augmenting social structure with geographic in-
formation adds a new dimension to social network
analysis and a large number of theoretical investiga-
tions and practical applications can be pursued on
socio-geographic systems.

Geographic analysis of social networks By taking
into account geographic location we can understand
which role distance plays in social phenomena such
as the creation of friendship ties, the development of
personal tastes and the spreading of information. Even
though the structure and the dynamics of social networks
have been under scrutiny for many years [3, 19], we
still need to investigate which influence geography has
on both. Previous research has studied how geographic
distance affects social ties [14] and how location-based
OSNs are changing our attitude towards the perception
of space [9]. By analyzing large scale OSNs it becomes
possible to understand how users choose their connec-
tions over space, how their interactions are affected
by distance and whether social influence and trust

fade away with remoteness. Similarly, standard social
network models do not take into account geographic
distance between nodes. As an example, users could
be characterized by their preference towards global,
long-range interactions rather than towards local, short-
distance ties, in order to classify their behavior and
understand what factors drive their social interactions.

Design of geo-social applications Geolocation avail-
ability on OSNs opens new alluring directions for novel
applications and systems. Applications such as social
search, social recommendation and advertising would
greatly benefit from geographic information about users:
search queries about local content could be directed to
nearby users with many social links in the area of in-
terest, while both advertising and recommender systems
could better profile users by knowing how their social
ties stretch over space. Moreover, information about
social links and geographic placement can tell us a great
deal about how culture and taste disseminate on an OSN.
Some potential applications of this idea include targeted
advertisement and more effective local content spreading
(e.g., shop promotions, local news, job openings).

Improving large-scale systems Finally, large-scale
systems would greatly profit from a better knowledge of
how users are connected over space and how informa-
tion spreading over these links creates demand for con-
tent and services around the planet. More specifically,
with the recent rising interest in cloud services [8] and
content delivery networks [13], it has become extremely
important to understand how content and service requests
are arising from all over the world and whether the de-
sign of such systems can be improved by exploiting the
geographic properties of social processes. For instance,
popularity of content can be geographically and tempo-
rally characterized, devising new strategies for replica
placement and caching where distribution servers can be
pre-loaded with content depending on the sharing inter-
actions, their location and their temporal patterns.

3 Geographic Social Networks

OSNs encourage users to indicate their home location:
for example, they can provide details about their home-
town, neighborhood or, more recently, their exact loca-
tion by uploading their mobile device’s GPS readings.

In this section we present an approach to study these
social networks which takes advantage of the geographic
information about nodes to assign lengths to their links.
We then define two new geo-social network metrics
which are able to quantify, respectively, i) users’ like-
lihood of exhibiting long (or short)-distance social inter-
actions and ii) locality of social clusters (i.e., how users
in the same cluster are close to each other).

A Geographic Social Network is represented as a



graph GG with N nodes and K links: nodes represent
users and a link among two nodes exists if there is a so-
cial tie between them (e.g., a person lists another user
as one of his/her friends). A link may be undirected or
directed: in the latter case, the existence of a link from
node ¢ to node j does not imply the existence of the re-
verse link from 7 to 7. Given a fixed location on the Earth
for each user, nodes are embedded in a 2-dimensional
metric space where the distance between two nodes %
and j is given by the geographic distance D;; between
their locations on the planet. This distance is used as the
length of the link /;; between nodes ¢ and j.

Node locality Then, we define a metric to quantify the
geographic closeness (i.e., the locality) of the neighbors
of a certain node to the node itself. Let us consider an
undirected geographic social network, a node ¢ with
a particular geographic position and the set I'; of its
neighbors. The node degree k; is the number of these
neighbors, that is k; = |[';|. Then, the node locality of
can be defined as a measure of how much geographically
close its neighbors are and it is computed as follows:

1
NL; = = Z e~ tii/B (1
' jer;

where (3 is a scaling factor which avoids extremely small
values of node locality when links have large lengths. By
definition, VL, is always normalized between 0 and 1.
The value of 3 does not impact the relative values of node
locality: a node with higher locality than another one will
always have a higher value, regardless of the value of 5.
At the same time, 3 can be chosen so that networks with
different geographic size can still be compared with each
other, as we will discuss later. Finally, we adopt an ex-
ponential decay for node locality to highlight social ties
which span over short geographic distances and to re-
duce, at the same time, the impact of longer ties.

