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Abstract—As content that users access on their mobile
devices becomes bulkier, opportunistic networking is becoming
a potential complement to centralised and infrastructure based
downloads. We study how users share items of mutual interest
with each other with a simple model based on a ‘networked urn
process’. We investigate the effect of different content sharing
policies upon a multi-category set of items. We find that the pro-
cess of sharing mutual interests inherently disproportionately
reinforces category replication disparity, i.e., the most popular
categories become proportionally even more numerous.

These findings uncover a major hurdle in the creation
of automatic opportunistic file sharing between users. Even
if users altruistically sacrifice battery power and network
resources to share content not relevant to them, overall, the
system may not be able to fairly distribute items that belong
to niche categories.

I. INTRODUCTION

Users accessing content (e.g., music or video) on their
mobile devices are becoming more demanding about the
content’s length and quality. They expect the same user
experience that they have on their desktops while watching
videos, news clips and listening to music. Multimedia traffic
puts the cellular infrastructure under heavy stress, badly
affecting the perceived quality of service [1]. As a result,
opportunistic networks (i.e., with ad hoc sharing) may be
put in place to locally serve bulkier traffic [2].

Various approaches to model how content spreads in
opportunistic networks have been proposed, often using
the framework of epidemic spreading models [3]. It may
seem natural to employ such epidemic modeling techniques
when considering the spreading of data items, this does not
consider bandwidth: the use of many superimposed epidemic
spreading processes would imply infinite bandwidth, since
the occurrence of one interaction would not impact whether
another one is performed. We require a model that uses many
interconnected users, able to share data items between each
other while considering also their own preferences. Each
user is interested in multiple categories from a population of
data categories. They should be able to consecutively acquire
items of these categories from their neighbouring elements.

Each sharing interaction involves sampling the categories
of another source device and copying content from it. We
represent this sampling by adopting an urn process [4]. Such
a process is defined as an urn containing a set of coloured

balls: then the balls can be drawn and the content of the urn
manipulated to study a particular phenomenon of interest.
For instance, consider an urn initially containing one red
ball and one blue ball: a ball is randomly chosen from the
urn at each time step and then it is replaced together with an
additional ball of the same colour. Thus the number of balls
keeps increasing and a ‘rich-get-richer’ feedback process
takes place for the selected colour, resembling the effect
of popular content becoming increasingly more popular [5].
Only a ball of a colour that both urns already possess can
be duplicated, in order to mimic categories of interests.
Furthermore, each ball is numbered, balls of matching colour
and number are considered identical, representing different
copies of the same piece of media. If a ball of a given colour
and number is already possessed, it will not be copied.

The library of a device can only be populated from
neighbouring devices, we will use a time-varying networked
urn process metaphor, where the ball sampling happens
across different urns connected by the edges of a time-
varying graph. The graph dynamics are due to the fact that
the set of available neighbours’ devices that can be selected
for sharing changes over time, since connectivity changes.

A. Sharing Policies
We modify a standard networked urn process with the

following sharing policies. Note that these policies act on
the intersection between the colours present in the source
and in the target urn. Once a policy has chosen the category,
a track that is not possessed is uniformly randomly selected.

The policies we investigate are Random, where the colour
to share is chosen at random, Popular and Unpopular, where
the colour is chosen with probability respectively directly
and inversely proportional to the number of balls in the urn.
We also study two policies which exploit full knowledge of
the system to pick the most popular, or unpopular, colour:
Oracle Popular and Oracle Unpopular.

II. THE SHARING PROCESS

This section gives a more precise description of the device
behaviour model we are proposing.

A. Network of Urn Processes
We consider the system as a set of n urns V =

{u1, ..., un}, each initially containing a subset of coloured



numbered balls. Each urn ui has an initial number of
different balls from a subset of colours Ci ⊆ C, with
g = |C|, and will only wants balls from this set of colours.
If an urn already contains a ball of a certain colour and
number, another ball of matching colour and number will
never be duplicated in the urnThe model evolves over time
along sequential ticks with each urn trying to collect all
numbers of each colour that it is interested in. Urns are
connected in a graph structure which evolves over time and
they can only duplicate balls from other connected urns.

At each time tick, all urns not engaged in sharing will
choose a random available neighbour that shares a colour of
interest, in order to initiate exchange. Each urn makes their
source selection in a random order, to avoid synchronisa-
tions. An exchange is initiated and the source urn is set as
unavailable: note that urns unavailable to act as a source will
still search for others to download from. If no neighbours are
available, the urn waits idly. The choice of the colour to be
duplicated is made according to the selection policy that is
being used, as was described in Section I-A. Whenever a ball
exchange happens over a connection, it lasts for D ticks: if
the connection disappears before the exchange is completed,
the ball is not duplicated and the urn may select a new
source. This feature mimics the actual downloading process
in real systems, which would abort when connectivity is lost
before completion. After D time ticks the ball of the chosen
colour is duplicated in the target urn and a new exchange
may take place, with the same source or with another.

In order to operate some of the sharing policies each
urn records the popularity of different colours to inform
their choices. Each urn stores this information in a queue
of length h. In this structure, the last h unique urns that
have interacted with the urn will have an entry detailing
what their content was. These entries contain the proportion
of various colours found in the different urns. This queue
will then be aggregated to give a sampled approximation of
the global colour popularity.