In a similar fashion, in the case of directed graphs the
node in-locality can be defined considering only the in-
coming connections of a node and the node out-locality
is defined considering only outgoing links. A node with-
out in-connections will have, by definition, node in-
locality equal to O; the same applies to out-locality.

Geographic clustering coefficient While node local-
ity captures how close the neighbors of a node are, an-
other measure is needed to quantify how tightly con-
nected the neighborhood of a node is. Thus, the geo-
graphic clustering coefficient can be defined as an exten-
sion of the clustering coefficient used for complex net-
works [2]. The clustering coefficient measures the pro-
portion of triangles among the neighbors of a given node:
this geographic adaptation attempts to weigh differently
triangles formed by nodes that are close to each other
and triangles where nodes are at longer distance. The ge-

ographic clustering coefficient of node : is thus defined
in the same way as the clustering coefficient, but each
existing triangle between nodes i, j and k is assigned a
weight w;;; defined as:

Aijk

Wijp =€ P ()

where A;;; is the maximum length among the three
links, that is A;;x = max(li;, ik, k). We define
wi;r, = 0 if there is no link between j and k. Since
this measure uses the maximum weight among all the
links of a triangle, it focuses on nodes which are all
close to each other: when just one of the three nodes is
not close to the other two, the weight will immediately
decrease. This emphasizes social triangles where users
are extremely close to each other. Again, the parameter
(3 is used to scale the values of the measure.

In the case of directed graphs, as in the case of
the standard clustering coefficient, we consider triangles
containing undirected links joining node i to its neigh-
bors and directed links for the remaining side. Thus, if
we consider I'; as the set of all the neighbors of node
1 (considering both incoming and outgoing links), with
k; = |T';|, the geographic clustering coefficient is defined
as:

1
GC; = m Z Wijk 3)

J,kel;

where the sum is extended only to existing triangles.
Since there are exactly k;(k; — 1) different ordered cou-
ples of neighbors in I';, GC; is normalized between 0
and 1 by definition.

4 Dataset Acquisition

We now describe the collection methodology we have
used to extract data about social links and user geo-
graphic information of OSNs and, then, we present the
four datasets we analyze in this work.

Collection methodology To extract and collect infor-
mation about the social ties among users and their geo-
graphic location we have crawled a sample of each OSN
employing snowball sampling [12]: the data extraction
starts from a set of seed users and then it expands the ex-
traction by following the outgoing links of these users to
reach new users and so on. However, the snowball sam-
pling procedure is known to be biased [12], since there is
a higher probability of sampling nodes with more links.
This aspect will be taken into consideration during the
evaluation of the analytical results.

Location-aware OSNs The OSNs under analysis
were created with different goals and, hence, they
exhibit different characteristics. Nonetheless, they all
provide static geographic information about their users,



Dawset | N K| & [ (@ [®][0)] Gy [ ™ (G0 p ]
BrightKite 54,190 213,668 7.88 0.181 | 4.71 | 5,683 | 2,041 0.82 0.165 1
FourSquare | 58,424 351,216 12.02 | 0.256 | 4.60 | 4,312 | 1,296 0.85 0.237 1
LiveJournal | 992,886 | 29,645,952 29.85 | 0.185 | 4.89 | 6,142 | 2,727 | 0.73/0.71 | 0.146 | 0.69
Twitter 409,093 | 182,986,353 | 447.29 | 0.207 | 2.77 | 6,087 | 5,117 | 0.57/0.49 | 0.108 | 0.79

Table 1: Properties of the datasets: number of nodes N and edges K, average node degree (k), average clustering
coefficient (C'), average shortest path length (L), average distance between nodes (D;;) [km], average link length
(I;;) [km], average node locality (N L) (in/out), average geographic clustering coefficient (GC') and reciprocity p [6].

in explicit or implicit form (e.g., geographic coordinates
or a city name).

BrightKite was founded in 2007 and it is a social net-
working website which allows users to share their loca-
tion, to post notes and to upload photos through different
interfaces. It is based on the idea of making “check-ins”
at places, where users can see who is nearby and who has
been there before. BrightKite users can establish bidirec-
tional friendship links and send public and private mes-
sages to each other. It offers a public API which pro-
vides geographic coordinates of user home locations and
lists of friends. The duration of our crawl was 2 days
from September 20 to September 21, 2009: we seeded
the crawl collecting 1,000 users from the public timeline
and then exhausting the extraction. The dataset contains
information about 54,190 users.

FourSquare is a location-based social networking
website launched in 2008 which engages its users in a
game competition. Users “check-in” at venues in order
to be awarded points which contribute to their chart po-
sition. This fosters the engagement of users, which are
encouraged to check-in as many times as possible. Ini-
tially, FourSquare allowed users to check-in only from
about 100 cities in the US and in Europe; they have only
recently removed this limitation [5]. Furthermore, the
service enables the creation of bidirectional friendship
links. The website audience has recently grown steadily,
reaching about 100,000 members at the end of 2009. We
used a public API to retrieve user friend lists and home
locations with geographic coordinates. The duration of
the crawl was 7 days from November 22 to November
28, 2009 and it was seeded with 1,000 randomly selected
user identifiers. Due to a limit on the number of API re-
quests that could be issued, we retrieved a subset of the
entire network which contains information about 58,424
users.

LiveJournal is a community of bloggers with around
14 millions active users as the end of 2009. Users can
keep a blog or a journal and establish friendship connec-
tions among them. Each user provides a personal pro-
file which often includes home location, personal inter-
ests and a list of other bloggers considered as friends.
Friendship links may not be reciprocal. There is a public

API to explore the social network, but it does not ex-
pose any method to get user profiles, where location in-
formation may be obtained. Thus, the crawling process
involved both crawling the social network links through
the API and downloading the HTML profile pages of the
visited users. Seed users were acquired by accessing
the public timeline over 24 hours and then 1,000 users
were randomly selected among all the users retrieved.
The duration of the crawl was 9 days, from November
2 to November 9, 2009, obtaining a sample of 1,502,684
users. Given the 1,226,412 users which provide location
information, we successfully obtained a meaningful ge-
ographic location for only 992,886 users.

Twitter is a social networking service which allows
users to send short messages known as tweets. Tweets
are composed only of text, with a strict limit of 140 char-
acters: they are displayed on the author’s profile page and
delivered to the author’s subscribers, who are also known
as followers. Since its launch in 2006 it has gained a
global and vast audience of millions of users all around
the world [18]. Twitter does not enforce reciprocity in
social connections: a user may follow another one even
though the latter is not following back. Hence, the result-
ing graph is directed. Another key characteristic is the
presence of a heterogeneous network structure, where a
user may have many more followers than the number of
users he/she is following, or vice versa. Twitter provides
a public API to gather details on user profiles and fol-
lower lists. Due to a rate limit on API requests, it was not
possible to collect information about all the Twitter users.
The crawling process was seeded collecting 1,000 seed
users from the public timeline, which shows a list of the
20 most recent tweets posted by users with unrestricted
privacy settings to the entire service. The duration of
the data crawling was 6 days from December 3 to De-
cember 8, 2009, gathering information about profiles and
follower lists for 814,902 different users. Among them,
535,653 reported some information about their home lo-
cation. We have successfully geocoded 409,093 users,
translating their location information into a point on the
Earth.
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Figure 1: Complementary Cumulative Distribution
Function (CCDF) of node degree.