B. Altruistic Behaviour Modeling

We also model altruistic behaviour in our system: if an
urn decides to perform an altruistic exchange, it will accept
a ball without considering its colour. This behaviour allows
unpopular colours to be replicated by urns that may not
be interested in them. Then they will be able to act as
an intermediary in the distribution of the colours that do
not spread very well due to the pairwise incompatibility.
Just because an urn is being altruistic does not mean it
will always receive a colour it is not interested in: it just
that the sharing policy will operate on the totality of the
source’s interests, rather than just on their intersection of
tastes. To control the level of altruism we introduce a
parameter pA, which is the probability that a given ball
exchange is altruistic. We will show how altruistic behaviour
dramatically impacts the system’s final content distribution.

Parameter Symbol Default Value
Download Duration D 200
Global Categories G 100
Selected Categories g 5
Category Files T 100
User Library Size M 100
Zipf Exponent a 1
Altruism Probability pA 0
History Size h 10

Table I
DEFAULT VALUES FOR THE PARAMETERS OF THE MODEL.

III. EVALUATION

The results from the simulation of our model are pre-
sented in this section. The major parameters that control the
behaviour of the model are defined in Table I together with
their default values. The default time it takes to perform a
download D is set to 200 seconds, equivalent to 5MB files
transferred at 200Kbit/s. The Zipf-like category popularity
distribution has an exponent a = 1. The evaluation of our
model is performed on a real-world dataset of contact traces
from Transport for London (TfL), described with greater
detail in [6]. This dataset includes journey traces collected
in the London Underground over one month containing two
separate train lines at 2007’s end, comprising of 59 Million
of journeys made by 200,000 unique passengers.

A. Performance Metrics

If there are a few categories that enjoy massive popularity,
then the system is more polarised than when most categories
have about the same share of files. It is useful to be able to
distill the uniformity of the category popularity distribution
into a scalar value. We define Uniformity as the estimated
exponent of the category frequency distribution, computed
as the gradient of a linear least square regression of its log-
log plot. This gradient is akin to a power law’s exponent: it
gives a reasonable estimator of the skew of the popularity
distribution. When uniformity is at its maximum value 0,
the distribution of category items is completely uniform,
and as it decreases into negative values the categories have
greater disparity of popularity. Although each urn initially
has an i.i.d. probability to choose its colours of interest, some
order will still arise out of the initial random conditions. The
most popular colour will then have its popularity reinforced
through the feedback effect of the sharing process.

B. Simulation Results

We now present the sharing process simulation results.
1) Uniformity Evolution: The performance of each shar-

ing policy is shown in Figure 1. The most striking aspect of
the system Uniformity (Figure 1(a)), is that the uniformity of
the system is always decreasing regardless of the adopted
sharing policy. Even the Oracle Unpopular policy, which
will (with perfect global knowledge) share the least popular
categories between two peers. The total amount of files in the
system’s libraries over time is plotted in Figure 1(b). There
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Figure 1. Change in uniformity (a) and library size (b) over time for
different sharing policies.
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Figure 2. Change in uniformity (a) and library size (b) over time for
different sharing policies with different degrees of altruistic behaviour.

are slightly more files gained by policies that favour unpop-
ular selections. As when choosing between a popular and
unpopular category, it is preferable to choose the unpopular
category, which will be harder to find in future. Unpopular
policies exploit more opportunities, because when a user’s
unpopular tastes are unavailable, they should still be able to
collect the widespread popular categories.

2) Altruistic behaviour: After seeing that decreasing uni-
formity can not be stopped even when favouring unpopular
file exchanges, the effect of including altruistic transfers is
depicted in Figure 2. Each curve shows different altruistic
probabilities. As expected, pA = 0 are the same curves from
Figure 1, as no altruistic transfers occur. In Figure 2(a)
it can be observed that when using altruism there is a
slower degradation of uniformity. Figure 2(b) shows that
with a small amount of altruism each device is on average
able to gather more files. Though very high altruism rates
(pA = 0.75) cause a reduction in library growth, due to
altruistic transfers not being spent increasing useful files.

IV. IMPLICATIONS

Our results have shown the troubling effect of a tendency
for homogenisation in automatic distributed sharing systems.
We used a relatively straight-forward sharing model, where
the more popular categories were replicated far in excess
of less popular ones. An obvious approach to mitigate the
extreme proliferation of popular tastes, by the preferential
sharing of less popular items, does not reverse this process,
only slows it. Going further and having nodes replicate
unpopular files that they are not even interested in still
does not reverse the trend. Though a small amount of
altruism decreases diversity decay and usefully increases file
distribution.

V. RELATED WORK

Relevant research on this topic includes different ap-
proaches to information sharing on opportunistic networks
and abstract models of content or culture propagation. Stud-
ies on content spreading in opportunistic networks have also
been proposed, in [2] a model of the mean content update
age is given. With respect to these works we take a different
stance, assuming content is bulk downloaded instead of
streamed or directed to specific users. Rather than assuming
each user will manage their device to obtain specific content,
we envisage an automatic system where devices only need
to identify categories of interest.

A suitable formulation of different tastes spreading over
a network has been considered in the field of cultural
spreading. Axelrod’s model can be further generalised as
Networked Urn Processes [7], where nodes represented by
an urn filled with multiple coloured balls. The authors show
how social influence/selection interact in social processes in
different online social scenarios, the aim of our model is to
understand a data sharing system.

VI. CONCLUSIONS

This paper indicated there is a naturally emergent be-
haviour of library homogenisation, it may not be unavoid-
able, but will require some tough choices. An obvious ap-
proach is to avoid creating replications of popular categories,
i.e., not downloading files, even when it is possible. This
could considered contrary to the aims of a dissemination
system. To conclude, automated content sharing may only
be feasible for the most popular data items.
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