5 Geo-social Analysis

In this section we analyze the social structure of
the OSNs under investigation. Then, we study their
geographic structure with our novel geo-social metrics.

5.1 Social Structure

We have extracted a graph from each sampled dataset:
BrightKite and FourSquare are modeled with undirected
graphs, whereas LiveJournal and Twitter with directed
graphs. In LiveJournal we have a link from user A to
user B if A lists B as one of his/her friends; in Twit-
ter there is the same link if A follows B. In Table 1 we
report some basic properties of the datasets under anal-
ysis. The graphs extracted from these OSNs are quite
different: BrightKite and FourSquare have an average
node degree (k) of 7.88 and 12.02 respectively, whereas
LiveJournal has an average degree of about 30 and Twit-
ter shows a larger value of 447. These values give in-
dication that while purely location-based OSNs such as
BrightKite and FourSquare have not yet gathered a mas-
sive and tightly connected audience, LiveJournal users
have built many more connections over the years. The
case of Twitter is peculiar: this social network encour-
ages users to follow a large number of other users and,
since no reciprocation in link creation is needed, it is eas-
ier for a user to accumulate a large number of social con-
nections. Our samples show a dominant giant component
which contains almost all the nodes in the sample.

Small-world effect We study the average path length
(L) of these networks by sampling random pairs of nodes
in the network and evaluating their path distance. The
average path length is obtained by considering the av-
erage shortest path among the sampled pairs. The sam-
pled average path length is above 4.5 hops in FourSquare,
BrightKite and LiveJournal and only 2.77 hops in Twit-

L0 1.0 r T r

0.8 /
0.6 | - - K

041

08

0.6

04

021 02

0.0 L L L L i 0.0 L L L "
100 10 10° 108 10t 10° 100 10 10° 10° 10* 10°
Edge length [km] Edge length [km]

(a) BrightKite

(b) FourSquare

1.0 1.0

08 / 4 08t

06 : : : 1 06
04 ; : g 1 04l

02 1 02}

0 Ul()” l[‘ll l(‘)‘ ll‘ix U‘)4 10° 0 ()lU” 10! 102 M‘Ji l(‘]4 10°
Edge length [km] Edge length [km]
(c) LiveJournal (d) Twitter
Figure 2: Cumulative Distribution Function of edge

length.

ter. Differences among the OSNs are present also re-
garding the average clustering coefficient (C): Twitter
and FourSquare have a higher coefficient of 0.207 and
0.256 respectively, while LiveJournal scores 0.185 and
BrightKite 0.181. These results confirm the existence
of the small-world effect also in this type of social net-
works, as found in other offline systems [15]: while the
average shortest path length is only a few hops, their
clustering coefficient is still higher than in a randomized
network of the same size.

Degree distribution As shown in Figure 1, the com-
plementary cumulative probability distributions of node
degree present a heavy tail, with a vast proportion of
nodes with lower degrees and only few nodes with signif-
icantly larger degrees. Similar degree distributions have
also been found in many other complex networks, such
as those that exhibit power-law degree distributions [2].
However, our distributions present a flat head and a fast
decay in the tail, which is in contrast with power-law
models: this may be due to the fact that snowball sam-
pling underestimates the proportion of nodes with lower
degrees, thus lowering the initial values of the distribu-
tion.

In the case of LiveJournal the out-degree distribution
decays much faster than the in-degree one: this may be
related to the fact that LiveJournal had temporarily lim-
ited the number of outgoing connections of every user to
750. As expected, this results in a sharp cut-off right af-
ter this value. Twitter exhibits degree distributions with
a flat head and then a rapid decay, as found in other stud-
ies [10]. Since these two OSNSs are represented with di-
rected graphs we report their value of reciprocity p [6]:
this metric measures how likely each link is present in
both directions and spans from p = 1 for perfect reci-
procity to p = —1 if each link is present only in one di-
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rection. We have p = 0.69 for LiveJournal, while Twit-
ter has p = 0.79. Hence, both networks exhibit high
values of reciprocity, albeit Twitter appears more sym-
metric: this property might be related to the fact that it
encourages more reciprocal interactions than LiveJour-
nal.

5.2 Geographic Structure
After investigating the social structure of the OSNs we
now analyze their geo-social properties.

5.2.1 Geographic Distance

One of the most important characteristics is the geo-
graphic distance that social connections span: even if a
link between two users denotes some sort of social re-
lationship, it is also important to take into account how
it stretches across space. First of all, the OSNs under
analysis present different values of the average distance
(D;;) between users: FourSquare users exhibit an aver-
age distance of only 4,312 km, while in BrightKite this
value goes up to 5,683 km and in LiveJournal and Twit-
ter it is above 6,000 km. Thus, regardless of social con-
nections, FourSquare has a more limited geographic user
base, while the other datasets are more widely spread and
comparable among them. In Figure 2 we report the cu-
mulative probability distribution of edge length for the
four different social networks. FourSquare has the small-
est average, only 1,296 km, and it contains more than
50% of links shorter than 1 km. It has also the short-
est average distance between nodes. These values can
be explained by the fact that FourSquare was available
only in 100 different cities when this dataset was sam-
pled, so users were not distributed all over the world and
several social links were among friends colocated in the
same city. Indeed, the link length distribution appears
flat below 100 km. A similar phenomenon appears in
LiveJournal, with around 30% of links shorter than 1 km,
albeit the average link length is 2,727 km. On the con-
trary, BrightKite contains only about 4% of extremely
short links, with a global average length of 2,041 km.
Nonetheless, about 60% of links are shorter than 1,000
km. Finally, Twitter links have an average length of
5,117 km: there are only less than 5% of links shorter
than 100 km, while there are more than 80% of links

longer than 1,000 km. This is a clear indication that Twit-
ter users are likely to be engaged with a global audience
of followers, even though there are also short-range so-
cial connections. These properties may also be affected
by the fact that Twitter users tend to have a high num-
ber of connections, which makes the network less sparse
than the other ones.

5.2.2 Geo-social Properties

Here we present some results on the novel geo-social
metrics we have previously defined, the node locality and
the geographic clustering coefficient.

Choice of scaling factor To compare the results for
different geographic social networks a value for the
scaling factor /3 used in Equations 1 and 2 needs to
be chosen. By using the same value for every OSN,
the network whose nodes are at shorter distances from
each other will have higher values of geo-social metrics.
Instead, we want to be able to compare the geo-social
structure of two networks even if it arises at different
geographic scales, i.e., city-wide or nation-wide. Thus,
for each OSN we chose to adopt a scaling factor 5 equal
to the mean distance between all its users, which is
reported in Table 1. This choice is dependent only on
the positions of the nodes of the social graph, not on
their links: in this way we can understand how the same
set of nodes might have different geo-social properties
according to the links among them.

Node locality The probability distributions of node lo-
cality for the four datasets are shown in Figure 3. In the
BrightKite, FourSquare and LiveJournal networks there
is a non-negligible fraction of nodes with node locality
close to 1. Hence, there are some users who have social
connections only with other individuals within a close
geographic distance. Furthermore, in the BrightKite net-
work about 40% of users have a node locality higher
than 0.90, whereas in the FourSquare dataset this phe-
nomenon is even more evident, with 1 out of 4 users
with node locality close to 1. Users of these location-
based Owns exhibit an overall high average node local-
ity: BrightKite has an average value of 0.82, while in
FourSquare this value goes up to 0.85.

In the LiveJournal network this effect is weaker: only
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10% of users have a node locality close to 1 and the mean
values are 0.73 for in-locality and 0.71 for out-locality.
The node locality distribution appears similar both for
in- and out-locality. Instead, in Twitter the distribution
of node locality shows less nodes with high values. This
may provide evidence that Twitter users are more likely
to engage with a geographically spread set of individuals
rather than only with users at closer distances. More-
over, in- and out-locality show different patterns, since
there are more than 15% of nodes with an out-locality
of 0, probably nodes without outgoing connections. The
average values are lower than in the other networks: 0.57
for in-locality and 0.49 for out-locality.

These results show how the new generation of
location-based services services, such as BrightKite and
FourSquare, is characterized by short-range friendship
links among users, resulting in a vast proportion of them
with high values of node locality. Thus focusing merely
on user location, rather than on what users share and
post, may give more opportunities to discover potential
friends that live nearby. On the contrary, these patterns
are not present in social networks which are less centered
on user location: in LiveJournal users have connections
with heterogeneous length and this effect is even greater

in Twitter. Their users may be more interested in be-
coming friends with individuals which post and share in-
teresting content rather than simply with people at close
distance.

Node locality and node degree We now analyze the
correlation between node degree and node locality to un-
derstand the geo-social properties of users with different
numbers of connections. The average node locality as a
function of node degree for BrightKite and LiveJournal
is shown in Figure 4: node locality is slowly decreasing
with node degree and only users with many connections
have lower values of node locality. In FourSquare this is
less evident, as the trend is fairly constant. Since Live-
Journal and Twitter are modeled as directed graphs we
investigate the same correlation in both directions. In
LiveJournal the decreasing trend is evident for both in-
and out-locality. Instead, Twitter users show a maximum
value of out-locality as their number of outgoing links
grows larger than 100, whereas in-locality shows a max-
imum just before 100 incoming connections. Both rela-
tionships then decrease until they reach a plateau.

While it is expected that nodes with larger degrees
exhibit smaller locality values, since it is statistically
more likely that they are connected to distant users, this
behavior is not observed in Twitter: users with about 10
outgoing connections have lower values of out-locality,
but as the out-degree grows there is a maximum at 100.

One possible explanation is that users with a small
number of links are probably mainly connected to popu-
lar accounts, i.e., institutions, media and commercial en-
tities, that are usually not geographically close to them.
Indeed, when users join Twitter, the website suggests a
list of 20 popular people and organizations which are un-
likely to be located close to the joining user. As a conse-
quence, people that just join the service and abandon it
after a short period of time end up with a small number
of connections which are not close from both social and
geographic point of view.

Geographic clustering coefficient The other geo-
social metric that we have studied is the geographic
clustering coefficient. Since social networks are widely
known to be characterized by the presence of triangles,
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Figure 6: Average geographic clustering coefficient as a
function of node degree. For directed networks the rela-
tionship is shown both for in- and out-degree.

the aim of this metric is to understand whether triplets
of mutually connected users are more likely to be ge-
ographically close or, instead, distant from each other.
Thus, a user with high geographic clustering coefficient
has neighbors which are tightly interconnected and close
to the user itself and to each other. The four datasets
exhibit different values of geographic clustering coeffi-
cient: while BrightKite has an average value of 0.165 and
FourSquare of 0.237, the average of LiveJournal is 0.146
and Twitter scores 0.108. Also, the first two datasets ex-
hibit a geographic clustering coefficient which is closer
to their standard clustering coefficient, while LiveJour-
nal and Twitter present lower values when geographic
distance is taken into account. Thus, in the former two
OSNss clusters form at shorter distances than in the latter.

The probability distributions of the geographic cluster-
ing coefficient are shown in Figure 5. The higher mean
values of BrightKite and FourSquare are explained by the
fact that a non-negligible portion of users have a coeffi-
cient of 1.0: about 20% in BrightKite and about 10% in
FourSquare. On the other hand, in LiveJournal and Twit-
ter higher values are less likely to be observed and there
is no discernible proportion of users with a coefficient
of 1. These results show how location-based OSNs such
as FourSquare and BrightKite tend to have more geo-
graphically confined triangles than social networks more
focused on content production and sharing such as Live-
Journal and Twitter.

Geographic clustering coefficient and node degree
We now investigate how the geographic clustering coeffi-
cient is related to node degree. As reported in Figure 6, in
BrightKite, FourSquare and LiveJournal the geographic
clustering coefficient steadily decreases as the number of
neighbors grows: thus, if a user has only few friends they

are more likely to create connections with people nearby.
On the other hand, Twitter shows a different behavior:
the geographic clustering coefficient is slowly decreas-
ing as the degree increases, but then it grows again un-
til reaching a local maximum around the value of 1,000,
while it decreases again for larger degrees.

This particular property of the Twitter network may
be explained by the existence of users which are popular
only in a particular region: they have both incoming and
outgoing links with a large audience which has, however,
several interconnections on a confined scale. Indeed, a
user which is locally popular might have lower values of
node locality because of his/her large audience, as shown
in Figure 4, but users which are following him/her are
also likely to share the same interests (since they follow
the same popular user) and to become connected with
each other. Instead, when a user reaches a wider popu-
larity, his/her followers will be both more geographically
spread and less interconnected. Further investigation on
this point may unravel interesting findings.

5.2.3 Discussion

We have found common characteristics of these
networks, namely the existence of a small-world effect,
heavy-tailed degree distributions, a tendency to exhibit
users with high node locality and social triangles on a
local geographic scale.

However, from a geo-social point of view we have
also seen some differences across the OSNs. Whereas
purely location-based social networking services such
BrightKite and FourSquare, which mainly focus on the
geographic dimension of social interaction, have high
node locality and geographic clustering close to standard
clustering, OSNs based more on the idea of sharing in-
formation and content result in users with lower node lo-
cality and geographic clustering coefficient values.

It is important to note that the standard clustering
coefficient is not affected by this distinction: indeed,
BrightKite has the lowest clustering coefficient among
all the datasets but the second largest geographic clus-
tering coefficient, whereas Twitter has the second largest
standard clustering coefficient but the lowest geographic
one. Thus, it seems that geographic distance influences
only the geographic properties of the triangles, not their
likelihood of appearance. Indeed, Twitter and Live-
Journal show a larger difference between standard and
geographic clustering coefficients, while FourSquare and
BrightKite present closer values. This result indicates
how taking into account geographic distance in these
metrics provides insightful information for the design of
systems and applications that could potentially exploit
the underlying geographic and social structure of OSNs.



6 Related Work

The effect of geography over complex networks has
been studied mainly in communication and transporta-
tion networks [7]. For instance, it has been found that the
spatial properties of the Internet topology are mainly de-
termined by both preferential attachment and linear dis-
tance dependence [21], whereas Internet traffic is spa-
tially bound to a spanning network which connects the
most important centers around the globe [1]. However,
these works do not investigate social networks, which do
not have any spatial constraint.

Nonetheless, not many studies have addressed how ge-
ographic distance affects social interactions. While it
seems still true that physically proximity fosters social
interaction even on online channels as e-mail or instant-
messaging [16], the rise of social networking services
has been claimed to have caused the death of distance
among social relationships. Certainly, mainly because
of the latest technological changes, social communities
have become “glocalized” [20], with both extensive lo-
cal links and significant long-distance relationships.

One of the first attempts to analyze how interactions
on OSNs are affected by spatial distance is presented
in [14], where the authors show that the probability of
friendship decreases not only with distance but more
precisely with the number of closer people. Some
studies have investigated the structural properties of
a location-based OSN and how social and geographic
distance influences the creation of new connections
among its users [17]. Instead, we describe novel
geo-social metrics which offer a new perspective over
these systems by combining both social structure with
geographic distance.

7 Conclusion and Future Directions

In this paper we have presented a study of four
geographical online social networks through the use of
novel graph metrics able to capture geo-social relation-
ships. A number of potential applications spark from the
results presented in this work, including the ability of
producing effective targeted advertising, efficient con-
tent placement and caching, and faster and more relevant
information diffusion. We plan to investigate each of
these applications in the near future. As location-aware
OSNs become more and more popular, there will be
even more data available about how people move and
interact. Hence, we plan to extend this work by taking
into account how users change their location over time
and how this affects their behavior.
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